Cryptology ePrint Archive: Report 2012/192

Extending Order Preserving Encryption for Multi-User Systems

Liangliang Xiao and I-Ling Yen and Dung T. Huynh

Abstract: Several order preserving encryption (OPE) algorithms have been developed in the literature to support search on encrypted data. However, existing OPE schemes only consider a single encryption key, which is infeasible for a practical system with multiple users (implying that all users should have the single encryption key in order to encrypt or decrypt confidential data). In this paper, we develop the first protocols, DOPE and OE-DOPE, to support the use of OPE in multi-user systems. First, we introduce a group of key agents into the system and invent the DOPE protocol to enable “distributed encryption” to assure that the OPE encryption key is not known by any entity in the system. However, in DOPE, if a key agent is compromised, the share of the secret data that is sent to this key agent is compromised. To solve the problem, we developed a novel oblivious encryption (OE) protocol based on the oblivious transfer concept to deliver and encrypt the shares obliviously. Then, we integrate it with DOPE to obtain the OE-DOPE protocol. Security of OE-DOPE is further enhanced with additional techniques. Both DOPE and OE-DOPE can be used with any existing OPE algorithms while retaining all the advantages of OPE without requiring the users to share the single encryption key, making the OPE approach feasible in practical systems.

Category / Keywords: cryptographic protocols / Order preserving encryption, cloud computing, multi-user systems, chosen plaintext attack

Date: received 10 Apr 2012

Contact author: xll052000 at utdallas edu

Available format(s): PDF | BibTeX Citation

Version: 20120413:064051 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]