Motivated by this pioneering work, we ask whether it is possible to have a modular approach, which includes a primitive for time managed ciphertext update as a primitive. We call encryption which supports this primitive a ``self-updatable encryption'' (SUE). We then suggest a modular cryptosystems design methodology based on three sub-components: a primary encryption scheme, a key-revocation mechanism, and a time-evolution mechanism which controls the ciphertext self-updating via an SUE method, coordinated with the revocation (when needed). Our goal in this is to allow the self-updating ciphertext component to take part in the design of new and improved cryptosystems and protocols in a flexible fashion. Specifically, we achieve the following results:
- We first introduce a new cryptographic primitive called self-updatable encryption (SUE), realizing a time-evolution mechanism. In SUE, a ciphertext and a private key are associated with time. A user can decrypt a ciphertext if its time is earlier than that of his private key. Additionally, anyone (e.g., a cloud server) can update the ciphertext to a ciphertext with a newer time. We also construct an SUE scheme and prove its full security under static assumptions.
- Following our modular approach, we present a new RS-ABE scheme with shorter ciphertexts than that of Sahai et al. and prove its security. The length efficiency is mainly due to our SUE scheme and the underlying modularity.
- We apply our approach to predicate encryption (PE) supporting attribute-hiding property, and obtain a revocable-storage PE (RS-PE) scheme that is selectively-secure.
- We further demonstrate that SUE is of independent interest, by showing it can be used for timed-release encryption (and its applications), and for augmenting key-insulated encryption with forward-secure storage.
Category / Keywords: public-key cryptography / Public-key encryption, Attribute-based encryption, Predicate encryption, Self-updatable encryption, Revocation, Key evolving systems, Cloud storage. Original Publication (with major differences): IACR-ASIACRYPT-2013 Date: received 17 Nov 2013, last revised 20 Nov 2016 Contact author: guspin at korea ac kr Available format(s): PDF | BibTeX Citation Version: 20161121:005101 (All versions of this report) Short URL: ia.cr/2013/762