Cryptology ePrint Archive: Report 2014/267

Differential Fault Analysis on the families of SIMON and SPECK ciphers

Harshal Tupsamudre and Shikha Bisht and Debdeep Mukhopadhyay

Abstract: In 2013, the US National Security Agency proposed two new families of lightweight block ciphers: SIMON and SPECK. Currently, linear and differential cryptanalytic results for SIMON are available in the literature but no fault attacks have been reported so far on these two cipher families. In this paper, we show that these families of ciphers are vulnerable to differential fault attacks. Specifically, we demonstrate two fault attacks on SIMON and one fault attack on SPECK. The first attack on SIMON assumes a bit-flip fault model and recovers the n-bit last round key of SIMON using n/2 bit faults. The second attack on SIMON uses a more practical, random byte fault model and requires n/8 faults on average to retrieve the last round key. The attack presented on SPECK also assumes a bit-flip fault model and recovers the n-bit last round key of SPECK using n/3 bit faults on average.

Category / Keywords: Differential Fault Analysis, Fault Attacks, Lightweight Block Ciphers, SIMON, SPECK

Date: received 15 Apr 2014, last revised 30 May 2014

Contact author: harshal coep at gmail com; s bisht09@gmail com; debdeep mukhopadhyay@gmail com

Available format(s): PDF | BibTeX Citation

Note: Added Simulation Results

Version: 20140530:120617 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]