Cryptology ePrint Archive: Report 2019/1056

Adventures in Supersingularland

Sarah Arpin and Catalina Camacho-Navarro and Kristin Lauter and Joelle Lim and Kristina Nelson and Travis Scholl and Jana Sotáková

Abstract: In this paper, we study isogeny graphs of supersingular elliptic curves. Supersingular isogeny graphs were introduced as a hard problem into cryptography by Charles, Goren, and Lauter for the construction of cryptographic hash functions. These are large expander graphs, and the hard problem is to find an efficient algorithm for routing, or path-finding, between two vertices of the graph. We consider four aspects of supersingular isogeny graphs, study each thoroughly and, where appropriate, discuss how they relate to one another. First, we consider two related graphs that help us understand the structure: the `spine' $\mathcal{S}$, which is the subgraph of $\mathcal{G}_\ell(\overline{\mathbb{F}_p})$ given by the $j$-invariants in $\mathbb{F}_p$, and the graph $\mathcal{G}_\ell(\mathbb{F}_p)$, in which both curves and isogenies must be defined over $\mathbb{F}_p$. We show how to pass from the latter to the former. The graph $\mathcal{S}$ is relevant for cryptanalysis because routing between vertices in $\mathbb{F}_p$ is easier than in the full isogeny graph. The $\mathbb{F}_p$-vertices are typically assumed to be randomly distributed in the graph, which is far from true. We provide an analysis of the distances of connected components of $\mathcal{S}$.

Next, we study the involution on $\mathcal{G}_\ell(\overline{\mathbb{F}_p})$ that is given by the Frobenius of $\mathbb{F}_p$ and give heuristics on how often shortest paths between two conjugate $j$-invariants are preserved by this involution (mirror paths). We also study the related question of what proportion of conjugate $j$-invariants are $\ell$-isogenous for $\ell = 2,3$. We conclude with experimental data on the diameters of supersingular isogeny graphs when $\ell = 2$ and compare this with previous results on diameters of LPS graphs and random Ramanujan graphs.

Category / Keywords: public-key cryptography / number theory, isogeny-based cryptography

Date: received 17 Sep 2019

Contact author: ja sotakova at gmail com,Sarah Arpin@colorado edu,krstnm nlsn@gmail com,joelle-lim@berkeley edu

Available format(s): PDF | BibTeX Citation

Version: 20190918:124116 (All versions of this report)

Short URL: ia.cr/2019/1056


[ Cryptology ePrint archive ]