Cryptology ePrint Archive: Report 2019/1002

Boomerang Uniformity of Popular S-box Constructions

Shizhu Tian and Christina Boura and Léo Perrin

Abstract: In order to study the resistance of a block cipher against boomerang attacks, a tool called the Boomerang Connectivity Table (BCT) for S-boxes was recently introduced. Very little is known today about the properties of this table especially for bijective S-boxes defined for $n$ variables with $n\equiv 0 \mod{4}$. In this work we study the boomerang uniformity of some popular constructions used for building large S-boxes, e.g. for 8 variables, from smaller ones. We show that the BCTs of all the studied constructions have abnormally high values in some positions. This remark permits us in some cases to link the boomerang properties of an S-box with other well-known cryptanalytic techniques on such constructions while in other cases it leads to the discovery of new ones. A surprising outcome concerns notably the Feistel and MISTY networks. While these two structures are very similar, their boomerang uniformity can be very different. In a second time, we investigate the boomerang uniformity under EA-equivalence for Gold and the inverse function (as used respectively in MPC-friendly ciphers and the AES) and we prove that the boomerang uniformity is EA-invariant in these cases. Finally, we present an algorithm for inverting a given BCT and provide experimental results on the size of the BCT-equivalence classes for some $4$ and $8$-bit S-boxes.

Category / Keywords: secret-key cryptography / BCT, S-box, Feistel, MISTY, Lai-Massey, Gold

Date: received 4 Sep 2019

Contact author: christina boura at uvsq fr

Available format(s): PDF | BibTeX Citation

Version: 20190905:115931 (All versions of this report)

Short URL: ia.cr/2019/1002


[ Cryptology ePrint archive ]