Cryptology ePrint Archive: Report 2018/384

Fine-Grained and Application-Ready Distance-Bounding Security

Ioana Boureanu and David Gerault and Pascal Lafourcade

Abstract: Distance-bounding (DB) protocols are being adopted in different applications, e.g., contactless payments, keyless entries. For DB to be application-ready, "pick-and-choose" corruption models and clear-cut security definitions in DB are needed. Yet, this is virtually impossible using the four existing formalisms for distance-bounding (DB), whereby each considers around five different security properties, arguably intertwined and hard to compare amongst each other.

In particular, terrorist-fraud resistance has been notoriously problematic to formalise in DB. Also, achieving this property, often weakness a protocol's general security. We demonstrate that --in fact-- terrorist-fraud resistance cannot be achieved, under standard assumptions made for DB protocols. Our result wraps up terrorist-fraud resistance in provable-security in DB.

As a consequence of terrorist-fraud resistance being made irrelevant, and to address application-ready DB, we present a new, provable-security model for distance-bounding. It formalises fine-grained corruption-modes (i.e., white-box and black-box corrupted provers) and this allows for clearer security definitions driven by the separation in corruption-modes. Also, our model explicitly includes a security-property generalising key-leakage, which per se --before this-- was studied only implicitly or as a by-product of other DB-security properties.

In all, our formalism only requires three, clear-cut security definitions which can be "picked and chosen" based on the application-driven prover-corruption modes.

Category / Keywords:

Date: received 27 Apr 2018, last revised 3 May 2018, withdrawn 30 Dec 2018

Contact author: icboureanu at gmail com

Available format(s): (-- withdrawn --)

Note: there was a pb in authors' names

Version: 20181230:094823 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]