Cryptology ePrint Archive: Report 2016/124

Collecting relations for the Number Field Sieve in $GF(p^6)$

Pierrick Gaudry and Laurent Grémy and Marion Videau

Abstract: In order to assess the security of cryptosystems based on the discrete logarithm problem in non-prime finite fields, as are the torus-based or pairing-based ones, we investigate thoroughly the case in $GF(p^6)$ with the Number Field Sieve. We provide new insights, improvements, and comparisons between different methods to select polynomials intended for a sieve in dimension 3 using a special-q strategy. We also take into account the Galois action to increase the relation productivity of the sieving phase. To validate our results, we ran several experiments and real computations for various selection methods and field sizes with our publicly available implementation of the sieve in dimension 3, with special-q and various enumeration strategies.

Category / Keywords: public-key cryptography /

Date: received 11 Feb 2016, last revised 30 May 2016

Contact author: laurent gremy at inria fr

Available format(s): PDF | BibTeX Citation

Version: 20160530:073403 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]