Paper 2014/1008

DTLS-HIMMO: Efficiently Securing a Post-Quantum World with a Fully-Collusion Resistant KPS

Oscar Garcia-Morchon, Ronald Rietman, Sahil Sharma, Ludo Tolhuizen, and Jose Luis Torre-Arce


The future development of quantum-computers could turn many key agreement algorithms used in the Internet today fully insecure, endangering many applications such as online banking, e-commerce, e-health, etc. At the same time, the Internet is further evolving to enable the Internet of Things (IoT) in which billions of devices deployed in critical applications like healthcare, smart cities and smart energy are being connected to the Internet. The IoT not only requires strong and quantum-secure security, as current Internet applications, but also efficient operation. The recently introduced HIMMO scheme enables lightweight identity-based key sharing and verification of credentials in a non-interactive way. The collusion resistance properties of HIMMO enable direct secure communication between any pair of Internet-connected devices. The facts that attacking HIMMO requires lattice techniques and that it is extremely lightweight make HIMMO an ideal lightweight approach for key agreement and information verification in a post-quantum world. Building on the HIMMO scheme, this paper firstly shows how HIMMO can be efficiently implemented even in resource-constrained devices enabling combined key agreement and credential verification one order of magnitude more efficiently than using ECDH-ECDSA, while being quantum secure. We further explain how HIMMO helps to secure the Internet and IoT by introducing the DTLS- HIMMO operation mode. DTLS, the datagram version of TLS, is becoming the standard security protocol in the IoT, however, it is very frequently discussed that it does not offer the right performance for IoT scenarios. Our design, implementation, and evaluation show that DTLS-HIMMOoperation mode achieves the security properties of DTLS Certificate security suite while being quantum secure and exhibiting the overhead of symmetric-key primitives.

Note: Submitted to NIST Workshop on Cybersecurity in a Post-Quantum World, Arpil 2 & 3, 2015.

Available format(s)
Publication info
Preprint. MINOR revision.
key pre-distributionDTLSlightweight
Contact author(s)
ludo tolhuizen @ philips com
2014-12-25: received
Short URL
Creative Commons Attribution


      author = {Oscar Garcia-Morchon and Ronald Rietman and Sahil Sharma and Ludo Tolhuizen and Jose Luis Torre-Arce},
      title = {DTLS-HIMMO: Efficiently Securing a Post-Quantum World with a Fully-Collusion Resistant KPS},
      howpublished = {Cryptology ePrint Archive, Paper 2014/1008},
      year = {2014},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.