Paper 2015/751

Fast Garbling of Circuits Under Standard Assumptions

Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas


Protocols for secure computation enable mutually distrustful parties to jointly compute on their private inputs without revealing anything but the result. Over recent years, secure computation has become practical and considerable effort has been made to make it more and more efficient. A highly important tool in the design of two-party protocols is Yao's garbled circuit construction (Yao 1986), and multiple optimizations on this primitive have led to performance improvements of orders of magnitude over the last years. However, many of these improvements come at the price of making very strong assumptions on the underlying cryptographic primitives being used (e.g., that AES is secure for related keys, that it is circular secure, and even that it behaves like a random permutation when keyed with a public fixed key). The justification behind making these strong assumptions has been that otherwise it is not possible to achieve fast garbling and thus fast secure computation. In this paper, we take a step back and examine whether it is really the case that such strong assumptions are needed. We provide new methods for garbling that are secure solely under the assumption that the primitive used (e.g., AES) is a pseudorandom function. Our results show that in many cases, the penalty incurred is not significant, and so a more conservative approach to the assumptions being used can be adopted.

Available format(s)
Publication info
Published elsewhere. MINOR revision.ACM CCS 2015
two-partysecure computationgarbling
Contact author(s)
nofdinar @ gmail com
2017-06-14: last of 3 revisions
2015-07-30: received
See all versions
Short URL
Creative Commons Attribution


      author = {Shay Gueron and Yehuda Lindell and Ariel Nof and Benny Pinkas},
      title = {Fast Garbling of Circuits Under Standard Assumptions},
      howpublished = {Cryptology ePrint Archive, Paper 2015/751},
      year = {2015},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.