Paper 2019/1090
Low Complexity MDS Matrices Using $GF(2^n)$ SPB or GPB
Xinggu Chen and Haining Fan
Abstract
While $GF(2^n)$ polynomial bases are widely used in symmetric-key components, e.g. MDS matrices, we show that even low time/space complexities can be achieved by using $GF(2^n)$ shifted polynomial bases (SPB) or generalized polynomial bases (GPB).
Metadata
- Available format(s)
- Category
- Implementation
- Publication info
- Preprint. MINOR revision.
- Keywords
- Finite fieldmultiplicationpolynomial basisdiffusion matrixMDS matrix.
- Contact author(s)
-
cxg15 @ mails tsinghua edu cn
fhn @ tsinghua edu cn - History
- 2019-09-29: received
- Short URL
- https://ia.cr/2019/1090
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2019/1090, author = {Xinggu Chen and Haining Fan}, title = {Low Complexity {MDS} Matrices Using ${GF}(2^n)$ {SPB} or {GPB}}, howpublished = {Cryptology {ePrint} Archive, Paper 2019/1090}, year = {2019}, url = {https://eprint.iacr.org/2019/1090} }