Paper 2018/496
Efficient Delegated Private Set Intersection on Outsourced Private Datasets
Aydin Abadi, Sotirios Terzis, Roberto Metere, and Changyu Dong
Abstract
Private set intersection (PSI) is an essential cryptographic protocol that has many real world applications. As cloud computing power and popularity have been swiftly growing, it is now desirable to leverage the cloud to store private datasets and delegate PSI computation to it. Although a set of efficient PSI protocols have been designed, none support outsourcing of the datasets and the computation. In this paper, we propose two protocols for delegated PSI computation on outsourced private datasets. Our protocols have a unique combination of properties that make them particularly appealing for a cloud computing setting. Our first protocol, O-PSI, satisfies these properties by using additive homomorphic encryption and point-value polynomial representation of a set. Our second protocol, EO-PSI, is mainly based on a hash table and point-value polynomial representation and it does not require public key encryption; meanwhile, it retains all the desirable properties and is much more efficient than the first one. We also provide a formal security analysis of the two protocols in the semi-honest model and we analyze their performance utilizing prototype implementations we have developed. Our performance analysis shows that EO-PSI scales well and is also more efficient than similar state-of-the-art protocols for large set sizes.
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- Published elsewhere. IEEE Transactions on Dependable and Secure Computing
- DOI
- 10.1109/TDSC.2017.2708710
- Keywords
- Private Set IntersectionSecure ComputationCloud Computing
- Contact author(s)
- changyu dong @ gmail com
- History
- 2018-05-23: received
- Short URL
- https://ia.cr/2018/496
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2018/496, author = {Aydin Abadi and Sotirios Terzis and Roberto Metere and Changyu Dong}, title = {Efficient Delegated Private Set Intersection on Outsourced Private Datasets}, howpublished = {Cryptology {ePrint} Archive, Paper 2018/496}, year = {2018}, doi = {10.1109/TDSC.2017.2708710}, url = {https://eprint.iacr.org/2018/496} }