Paper 2010/106
Perfectly Secure Multiparty Computation and the Computational Overhead of Cryptography
Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard
Abstract
We study the following two related questions: - What are the minimal computational resources required for general secure multiparty computation in the presence of an honest majority? - What are the minimal resources required for two-party primitives such as zero-knowledge proofs and general secure two-party computation? We obtain a nearly tight answer to the first question by presenting a perfectly secure protocol which allows $n$ players to evaluate an arithmetic circuit of size $s$ by performing a total of $\O(s\log s\log^2 n)$ arithmetic operations, plus an additive term which depends (polynomially) on $n$ and the circuit depth, but only logarithmically on $s$. Thus, for typical large-scale computations whose circuit width is much bigger than their depth and the number of players, the amortized overhead is just polylogarithmic in $n$ and $s$. The protocol provides perfect security with guaranteed output delivery in the presence of an active, adaptive adversary corrupting a $(1/3-\epsilon)$ fraction of the players, for an arbitrary constant $\epsilon>0$ and sufficiently large $n$. The best previous protocols in this setting could only offer computational security with a computational overhead of $\poly(k,\log n,\log s)$, where $k$ is a computational security parameter, or perfect security with a computational overhead of $\O(n\log n)$. We then apply the above result towards making progress on the second question. Concretely, under standard cryptographic assumptions, we obtain zero-knowledge proofs for circuit satisfiability with $2^{-k}$ soundness error in which the amortized computational overhead per gate is only {\em polylogarithmic} in $k$, improving over the $\omega(k)$ overhead of the best previous protocols. Under stronger cryptographic assumptions, we obtain similar results for general secure two-party computation.
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- Published elsewhere. Full version of Eurocrypt 2010 paper
- Keywords
- multiparty computation
- Contact author(s)
- mk @ cs au dk
- History
- 2010-03-01: received
- Short URL
- https://ia.cr/2010/106
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2010/106, author = {Ivan Damgård and Yuval Ishai and Mikkel Krøigaard}, title = {Perfectly Secure Multiparty Computation and the Computational Overhead of Cryptography}, howpublished = {Cryptology {ePrint} Archive, Paper 2010/106}, year = {2010}, url = {https://eprint.iacr.org/2010/106} }