Paper 2017/812

Optimal PRFs from Blockcipher Designs

Bart Mennink and Samuel Neves

Abstract

Cryptographic modes built on top of a blockcipher usually rely on the assumption that this primitive behaves like a pseudorandom permutation (PRP). For many of these modes, including counter mode and GCM, stronger security guarantees could be derived if they were based on a PRF design. We propose a heuristic method of transforming a dedicated blockcipher design into a dedicated PRF design. Intuitively, the method consists of evaluating the blockcipher once, with one or more intermediate state values fed-forward. It shows strong resemblance with the optimally secure EDMD construction by Mennink and Neves (CRYPTO 2017), but the use of internal state values make their security analysis formally inapplicable. In support of its security, we give the rationale of relying on the EDMD function (as opposed to alternatives), and present analysis of simplified versions of our conversion method applied to the AES. We conjecture that our main proposal AES-PRF, AES with a feed-forward of the middle state, achieves close to optimal security. We apply the design to GCM and GCM-SIV, and demonstrate how it entails significant security improvements. We furthermore demonstrate how the technique extends to tweakable blockciphers and allows for security improvements in, for instance, PMAC1.

Metadata
Available format(s)
PDF
Category
Secret-key cryptography
Publication info
Published by the IACR in FSE 2018
Keywords
PRPPRFEDMDAES-PRFGCMGCM-SIVPMAC1
Contact author(s)
b mennink @ cs ru nl
History
2017-08-30: revised
2017-08-29: received
See all versions
Short URL
https://ia.cr/2017/812
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2017/812,
      author = {Bart Mennink and Samuel Neves},
      title = {Optimal {PRFs} from Blockcipher Designs},
      howpublished = {Cryptology {ePrint} Archive, Paper 2017/812},
      year = {2017},
      url = {https://eprint.iacr.org/2017/812}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.