Paper 2005/275
Explicit Construction of Secure Frameproof Codes
Dongvu Tonien and Reihaneh Safavi-Naini
Abstract
$\Gamma$ is a $q$-ary code of length $L$. A word $w$ is called a descendant of a coalition of codewords $w^{(1)}, w^{(2)}, \dots, w^{(t)}$ of $\Gamma$ if at each position $i$, $1 \leq i \leq L$, $w$ inherits a symbol from one of its parents, that is $w_i \in \{ w^{(1)}_i, w^{(2)}_i, \dots, w^{(t)}_i \}$. A $k$-secure frameproof code ($k$-SFPC) ensures that any two disjoint coalitions of size at most $k$ have no common descendant. Several probabilistic methods prove the existance of codes but there are not many explicit constructions. Indeed, it is an open problem in [J. Staddon et al., IEEE Trans. on Information Theory, 47 (2001), pp. 1042--1049] to construct explicitly $q$-ary 2-secure frameproof code for arbitrary $q$. In this paper, we present several explicit constructions of $q$-ary 2-SFPCs. These constructions are generalisation of the binary inner code of the secure code in [V.D. To et al., Proceeding of IndoCrypt'02, LNCS 2551, pp. 149--162, 2002]. The length of our new code is logarithmically small compared to its size.
Note: This is the revised version of the paper published in International Journal of Pure and Applied Mathematics, volume 6 no. 3, 2003, 343-360.
Metadata
- Available format(s)
- Publication info
- Published elsewhere. International Journal of Pure and Applied Mathematics, Volume 6, No. 3, 2003, 343-360
- Keywords
- combinatorial cryptographyfingerprinting codessecure frameproof codestraitor tracing
- Contact author(s)
- dong @ uow edu au
- History
- 2005-08-17: revised
- 2005-08-17: received
- See all versions
- Short URL
- https://ia.cr/2005/275
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2005/275, author = {Dongvu Tonien and Reihaneh Safavi-Naini}, title = {Explicit Construction of Secure Frameproof Codes}, howpublished = {Cryptology {ePrint} Archive, Paper 2005/275}, year = {2005}, url = {https://eprint.iacr.org/2005/275} }