Cryptology ePrint Archive: Report 2018/1015

Non-Malleable Codes Against Bounded Polynomial Time Tampering

Marshall Ball and Dana Dachman-Soled and Mukul Kulkarni and Huijia Lin and Tal Malkin

Abstract: We construct efficient non-malleable codes (NMC) that are (computationally) secure against tampering by functions computable in any fixed polynomial time. Our construction is in the plain (no-CRS) model and requires the assumptions that (1) $\mathbf{E}$ is hard for $\mathbf{NP}$ circuits of some exponential $2^{\beta n}$ ($\beta>0$) size (widely used in the derandomization literature), (2) sub-exponential trapdoor permutations exist, and (3) $\mathbf{P}$ certificates with sub-exponential soundness exist.

While it is impossible to construct NMC secure against arbitrary polynomial-time tampering (Dziembowski, Pietrzak, Wichs, ICS '10), the existence of NMC secure against $O(n^c)$-time tampering functions (for any fixed $c$), was shown (Cheraghchi and Guruswami, ITCS '14) via a probabilistic construction. An explicit construction was given (Faust, Mukherjee, Venturi, Wichs, Eurocrypt '14) assuming an untamperable CRS with length longer than the runtime of the tampering function. In this work, we show that under computational assumptions, we can bypass these limitations. Specifically, under the assumptions listed above, we obtain non-malleable codes in the plain model against $O(n^c)$-time tampering functions (for any fixed $c$), with codeword length independent of the tampering time bound.

Our new construction of NMC draws a connection with non-interactive non-malleable commitments. In fact, we show that in the NMC setting, it suffices to have a much weaker notion called quasi non-malleable commitments---these are non-interactive, non-malleable commitments in the plain model, in which the adversary runs in $O(n^c)$-time, whereas the honest parties may run in longer (polynomial) time. We then construct a 4-tag quasi non-malleable commitment from any sub-exponential OWF and the assumption that $\mathbf{E}$ is hard for some exponential size $\mathbf{NP}$-circuits, and use tag amplification techniques to support an exponential number of tags.

Category / Keywords: foundations / non-malleable code, non-malleable commitment, derandomization

Date: received 18 Oct 2018

Contact author: danadach at ece umd edu

Available format(s): PDF | BibTeX Citation

Version: 20181024:172736 (All versions of this report)

Short URL: ia.cr/2018/1015


[ Cryptology ePrint archive ]