Paper 2004/333
Secure Multi-party Computation for selecting a solution according to a uniform distribution over all solutions of a general combinatorial problem
Marius-Calin Silaghi
Abstract
Secure simulations of arithmetic circuit and boolean circuit evaluations are known to save privacy while providing solutions to any probabilistic function over a field. The problem we want to solve is to select a random solution of a general combinatorial problem. Here we discuss how to specify the need of selecting a random solution of a general combinatorial problem, as a probabilistic function. Arithmetic circuits for finding the set of all solutions are simple to design. We know no arithmetic circuit proposed in the past, selecting a single solution according to a uniform distribution over all solutions of a general constraint satisfaction problem. The only one (we) are able to design has a factorial complexity in the size of the search space (O(d^m!d^m) multiplications of secrets), where m is the number of variables and d the maximal size of a variable's domain. Nevertheless, we were able to develop a methodology combining secure arithmetic circuit evaluation and mix-nets, able to compile the problem of selecting a random solution of a CSP to a n/2-private multi-party computation assuming passive attackers. The complexity of this solution is more acceptable, O(d^m) multiplications, being therefore applicable for some reasonable problems, like meeting scheduling. Constraint satisfaction is a framework extensively used in some areas of artificial intelligence to model problems like meeting scheduling, timetabling, the stable marriages problem, and some negotiation problems. It is based on abstracting a problem as a set of variables, and a set of constraints that specify unacceptable combination of values for sets of distinct variables.
Metadata
- Available format(s)
- PDF PS
- Category
- Cryptographic protocols
- Publication info
- Published elsewhere. Unknown where it was published
- Contact author(s)
- msilaghi @ cs fit edu
- History
- 2004-12-02: received
- Short URL
- https://ia.cr/2004/333
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2004/333, author = {Marius-Calin Silaghi}, title = {Secure Multi-party Computation for selecting a solution according to a uniform distribution over all solutions of a general combinatorial problem}, howpublished = {Cryptology {ePrint} Archive, Paper 2004/333}, year = {2004}, url = {https://eprint.iacr.org/2004/333} }