Cryptology ePrint Archive: Report 2010/221
Solving Generalized Small Inverse Problems
Noboru Kunihiro
Abstract: We introduce a ``generalized small inverse problem (GSIP)'' and
present an algorithm for solving this problem. GSIP is formulated
as finding small solutions of $f(x_0, x_1, \ldots , x_n)=x_0 h(x_1,
\ldots , x_n)+C=0 (\bmod \; M)$ for an $n$-variate polynomial $h$,
non-zero integers $C$ and $M$. Our algorithm is based on
lattice-based Coppersmith technique. We provide a strategy for
construction of a lattice basis for solving $f=0$, which are
systematically transformed from a lattice basis for solving $h=0$.
Then, we derive an upper bound such that the target problem can be
solved in polynomial time in $\log M$ in an explicit form.
Since GSIPs include some RSA related problems, our algorithm is
applicable to them. For example, the small key attacks by Boneh
and Durfee are re-found automatically.
Category / Keywords: public-key cryptography / cryptanalysis, lattice techniques, RSA
Publication Info: This is a full version of ACISP2010 paper.
Date: received 19 Apr 2010, last revised 21 Apr 2010
Contact author: kunihiro at k u-tokyo ac jp
Available format(s): PDF | BibTeX Citation
Version: 20100428:134327 (All versions of this report)
Short URL: ia.cr/2010/221
[ Cryptology ePrint archive ]