Paper 2015/165
The Cryptographic Hardness of Random Local Functions -- Survey
Benny Applebaum
Abstract
Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate level of parallelism, namely, by local functions that each of their output bits depend on a constant number of input bits. A natural way to obtain local cryptographic constructions is to use \emph{random local functions} in which each output bit is computed by applying some fixed $d$-ary predicate $P$ to a randomly chosen $d$-size subset of the input bits. In this work, we will study the cryptographic hardness of random local functions. In particular, we will survey known attacks and hardness results, discuss different flavors of hardness (one-wayness, pseudorandomness, collision resistance, public-key encryption), and mention applications to other problems in cryptography and computational complexity. We also present some open questions with the hope to develop a systematic study of the cryptographic hardness of local functions.
Metadata
- Available format(s)
- Category
- Foundations
- Publication info
- A major revision of an IACR publication in TCC 2013
- Keywords
- local cryptographyconstant-depth circuitsNC0one-way functionspseudorandom generatorshash functionspublic-key encryption
- Contact author(s)
- benny applebaum @ gmail com
- History
- 2015-02-27: received
- Short URL
- https://ia.cr/2015/165
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2015/165, author = {Benny Applebaum}, title = {The Cryptographic Hardness of Random Local Functions -- Survey}, howpublished = {Cryptology {ePrint} Archive, Paper 2015/165}, year = {2015}, url = {https://eprint.iacr.org/2015/165} }