Cryptology ePrint Archive: Report 2016/1192

Non-Malleable Codes with Split-State Refresh

Antonio Faonio and Jesper Buus Nielsen

Abstract: Non-Malleable Codes for the split state model allow to encode a mes- sage into two parts such that arbitrary independent tampering on the parts either destroys completely the content or maintains the message untouched. If the code is also leakage resilient it allows limited independent leakage from the two parts. We propose a model where the two parts can be refreshed independently. We give an abstract framework for building codes for this model, instantiate the construc- tion under the external Diffie-Hellman assumption and give applications of such split-state refreshing. An advantage of our new model is that it allows arbitrarily many tamper attacks and arbitrarily large leakage over the life-time of the systems as long as occasionally each part of the code is refreshed. Our model also tolerates that the refreshing occasionally is leaky or tampered with.

Category / Keywords: foundations / non-malleable codes, leakage resilience, tamper resilience

Original Publication (with major differences): IACR-PKC-2017

Date: received 30 Dec 2016

Contact author: afaonio at gmail com; jbn at cs au dk

Available format(s): PDF | BibTeX Citation

Version: 20170101:153808 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]