Paper 2016/559
Quantum homomorphic encryption for polynomial-sized circuits
Yfke Dulek, Christian Schaffner, and Florian Speelman
Abstract
We present a new scheme for quantum homomorphic encryption which is compact and allows for efficient evaluation of arbitrary polynomial-sized quantum circuits. Building on the framework of Broad- bent and Jeffery and recent results in the area of instantaneous non-local quantum computation, we show how to construct quantum gadgets that allow perfect correction of the errors which occur during the homomorphic evaluation of T gates on encrypted quantum data. Our scheme can be based on any classical (leveled) fully homomorphic encryption (FHE) scheme and requires no computational assumptions besides those already used by the classical scheme. The size of our quantum gadget depends on the space complexity of the classical decryption function - which aligns well with the current efforts to minimize the complexity of the decryption function. Our scheme (or slight variants of it) offers a number of additional advantages such as ideal compactness, the ability to supply gadgets "on demand", circuit privacy for the evaluator against passive adversaries, and a three-round scheme for blind delegated quantum computation which puts only very limited demands on the quantum abilities of the client.
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- A major revision of an IACR publication in CRYPTO 2016
- Keywords
- homomorphic encryptionquantum cryptographyquantum teleportationgarden-hose model
- Contact author(s)
- Y M Dulek @ cwi nl
- History
- 2016-06-03: received
- Short URL
- https://ia.cr/2016/559
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2016/559, author = {Yfke Dulek and Christian Schaffner and Florian Speelman}, title = {Quantum homomorphic encryption for polynomial-sized circuits}, howpublished = {Cryptology {ePrint} Archive, Paper 2016/559}, year = {2016}, url = {https://eprint.iacr.org/2016/559} }