Paper 2018/206

Reading in the Dark: Classifying Encrypted Digits with Functional Encryption

Edouard Dufour-Sans, Romain Gay, and David Pointcheval

Abstract

As machine learning grows into a ubiquitous technology that finds many interesting applications, the privacy of data is becoming a major concern. This paper deals with machine learning and encrypted data. Namely, our contribution is twofold: we first build a new Functional Encryption scheme for quadratic multi-variate polynomials, which outperforms previous schemes. It enables the efficient computation of quadratic polynomials on encrypted vectors, so that only the result is in clear. We then turn to quadratic networks, a class of machine learning models, and show that their design makes them particularly suited to our encryption scheme. This synergy yields a technique for efficiently recovering a plaintext classification of encrypted data. Eventually, we prototype our construction and run it on the MNIST dataset to demonstrate practical relevance. We obtain 97.54% accuracy, with decryption and encryption taking few seconds.

Metadata
Available format(s)
PDF
Category
Applications
Publication info
Preprint. MINOR revision.
Keywords
Machine Learning on Encrypted DataFunctional EncryptionQuadratic polynomials
Contact author(s)
edufoursans @ ens fr
History
2020-10-26: last of 2 revisions
2018-02-22: received
See all versions
Short URL
https://ia.cr/2018/206
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2018/206,
      author = {Edouard Dufour-Sans and Romain Gay and David Pointcheval},
      title = {Reading in the Dark: Classifying Encrypted Digits with Functional Encryption},
      howpublished = {Cryptology {ePrint} Archive, Paper 2018/206},
      year = {2018},
      url = {https://eprint.iacr.org/2018/206}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.