**On a remarkable property of APN Gold functions**

*Anastasiya Gorodilova*

**Abstract: **In [13] for a given vectorial Boolean function $F$ from $\mathbb{F}_2^n$ to itself it was defined an associated Boolean function $\gamma_F(a,b)$ in $2n$ variables that takes value~$1$ iff $a\neq{\bf 0}$ and equation $F(x)+F(x+a)=b$ has solutions. In this paper we introduce the notion of differentially equivalent functions as vectorial functions that have equal associated Boolean functions. It is an interesting open problem to describe differential equivalence class of a given APN function.
We consider the APN Gold function $F(x)=x^{2^k+1}$, where gcd$(k,n)=1$, and prove that there exist exactly $2^{2n+n/2}$ distinct affine functions $A$ such that $F$ and $F+A$ are differentially equivalent if $n=4t$ for some $t$ and $k = n/2 \pm 1$; otherwise the number of such affine functions is equal to $2^{2n}$. This theoretical result and computer calculations obtained show that APN Gold functions for $k=n/2\pm1$ and $n=4t$ are the only functions (except one function in 6 variables) among all known quadratic APN functions in $2,\ldots,8$ variables that have more than $2^{2n}$ trivial affine functions $A^F_{c,d}(x)=F(x)+F(x+c)+d$, where $c,d\in\mathbb{F}_2^n$, preserving the associated Boolean function when adding to $F$.

**Category / Keywords: **foundations / Boolean function, Almost perfect nonlinear function, Almost bent function, Crooked function, Differential equivalence

**Date: **received 15 Mar 2016

**Contact author: **gorodilova at math nsc ru

**Available format(s): **PDF | BibTeX Citation

**Version: **20160315:091353 (All versions of this report)

**Short URL: **ia.cr/2016/286

**Discussion forum: **Show discussion | Start new discussion

[ Cryptology ePrint archive ]