We show that the existence of indistinguishability obfuscation (iO) implies (non-black-box) attacks on all the definitions that BHK proposed within their UCE framework in the original version of their paper, in the sense that no concrete hash function can satisfy them. We also show that this limitation can be overcome, to some extent, by restraining the class of admissible adversaries via a statistical notion of unpredictability. Following our attack, BHK (ePrint 2013/424, September 2013), independently adopted this approach in their work.
In the updated version of their paper, BHK (ePrint 2013/424, September 2013) also introduce two other novel source classes, called bounded parallel sources and split sources, which aim at recovering the computational applications of UCEs that fall outside the statistical fix. These notions keep to a computational notion of unpredictability, but impose structural restrictions on the adversary so that our original iO attack no longer applies. We extend our attack to show that indistinguishability obfuscation is sufficient to also break the UCE security of any hash function against bounded parallel sources. Towards this goal, we use the randomized encodings paradigm of Applebaum, Ishai, and Kushilevitz (STOC 2004) to parallelize the obfuscated circuit used in our attack, so that it can be computed by a bounded parallel source whose second stage consists of constant-depth circuits. We conclude by discussing the composability and feasibility of hash functions secure against split sources.
Category / Keywords: foundations / Randomized encodings, Obfuscation, UCE, Random oracle Date: received 10 Feb 2014, last revised 12 Feb 2014 Contact author: arno mittelbach at cased de Available format(s): PDF | BibTeX Citation Version: 20140214:155923 (All versions of this report) Short URL: ia.cr/2014/099