Paper 2014/531

Spatial Bloom Filters: Enabling Privacy in Location-aware Applications

Paolo Palmieri, Luca Calderoni, and Dario Maio


The wide availability of inexpensive positioning systems made it possible to embed them into smartphones and other personal devices. This marked the beginning of location-aware applications, where users request personalized services based on their geographic position. The location of a user is, however, highly sensitive information: the user's privacy can be preserved if only the minimum amount of information needed to provide the service is disclosed at any time. While some applications, such as navigation systems, are based on the users' movements and therefore require constant tracking, others only require knowledge of the user's position in relation to a set of points or areas of interest. In this paper we focus on the latter kind of services, where the location information is essentially used to determine membership in one or more geographic sets. We address this problem using Bloom Filters (BF), a compact data structure for representing sets. In particular, we present an extension of the original bloom filter idea: the Spatial Bloom Filter (SBF). SBF's are designed to manage spatial and geographical information in a space efficient way, and are well-suited for enabling privacy in location-aware applications. We show this by providing two multi-party protocols for privacy-preserving computation of location information, based on the known homomorphic properties of public key encryption schemes. The protocols keep the user's exact position private, but allow the provider of the service to learn when the user is close to specific points of interest, or inside predefined areas. At the same time, the points and areas of interest remain oblivious to the user.

Available format(s)
Publication info
Published elsewhere. INSCRYPT 2014 - 10th International Conference on Information Security and Cryptology
Location PrivacyBloom FiltersSecure Multi-party ComputationLocation-aware Applications
Contact author(s)
p palmieri @ tudelft nl
2014-11-12: last of 2 revisions
2014-07-08: received
See all versions
Short URL
Creative Commons Attribution


      author = {Paolo Palmieri and Luca Calderoni and Dario Maio},
      title = {Spatial Bloom Filters: Enabling Privacy in Location-aware Applications},
      howpublished = {Cryptology ePrint Archive, Paper 2014/531},
      year = {2014},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.