Paper 2017/1037

DAGS: Key Encapsulation using Dyadic GS Codes

Gustavo Banegas, Paulo S. L. M. Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiecoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane N'diaye, Duc Tri Nguyen, Edoardo Persichetti, and Jefferson E. Ricardini


Code-based Cryptography is one of the main areas of interest for the Post-Quantum Cryptography Standardization call. In this paper, we introduce DAGS, a Key Encapsulation Mechanism (KEM) based on Quasi-Dyadic Generalized Srivastava codes. The scheme is proved to be IND-CCA secure in both Random Oracle Model and Quantum Random Oracle Model. We believe that DAGS will offer competitive performance, especially when compared with other existing code-based schemes, and represent a valid candidate for post-quantum standardization.

Available format(s)
Publication info
Preprint. MINOR revision.
Contact author(s)
epersichetti @ fau edu
2017-12-28: revised
2017-10-28: received
See all versions
Short URL
Creative Commons Attribution


      author = {Gustavo Banegas and Paulo S.  L.  M.  Barreto and Brice Odilon Boidje and Pierre-Louis Cayrel and Gilbert Ndollane Dione and Kris Gaj and Cheikh Thiecoumba Gueye and Richard Haeussler and Jean Belo Klamti and Ousmane N'diaye and Duc Tri Nguyen and Edoardo Persichetti and Jefferson E.  Ricardini},
      title = {DAGS: Key Encapsulation using Dyadic GS Codes},
      howpublished = {Cryptology ePrint Archive, Paper 2017/1037},
      year = {2017},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.