Paper 2009/214
An Optimally Fair Coin Toss
Tal Moran, Moni Naor, and Gil Segev
Abstract
We address one of the foundational problems in cryptography: the bias of coin-flipping protocols. Coin-flipping protocols allow mutually distrustful parties to generate a common unbiased random bit, guaranteeing that even if one of the parties is malicious, it cannot significantly bias the output of the honest party. A classical result by Cleve [STOC '86] showed that for any two-party $r$-round coin-flipping protocol there exists an efficient adversary that can bias the output of the honest party by $\Omega(1/r)$. However, the best previously known protocol only guarantees $O(1/\sqrt{r})$ bias, and the question of whether Cleve's bound is tight has remained open for more than twenty years. In this paper we establish the optimal trade-off between the round complexity and the bias of two-party coin-flipping protocols. Under standard assumptions (the existence of oblivious transfer), we show that Cleve's lower bound is tight: we construct an $r$-round protocol with bias $O(1/r)$.
Metadata
- Available format(s)
- Category
- Foundations
- Publication info
- A major revision of an IACR publication in TCC 2009
- Keywords
- Fair computationcoin-flipping protocols
- Contact author(s)
- segev @ cs huji ac il
- History
- 2015-01-04: last of 2 revisions
- 2009-05-26: received
- See all versions
- Short URL
- https://ia.cr/2009/214
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2009/214, author = {Tal Moran and Moni Naor and Gil Segev}, title = {An Optimally Fair Coin Toss}, howpublished = {Cryptology {ePrint} Archive, Paper 2009/214}, year = {2009}, url = {https://eprint.iacr.org/2009/214} }