Papers updated in last 183 days (Page 15 of 1437 results)

Last updated:  2023-11-13
PIRANA: Faster Multi-query PIR via Constant-weight Codes
Jian Liu, Jingyu Li, Di Wu, and Kui Ren
Private information retrieval (PIR) is a cryptographic protocol that enables a wide range of privacy-preserving applications. Despite being extensively studied for decades, it is still not efficient enough to be used in practice. In this paper, we propose a novel PIR protocol named PIRANA, based on the recent advances in constant-weight codes. It is up to 188.6× faster than the original constant-weight PIR (presented in Usenix SEC '22). Most importantly, PIRANA naturally supports multi-query. It allows a client to retrieve a batch of elements from the server with a very small extra-cost compared to retrieving a single element, which results in up to an 14.4× speedup over the state-of-the-art multi-query PIR (presented in Oakland '23). We also discuss a way to extend PIRANA to labeled private set intersection (LPSI). Compared with existing LPSI protocols, PIRANA is more friendly to the scenarios where the database updates frequently.
Last updated:  2023-11-13
Formal verification of the post-quantum security properties of IKEv2 PPK (RFC 8784) using the Tamarin Prover
Sophie Stevens
The Internet Key Exchange version 2 (IKEv2) (RFC 7296) is a component of IPsec used to authenticate two parties (the initiator and responder) to each other and to establish a set of security parameters for the communications. The security parameters include secret keys to encrypt and authenticate data as well as the negotiation of a set of cryptographic algorithms. The core documentation uses exclusively Diffie-Hellman exchanges to agree the security information. However, this is not a quantum-secure option due to the ability of Shor's algorithm to break the security assumption underlying the Diffie-Hellman. A post-quantum solution is to include a preshared key in the exchange, as proposed by the extension RFC 8784; assuming that this preshared key has sufficient entropy, the keys created in the IKEv2 exchange will be resistant to a quantum computer. In this paper, we investigate the security claims of RFC 8784 using formal verification methods. We find that keys created using the preshared key are secret from an adversary. However, certain authentication properties of the protocol that are weakened under the assumption that Diffie-Hellman is insecure are not recovered using the preshared key.
Last updated:  2023-11-13
Secure Encryption and Key Exchange using Arbiter PUF
Uncategorized
Raja Adhithan Radhakrishnan
Show abstract
Uncategorized
This paper introduces a novel approach to enhancing cryp- tographic security. It proposes the use of one-time message sharing com- bined with Physically Unclonable Functions (PUF) to securely exchange keys and generate an S-subbyte-box for encryption. This innovative tech- nique aims to elevate the security standards of cryptographic applica- tions.
Last updated:  2023-11-13
G+G: A Fiat-Shamir Lattice Signature Based on Convolved Gaussians
Julien Devevey, Alain Passelègue, and Damien Stehlé
We describe an adaptation of Schnorr's signature to the lattice setting, which relies on Gaussian convolution rather than flooding or rejection sampling as previous approaches. It does not involve any abort, can be proved secure in the ROM and QROM using existing analyses of the Fiat-Shamir transform, and enjoys smaller signature sizes (both asymptotically and for concrete security levels).
Last updated:  2023-11-13
A Statistical Verification Method of Random Permutations for Hiding Countermeasure Against Side-Channel Attacks
Jong-Yeon Park, Jang-Won Ju, Wonil Lee, Bo-Gyeong Kang, Yasuyuki Kachi, and Kouichi Sakurai
As NIST is putting the final touches on the standardization of PQC (Post Quantum Cryptography) public key algorithms, it is a racing certainty that peskier cryptographic attacks undeterred by those new PQC algorithms will surface. Such a trend in turn will prompt more follow-up studies of attacks and countermeasures. As things stand, from the attackers’ perspective, one viable form of attack that can be implemented thereupon is the so-called “side-channel attack”. Two best-known countermeasures heralded to be durable against side-channel attacks are: “masking” and “hiding”. In that dichotomous picture, of particular note are successful single-trace attacks on some of the NIST’s PQC then-candidates, which worked to the detriment of the former: “masking”. In this paper, we cast an eye over the latter: “hiding”. Hiding proves to be durable against both side-channel attacks and another equally robust type of attacks called “fault injection attacks”, and hence is deemed an auspicious countermeasure to be implemented. Mathematically, the hiding method is fundamentally based on random permutations. There has been a cornucopia of studies on generating random permutations. However, those are not tied to implementation of the hiding method. In this paper, we propose a reliable and efficient verification of permutation implementation, through employing Fisher–Yates’ shuffling method. We introduce the concept of an 𝑛-th order permutation and explain how it can be used to verify that our implementation is more efficient than its previous-gen counterparts for hiding countermeasures.
Last updated:  2023-11-13
SwiftRange: A Short and Efficient Zero-Knowledge Range Argument For Confidential Transactions and More
Nan Wang, Sid Chi-Kin Chau, and Dongxi Liu
Zero-knowledge range proofs play a critical role in confidential transactions (CT) on blockchain systems. They are used to prove the non-negativity of committed transaction payments without disclosing the exact values. Logarithmic-sized range proofs with transparent setups, e.g., Bulletproofs, which aim to prove a committed value lies in the range $[0, 2^N-1]$ where $N$ is the bit length of the range, have gained growing popularity for communication-critical blockchain systems as they increase scalability by allowing a block to accommodate more transactions. In this paper, we propose SwiftRange, a new type of logarithmic-sized zero-knowledge range argument with a transparent setup in the discrete logarithm setting. Our argument can be a drop-in replacement for range proofs in blockchain-based confidential transactions. Compared with Bulletproofs, our argument has higher computational efficiency and lower round complexity while incurring comparable communication overheads for CT-friendly ranges, where $N \in \{32,64\}$. Specifically, a single SwiftRange achieves 1.73$\times$ and 1.37$\times$ proving efficiency with no more than 1.1$\times$ communication costs for both ranges, respectively. More importantly, our argument is doubly efficient in verification efficiency. Furthermore, our argument has a smaller size when $N \leq 16$, making it competitive for many other communication-critical applications. Our argument supports the aggregation of multiple single arguments for greater efficiency in communication and verification. Finally, we benchmarked our argument against the state-of-the-art range proofs to demonstrate its practicality.
Last updated:  2023-11-12
Dora: Processor Expressiveness is (Nearly) Free in Zero-Knowledge for RAM Programs
Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk
Existing protocols for proving the correct execution of a RAM program in zero-knowledge are plagued by a processor expressiveness trade-off : supporting fewer instructions results in smaller processor circuits (which improves performance), but may result in more program execution steps because non-supported instruction must be emulated over multiple processor steps (which diminishes performance). We present Dora, a concretely efficient zero-knowledge protocol for RAM programs that sidesteps this tension by making it (nearly) free to add additional instructions to the processor. The computational and communication complexity of proving each step of a computation in Dora, is constant in the number of supported instructions. Dora is also highly generic and only assumes the existence of linearly homomorphic commitments. We implement Dora and demonstrate that on commodity hardware it can prove the correct execution of a processor with thousands of instruction, each of which has thousands of gates, in just a few milliseconds per step.
Last updated:  2023-11-12
Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time and Space Overheads
Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni
Zero-knowledge protocols enable the truth of a mathematical statement to be certified by a verifier without revealing any other information. Such protocols are a cornerstone of modern cryptography and recently are becoming more and more practical. However, a major bottleneck in deployment is the efficiency of the prover and, in particular, the space-efficiency of the protocol. For every $\mathsf{NP}$ relation that can be verified in time $T$ and space $S$, we construct a public-coin zero-knowledge argument in which the prover runs in time $T \cdot \mathrm{polylog}(T)$ and space $S \cdot \mathrm{polylog}(T)$. Our proofs have length $\mathrm{polylog}(T)$ and the verifier runs in time $T \cdot \mathrm{polylog}(T)$ (and space $\mathrm{polylog}(T)$). Our scheme is in the random oracle model and relies on the hardness of discrete log in prime-order groups. Our main technical contribution is a new space efficient polynomial commitment scheme for multi-linear polynomials. Recall that in such a scheme, a sender commits to a given multi-linear polynomial $P \colon \mathbb{F}^n \rightarrow \mathbb{F}$ so that later on it can prove to a receiver statements of the form "$P(x) = y$". In our scheme, which builds on the commitment schemes of Bootle et al. (Eurocrypt 2016) and Bünz et al. (S&P 2018), we assume that the sender is given multi-pass streaming access to the evaluations of $P$ on the Boolean hypercube and w show how to implement both the sender and receiver in roughly time $2^n$ and space $n$ and with communication complexity roughly $n$.
Last updated:  2023-11-12
Piano: Extremely Simple, Single-Server PIR with Sublinear Server Computation
Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng
We construct a sublinear-time single-server pre-processing Private Information Retrieval (PIR) scheme with optimal client storage and server computation (up to poly-logarithmic factors), only relying on the assumption of the existence of One Way Functions (OWF). Our scheme achieves amortized $\tilde{O}(\sqrt{n})$ online server computation and client computation and $O(\sqrt{n})$ online communication per query, and requires $\widetilde{O}_\lambda(\sqrt{n})$ client storage. Unlike prior single-server PIR schemes that rely on heavy cryptographic machinery such as Homomorphic Encryption, our scheme only utilizes lightweight cryptography such as PRFs, which is easily instantiated in practice. To our knowledge, this is the first practical implementation of a single-server sublinear-time PIR scheme. Compared to existing linear time single-server solutions, our schemes are faster by $40-900\times$ and are comparable to the fastest two-server schemes. In particular, for a 100GB database of 1.6 billion entries, our experiments show that our scheme has 12ms online computation time on a single core.
Last updated:  2023-11-11
A masking method based on orthonormal spaces, protecting several bytes against both SCA and FIA with a reduced cost
Claude Carlet, Abderrahman Daif, Sylvain Guilley, and Cédric Tavernier
In the attacker models of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA), the opponent has access to a noisy version of the internal behavior of the hardware. Since the end of the nineties, many works have shown that this type of attacks constitutes a serious threat to cryptosystems implemented in embedded devices. In the state-of-the-art, there exist several countermeasures to protect symmetric encryption (especially AES-128). Most of them protect only against one of these two attacks (either SCA or FIA). The main known counter-measure against SCA is masking; it makes the complexity of SCA growing exponentially with its order d. The most general version of masking is based on error correcting codes. It has the advantage of offering in principle a protection against both types of attacks (SCA and FIA), but all the functions implemented in the algorithm need to be masked accordingly, and this is not a simple task in general. We propose a particular version of such construction that has several advantages: it has a very low computation complexity, it offers a concrete protection against both SCA and FIA, and finally it allows flexibility: being not specifically dedicated to AES, it can be applied to any block cipher with any S-boxes. In the state-of-art, masking schemes all come with pros and cons concerning the different types of complexity (time, memory, amount of randomness). Our masking scheme concretely achieves the complexity of the best known scheme, for each complexity type
Last updated:  2023-11-11
Quasi-linear masking to protect against both SCA and FIA
Claude Carlet, Abderrahman Daif, Sylvain Guilley, and Cédric Tavernier
The implementation of cryptographic algorithms must be protected against physical attacks. Side-channel and fault injection analyses are two prominent such implem\-entation-level attacks. Protections against either do exist; they are characterized by security orders: the higher the order, the more difficult the attack. In this paper, we leverage fast discrete Fourier transform to reduce the complexity of high-order masking, and extend it to allow for fault detection and/or correction. The security paradigm is that of code-based masking. Coding theory is amenable both to mix the information and masking material at a prescribed order, and to detect and/or correct errors purposely injected by an attacker. For the first time, we show that quasi-linear masking (pioneered by Goudarzi, Joux and Rivain at ASIACRYPT 2018) can be achieved alongside with cost amortisation. This technique consists in masking several symbols/bytes with the same masking material, therefore improving the efficiency of the masking. Similarly, it allows to optimize the detection capability of codes as linear codes are all the more efficient as the information to protect is longer. Namely, we prove mathematically that our scheme features side-channel security order of $d+1-t$, detects $d$ faults and corrects $\lfloor(d-1)/2\rfloor$ faults, where $2d+1$ is the encoding length and $t$ is the information size ($t\geq1$). Applied to AES, one can get side-channel protection of order $d=7$ when masking one column/line ($t=4$ bytes) at once. In addition to the theory, that makes use of the Frobenius Additive Fast Fourier Transform, we show performance results, both in software and hardware.
Last updated:  2023-11-11
Don't Eject the Impostor: Fast Three-Party Computation With a Known Cheater (Full Version)
Andreas Brüggemann, Oliver Schick, Thomas Schneider, Ajith Suresh, and Hossein Yalame
Secure multi-party computation (MPC) enables (joint) computations on sensitive data while maintaining privacy. In real-world scenarios, asymmetric trust assumptions are often most realistic, where one somewhat trustworthy entity interacts with smaller clients. We generalize previous two-party computation (2PC) protocols like MUSE (USENIX Security'21) and SIMC (USENIX Security'22) to the three-party setting (3PC) with one malicious party, avoiding the performance limitations of dishonest-majority inherent to 2PC. We introduce two protocols, Auxiliator and Socium, in a machine learning (ML) friendly design with a fast online phase and novel verification techniques in the setup phase. These protocols bridge the gap between prior 3PC approaches that considered either fully semi-honest or malicious settings. Auxiliator enhances the semi-honest two-party setting with a malicious helper, significantly improving communication by at least two orders of magnitude. Socium extends the client-malicious setting with one malicious client and a semi-honest server, achieving substantial communication improvement by at least one order of magnitude compared to SIMC. Besides an implementation of our new protocols, we provide the first open-source implementation of the semi-honest 3PC protocol ASTRA (CCSW'19) and a variant of the malicious 3PC protocol SWIFT (USENIX Security'21).
Last updated:  2023-11-11
Explicit Lower Bounds for Communication Complexity of PSM for Concrete Functions
Kazumasa Shinagawa and Koji Nuida
Private Simultaneous Messages (PSM) is a minimal model of secure computation, where the input players with shared randomness send messages to the output player simultaneously and only once. In this field, finding upper and lower bounds on communication complexity of PSM protocols is important, and in particular, identifying the optimal one where the upper and lower bounds coincide is the ultimate goal. However, up until now, functions for which the optimal communication complexity has been determined are few: An example of such a function is the two-input AND function where $(2\log_2 3)$-bit communication is optimal. In this paper, we provide new upper and lower bounds for several concrete functions. For lower bounds, we introduce a novel approach using combinatorial objects called abstract simplicial complexes to represent PSM protocols. Our method is suitable for obtaining non-asymptotic explicit lower bounds for concrete functions. By deriving lower bounds and constructing concrete protocols, we show that the optimal communication complexity for the equality and majority functions with three input bits are $3\log_2 3$ bits and $6$ bits, respectively. We also derive new lower bounds for the $n$-input AND function, three-valued comparison function, and multiplication over finite rings.
Last updated:  2023-11-11
Round-Optimal Black-Box Multiparty Computation from Polynomial-Time Assumptions
Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Hendrik Waldner
A central direction of research in secure multiparty computation with dishonest majority has been to achieve three main goals: 1. reduce the total number of rounds of communication (to four, which is optimal); 2. use only polynomial-time hardness assumptions, and 3. rely solely on cryptographic assumptions in a black-box manner. This is especially challenging when we do not allow a trusted setup assumption of any kind. While protocols achieving two out of three goals in this setting have been designed in recent literature, achieving all three simultaneously remained an elusive open question. Specifically, it was answered positively only for a restricted class of functionalities. In this paper, we completely resolve this long-standing open question. Specifically, we present a protocol for all polynomial-time computable functions that does not require any trusted setup assumptions and achieves all three of the above goals simultaneously.
Last updated:  2023-11-11
Pseudorandom Isometries
Prabhanjan Ananth, Aditya Gulati, Fatih Kaleoglu, and Yao-Ting Lin
We introduce a new notion called ${\cal Q}$-secure pseudorandom isometries (PRI). A pseudorandom isometry is an efficient quantum circuit that maps an $n$-qubit state to an $(n+m)$-qubit state in an isometric manner. In terms of security, we require that the output of a $q$-fold PRI on $\rho$, for $ \rho \in {\cal Q}$, for any polynomial $q$, should be computationally indistinguishable from the output of a $q$-fold Haar isometry on $\rho$. By fine-tuning ${\cal Q}$, we recover many existing notions of pseudorandomness. We present a construction of PRIs and assuming post-quantum one-way functions, we prove the security of ${\cal Q}$-secure pseudorandom isometries (PRI) for different interesting settings of ${\cal Q}$. We also demonstrate many cryptographic applications of PRIs, including, length extension theorems for quantum pseudorandomness notions, message authentication schemes for quantum states, multi-copy secure public and private encryption schemes, and succinct quantum commitments.
Last updated:  2023-11-10
Evaluation of Arithmetic Sum-of-Products Expressions in Linear Secret Sharing Schemes with a Non-Interactive Computation Phase
Miguel de Vega, Andrei Lapets, Stanislaw Jarecki, Wicher Malten, Mehmet Ugurbil, and Wyatt Howe
Among secure multi-party computation protocols, linear secret sharing schemes often do not rely on cryptographic assumptions and are among the most straightforward to explain and to implement correctly in software. However, basic versions of such schemes either limit participants to evaluating linear operations involving private values or require those participants to communicate synchronously during a computation phase. A straightforward, information-theoretically secure extension to such schemes is presented that can evaluate arithmetic sum-of-products expressions that contain multiplication operations involving non-zero private values. Notably, this extension does not require that participants communicate during the computation phase. Instead, a preprocessing phase is required that is independent of the private input values (but is dependent on the number of factors and terms in the sum-of-products expression).
Last updated:  2023-11-10
Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols
Shichen Wu, Puwen Wei, Ren Zhang, and Bowen Jiang
Proof-of-work (PoW) blockchain protocols based on directed acyclic graphs (DAGs) have demonstrated superior transaction confirmation performance compared to their chain-based predecessors. However, it is uncertain whether their security deteriorates in high-throughput settings similar to their predecessors, because their acceptance of simultaneous blocks and complex block dependencies presents challenges for rigorous security analysis. We address these challenges by analyzing DAG-based protocols via a congestible blockchain model (CBM), a general model that allows case-by-case upper bounds on the block propagation delay, rather than a uniform upper bound as in most previous analyses. CBM allows us to capture two key phenomena of high-throughput settings: (1) simultaneous blocks increase each other's propagation delay, and (2) a block can be processed only after receiving all the blocks it refers to. We further devise a reasonable adversarial block propagation strategy in CBM, called the late-predecessor attack, which exploits block dependencies to delay the processing of honest blocks. We then evaluate the security and performance of Prism and OHIE, two DAG-based protocols that aim to break the security-performance tradeoff, in the presence of an attacker capable of launching the late predecessor attack. Our results show that these protocols suffer from reduced security and extended latency in high-throughput settings similar to their chain-based predecessors.
Last updated:  2023-11-10
SoK: Privacy-Preserving Smart Contract
Huayi Qi, Minghui Xu, Dongxiao Yu, and Xiuzhen Cheng
The privacy concern in smart contract applications continues to grow, leading to the proposal of various schemes aimed at developing comprehensive and universally applicable privacy-preserving smart contract (PPSC) schemes. However, the existing research in this area is fragmented and lacks a comprehensive system overview. This paper aims to bridge the existing research gap on PPSC schemes by systematizing previous studies in this field. The primary focus is on two categories: PPSC schemes based on cryptographic tools like zero-knowledge proofs, as well as schemes based on trusted execution environments. In doing so, we aim to provide a condensed summary of the different approaches taken in constructing PPSC schemes. Additionally, we also offer a comparative analysis of these approaches, highlighting the similarities and differences between them. Furthermore, we shed light on the challenges that developers face when designing and implementing PPSC schemes. Finally, we delve into potential future directions for improving and advancing these schemes, discussing possible avenues for further research and development.
Last updated:  2023-11-10
Broadcast-Optimal Four-Round MPC in the Plain Model
Michele Ciampi, Ivan Damgård, Divya Ravi, Luisa Siniscalchi, Yu Xia, and Sophia Yakoubov
Motivated by the fact that broadcast is an expensive, but useful, resource for the realization of multi-party computation protocols (MPC), Cohen, Garay, and Zikas (Eurocrypt 2020), and subsequently Damgård, Magri, Ravi, Siniscalchi and Yakoubov (Crypto 2021), and, Damgård, Ravi, Siniscalchi and Yakoubov (Eurocrypt 2023), focused on 𝘴𝘰-𝘤𝘢𝘭𝘭𝘦𝘥 𝘣𝘳𝘰𝘢𝘥𝘤𝘢𝘴𝘵 𝘰𝘱𝘵𝘪𝘮𝘢𝘭 𝘔𝘗𝘊. In particular, the authors focus on two-round MPC protocols (in the CRS model), and give tight characterizations of which security guarantees are achievable if broadcast is available in the first round, the second round, both rounds, or not at all. This work considers the natural question of characterizing broadcast optimal MPC in the plain model where no set-up is assumed. We focus on four-round protocols, since four is known to be the minimal number of rounds required to securely realize any functionality with black-box simulation. We give a complete characterization of which security guarantees, (namely selective abort, selective identifiable abort, unanimous abort and identifiable abort) are feasible or not, depending on the exact selection of rounds in which broadcast is available.
Last updated:  2023-11-09
Advanced Composition Theorems for Differential Obliviousness
Mingxun Zhou, Mengshi Zhao, T-H. Hubert Chan, and Elaine Shi
Differential obliviousness (DO) is a privacy notion which mandates that the access patterns of a program satisfy differential privacy. Earlier works have shown that in numerous applications, differential obliviousness allows us to circumvent fundamental barriers pertaining to fully oblivious algorithms, resulting in asymptotical (and sometimes even polynomial) performance improvements. Although DO has been applied to various contexts, including the design of algorithms, data structures, and protocols, its compositional properties are not explored until the recent work of Zhou et al. (Eurocrypt'23). Specifically, Zhou et al. showed that the original DO notion is not composable. They then proposed a refinement of DO called neighbor-preserving differential obliviousness (NPDO), and proved a basic composition for NPDO. In Zhou et al.'s basic composition theorem for NPDO, the privacy loss is linear in $k$ for $k$-fold composition. In comparison, for standard differential privacy, we can enjoy roughly $\sqrt{k}$ loss for $k$-fold composition by applying the well-known advanced composition theorem. Therefore, a natural question left open by their work is whether we can also prove an analogous advanced composition for NPDO. In this paper, we answer this question affirmatively. As a key step in proving an advanced composition theorem for NPDO, we define a more operational notion called symmetric NPDO which we prove to be equivalent to NPDO. Using symmetric NPDO as a stepping stone, we also show how to generalize NPDO to more general notions of divergence, resulting in Rényi-NPDO, zero-concentrated NPDO, Gassian-NPDO, and $g$-NPDO notions. We also prove composition theorems for these generalized notions of NPDO.
Last updated:  2023-11-09
FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM
Gilad Asharov, Ilan Komargodski, and Yehuda Michelson
Oblivious RAM (ORAM) is a general-purpose technique for hiding memory access patterns. This is a fundamental task underlying many secure computation applications. While known ORAM schemes provide optimal asymptotic complexity, despite extensive efforts, their concrete costs remain prohibitively expensive for many interesting applications. The current state-of-the-art practical ORAM schemes are suitable only for somewhat small memories (Square-Root ORAM or Path ORAM). This work presents a novel concretely efficient ORAM construction based on recent breakthroughs in asymptotic complexity of ORAM schemes (PanORAMa and OptORAMa). We bring these constructions to the realm of practically useful schemes by relaxing the restriction on constant local memory size. Our design provides a factor of at least $6$ to $8$ improvement over an implementation of the original Path ORAM for a set of reasonable memory sizes (e.g., 1GB, 1TB) and with the same local memory size. To our knowledge, this is the first practical implementation of an ORAM based on the full hierarchical ORAM framework. Prior to our work, the belief was that hierarchical ORAM-based constructions were inherently too expensive in practice. We implement our design and provide extensive evaluation and experimental results.
Last updated:  2023-11-09
Generic Construction of Broadcast Authenticated Encryption with Keyword Search
Keita Emura
As a multi-receiver variant of public key authenticated encryption with keyword search (PAEKS), broadcast authenticated encryption with keyword search (BAEKS) was proposed by Liu et al. (ACISP 2021). BAEKS focuses on receiver anonymity, where no information about the receiver is leaked from ciphertexts, which is reminiscent of the anonymous broadcast encryption. Here, there are rooms for improving their security definitions, e.g., two challenge sets of receivers are selected before the setup phase, and an adversary is not allowed to corrupt any receiver. In this paper, we propose a generic construction of BAEKS derived from PAEKS that provides ciphertext anonymity and consistency in a multi-receiver setting. The proposed construction is an extension of the generic construction proposed by Libert et al. (PKC 2012) for the anonymous broadcast encryption and provides adaptive corruptions. We also demonstrate that the Qin et al. PAEKS scheme (ProvSec 2021) provides ciphertext anonymity and consistency in a multi-receiver setting and can be employed as a building block of the proposed generic construction. Moreover, we demonstrate that the Mukherjee BAEKS scheme (ACISP 2023) can be employed as a building block of the proposed generic construction.
Last updated:  2023-11-09
Unbounded Quadratic Functional Encryption and More from Pairings
Junichi Tomida
We propose the first unbounded functional encryption (FE) scheme for quadratic functions and its extension, in which the sizes of messages to be encrypted are not a priori bounded. Prior to our work, all FE schemes for quadratic functions are bounded, meaning that the message length is fixed at the setup. In the first scheme, encryption takes $\{x_{i}\}_{i \in S_{c}}$, key generation takes $\{c_{i,j}\}_{i,j \in S_{k}}$, and decryption outputs $\sum_{i,j \in S_{k}} c_{i,j}x_{i}x_{j}$ if and only if $S_{k} \subseteq S_{c}$, where the sizes of $S_{c}$ and $S_{k}$ can be arbitrary. Our second scheme is the extension of the first scheme to partially-hiding FE that computes an arithmetic branching program on a public input and a quadratic function on a private input. Concretely, encryption takes a public input $\vec{u}$ in addition to $\{x_{i}\}_{i \in S_{c}}$, a secret key is associated with arithmetic branching programs $\{f_{i,j}\}_{i,j \in S_{k}}$, and decryption yields $\sum_{i,j \in S_{k}} f_{i,j}(\vec{u})x_{i}x_{j}$ if and only if $S_{k} \subseteq S_{c}$. Both our schemes are based on pairings and secure in the simulation-based model under the standard MDDH assumption.
Last updated:  2023-11-09
Communication-Efficient Inner Product Private Join and Compute with Cardinality
Koji Chida, Koki Hamada, Atsunori Ichikawa, Masanobu Kii, and Junichi Tomida
Private join and compute (PJC) is a paradigm where two parties owing their private database securely join their databases and compute a function over the combined database. Inner product PJC, introduced by Lepoint et al. (Asiacrypt'21), is a class of PJC that has a wide range of applications such as secure analysis of advertising campaigns. In this computation, two parties, each of which has a set of identifier-value pairs, compute the inner product of the values after the (inner) join of their databases with respect to the identifiers. They proposed inner product PJC protocols that are specialized for the unbalanced setting where the input sizes of both parties are significantly different and not suitable for the balanced setting where the sizes of two inputs are relatively close. We propose an inner product PJC protocol that is much more efficient than that by Lepoint et al. for balanced inputs in the setting where both parties are allowed to learn the intersection size additionally. Our protocol can be seen as an extension of the private intersection-sum protocol based on the decisional Diffie-Hellman assumption by Ion et al. (EuroS&P'20) and is especially communication-efficient as the private intersection-sum protocol. In the case where both input sizes are $2^{16}$, the communication cost of our inner-product PJC protocol is $46\times$ less than that of the inner product PJC protocol by Lepoint et al.
Last updated:  2023-11-09
Exploiting the Symmetry of $\mathbb{Z}^n$: Randomization and the Automorphism Problem
Kaijie Jiang, Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang
$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood. In this work, we study the problems on rotations of $\mathbb{Z}^n$ by exploiting the symmetry property. We introduce a randomization framework that can be roughly viewed as `applying random automorphisms’ to the output of an oracle, without accessing the automorphism group. Using this framework, we obtain new reduction results for rotations of $\mathbb{Z}^n$. First, we present a reduction from $\mathbb{Z}$LIP to $\mathbb{Z}$SCVP. Here $\mathbb{Z}$SCVP is the problem of finding the shortest characteristic vectors, which is a special case of CVP where the target vector is a deep hole of the lattice. Moreover, we prove a reduction from $\mathbb{Z}$SVP to $\gamma$-$\mathbb{Z}$SVP for any constant $\gamma = O(1)$ in the same dimension, which implies that $\mathbb{Z}$SVP is as hard as its approximate version for any constant approximation factor. Second, we investigate the problem of finding a nontrivial automorphism for a given lattice, which is called LAP. Specifically, we use the randomization framework to show that $\mathbb{Z}$LAP is as hard as $\mathbb{Z}$LIP. We note that our result can be viewed as a $\mathbb{Z}^n$-analogue of Lenstra and Silverberg's result in [JoC2017], but with a different assumption: they assume the $G$-lattice structure, while we assume the access to an oracle that outputs a nontrivial automorphism.
Last updated:  2023-11-09
FABEO: Fast Attribute-Based Encryption with Optimal Security
Doreen Riepel and Hoeteck Wee
Attribute-based encryption (ABE) enables fine-grained access control on encrypted data and has a large number of practical applications. This paper presents FABEO: faster pairing-based ciphertext-policy and key-policy ABE schemes that support expressive policies and put no restriction on policy type or attributes, and the first to achieve optimal, adaptive security with multiple challenge ciphertexts. We implement our schemes and demonstrate that they perform better than the state-of-the-art (Bethencourt et al. S&P 2007, Agrawal et al., CCS 2017 and Ambrona et al., CCS 2017) on all parameters of practical interest.
Last updated:  2023-11-09
Hintless Single-Server Private Information Retrieval
Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu
We present two new constructions for private information retrieval (PIR) in the classical setting where the clients do not need to do any preprocessing or store any database dependent information, and the server does not need to store any client-dependent information. Our first construction HintlessPIR eliminates the client preprocessing step from the recent LWE-based SimplePIR (Henzinger et. al., USENIX Security 2023) by outsourcing the "hint" related computation to the server, leveraging a new concept of homomorphic encryption with composable preprocessing. We realize this concept on RLWE encryption schemes, and thanks to the composibility of this technique we are able to preprocess almost all the expensive parts of the homomorphic computation and reuse across multiple executions. As a concrete application, we achieve very efficient matrix vector multiplication that allows us to build HintlessPIR. For a database of size 8GB, HintlessPIR achieves throughput about 3.7GB/s without requiring any client or server state. We additionally formalize the matrix vector multiplication protocol as LinPIR primitive, which may be of independent interests. In our second construction TensorPIR we reduce the communications of HintlessPIR from square root to cubic root in the database size. For this purpose we extend our HE with preprocessing techniques to composition of key-switching keys and the query expansion algorithm. We show how to use RLWE encryption with preprocessing to outsource LWE decryption for ciphertexts generated by homomorphic multiplications. This allows the server to do more complex processing using a more compact query under LWE. We implement and benchmark HintlessPIR which achieves better concrete costs than TensorPIR for a large set of databases of interest. We show that it improves the communication of recent preprocessing constructions when clients do not have large numbers of queries or database updates frequently. The computation cost for removing the hint is small and decreases as the database becomes larger, and it is always more efficient than other constructions with client hints such as Spiral PIR (Menon and Wu, S&P 2022). In the setting of anonymous queries we also improve on Spiral's communication.
Last updated:  2023-11-08
Bringing State-Separating Proofs to EasyCrypt - A Security Proof for Cryptobox
François Dupressoir, Konrad Kohbrok, and Sabine Oechsner
Machine-checked cryptography aims to reinforce confidence in the primitives and protocols that underpin all digital security. However, machine-checked proof techniques remain in practice difficult to apply to real-world constructions. A particular challenge is structured reasoning about complex constructions at different levels of abstraction. The State-Separating Proofs (SSP) methodology for guiding cryptographic proofs by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and Kohlweiss (ASIACRYPT'18) is a promising contestant to support such reasoning. In this work, we explore how SSPs can guide EasyCrypt formalisations of proofs for modular constructions. Concretely, we propose a mapping from SSP to EasyCrypt concepts which enables us to enhance cryptographic proofs with SSP insights while maintaining compatibility with existing EasyCrypt proof support. To showcase our insights, we develop a formal security proof for the Cryptobox family of public-key authenticated encryption schemes based on non-interactive key exchange and symmetric authenticated encryption. As a side effect, we obtain the first formal security proof for NaCl's instantiation of Cryptobox. Finally we discuss changes to the practice of SSP on paper and potential implications for future tool designers.
Last updated:  2023-11-08
On the Masking-Friendly Designs for Post-Quantum Cryptography
Suparna Kundu, Angshuman Karmakar, and Ingrid Verbauwhede
Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase. In this work, we deliberate on the effect of design choices on integrating masking techniques into lattice-based cryptography. We select Scabbard, a suite of three lattice-based post-quantum key-encapsulation mechanisms (KEM), namely Florete, Espada, and Sable. We provide arbitrary-order masked implementations of all the constituent KEMs of the Scabbard suite by exploiting their specific design elements. We show that the masked implementations of Florete, Espada, and Sable outperform the masked implementations of Kyber in terms of speed for any order masking. Masked Florete exhibits a $73\%$, $71\%$, and $70\%$ performance improvement over masked Kyber corresponding to the first-, second-, and third-order. Similarly, Espada exhibits $56\%$, $59\%$, and $60\%$ and Sable exhibits $75\%$, $74\%$, and $73\%$ enhanced performance for first-, second-, and third-order masking compared to Kyber respectively. Our results show that the design decisions have a significant impact on the efficiency of integrating masking countermeasures into lattice-based cryptography.
Last updated:  2023-11-08
A practical key-recovery attack on LWE-based key- encapsulation mechanism schemes using Rowhammer
Puja Mondal, Suparna Kundu, Sarani Bhattacharya, Angshuman Karmakar, and Ingrid Verbauwhede
Physical attacks are serious threats to cryptosystems deployed in the real world. In this work, we propose a microarchitectural end-to-end attack methodology on generic lattice-based post-quantum key encapsulation mechanisms to recover the long-term secret key. Our attack targets a critical component of a Fujisaki-Okamoto transform that is used in the construction of almost all lattice-based key encapsulation mechanisms. We demonstrate our attack model on practical schemes such as Kyber and Saber by using Rowhammer. We show that our attack is highly practical and imposes little preconditions on the attacker to succeed. As an additional contribution, we propose an improved version of the plaintext checking oracle, which is used by almost all physical attack strategies on lattice-based key-encapsulation mechanisms. Our improvement reduces the number of queries to the plaintext checking oracle by as much as 39% for Saber and approximately 23% for Kyber768. This can be of independent interest and can also be used to reduce the complexity of other attacks.
Last updated:  2023-11-08
SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq
Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Carmine Abate, Nikolaj Sidorenco, Catalin Hritcu, Kenji Maillard, and Bas Spitters
State-separating proofs (SSP) is a recent methodology for structuring game-based cryptographic proofs in a modular way, by using algebraic laws to exploit the modular structure of composed protocols. While promising, this methodology was previously not fully formalized and came with little tool support. We address this by introducing SSProve, the first general verification framework for machine-checked state-separating proofs. SSProve combines high-level modular proofs about composed protocols, as proposed in SSP, with a probabilistic relational program logic for formalizing the lower-level details, which together enable constructing machine-checked cryptographic proofs in the Coq proof assistant. Moreover, SSProve is itself fully formalized in Coq, including the algebraic laws of SSP, the soundness of the program logic, and the connection between these two verification styles. To illustrate SSProve we use it to mechanize the simple security proofs of ElGamal and PRF-based encryption. We also validate the SSProve approach by conducting two more substantial case studies: First, we mechanize an SSP security proof of the KEM-DEM public key encryption scheme, which led to the discovery of an error in the original paper proof that has since been fixed. Second, we use SSProve to formally prove security of the sigma-protocol zero-knowledge construction, and we moreover construct a commitment scheme from a sigma-protocol to compare with a similar development in CryptHOL. We instantiate the security proof for sigma-protocols to give concrete security bounds for Schnorr's sigma-protocol.
Last updated:  2023-11-08
Construction-D lattice from Garcia-Stichtenoth tower code
Elena Kirshanova and Ekaterina Malygina
We show an explicit construction of an efficiently decodable family of $n$-dimensional lattices whose minimum distances achieve $\Omega(\sqrt{n} / (\log n)^{\varepsilon+o(1)})$ for $\varepsilon>0$. It improves upon the state-of-the-art construction due to Mook-Peikert (IEEE Trans.\ Inf.\ Theory, no. 68(2), 2022) that provides lattices with minimum distances $\Omega(\sqrt{n/ \log n})$. These lattices are construction-D lattices built from a sequence of BCH codes. We show that replacing BCH codes with subfield subcodes of Garcia-Stichtenoth tower codes leads to a better minimum distance. To argue on decodability of the construction, we adapt soft-decision decoding techniques of Koetter-Vardy (IEEE Trans.\ Inf.\ Theory, no.\ 49(11), 2003) to algebraic-geometric codes.
Last updated:  2023-11-08
CompactTag: Minimizing Computation Overheads in Actively-Secure MPC for Deep Neural Networks
Yongqin Wang, Pratik Sarkar, Nishat Koti, Arpita Patra, and Murali Annavaram
Secure Multiparty Computation (MPC) protocols enable secure evaluation of a circuit by several parties, even in the presence of an adversary who maliciously corrupts all but one of the parties. These MPC protocols are constructed using the well-known secret-sharing-based paradigm (SPDZ and SPD$\mathbb{Z}_{2^k}$), where the protocols ensure security against a malicious adversary by computing Message Authentication Code (MAC) tags on the input shares and then evaluating the circuit with these input shares and tags. However, this tag computation adds a significant runtime overhead, particularly for machine learning (ML) applications with computationally intensive linear layers, such as convolutions and fully connected layers. To alleviate the tag computation overhead, we introduce CompactTag, a lightweight algorithm for generating MAC tags specifically tailored for linear layers in ML. Linear layer operations in ML, including convolutions, can be transformed into Toeplitz matrix multiplications. For the multiplication of two matrices with dimensions T1 × T2 and T2 × T3 respectively, SPD$\mathbb{Z}_{2^k}$ required O(T1 · T2 · T3) local multiplications for the tag computation. In contrast, CompactTag only requires O(T1 · T2 + T1 · T3 + T2 · T3) local multiplications, resulting in a substantial performance boost for various ML models. We empirically compared our protocol to the SPD$\mathbb{Z}_{2^k}$ protocol for various ML circuits, including ResNet Training-Inference, Transformer Training-Inference, and VGG16 Training-Inference. SPD$\mathbb{Z}_{2^k}$ dedicated around 30% of its online runtime for tag computation. CompactTag speeds up this tag computation bottleneck by up to 23×, resulting in up to 1.47× total online phase runtime speedups for various ML workloads.
Last updated:  2023-11-08
Memory-Efficient Attacks on Small LWE Keys
Andre Esser, Rahul Girme, Arindam Mukherjee, and Santanu Sarkar
The LWE problem is one of the prime candidates for building the most efficient post-quantum secure public key cryptosystems. Many of those schemes, like Kyber, Dilithium or those belonging to the NTRU-family, such as NTRU-HPS, -HRSS, BLISS or GLP, make use of small max norm keys to enhance efficiency. The presumably best attack on these schemes is a hybrid attack, which combines combinatorial techniques and lattice reduction. While lattice reduction is not known to be able to exploit the small max norm choices, May recently showed (Crypto 2021) that such choices allow for more efficient combinatorial attacks. However, these combinatorial attacks suffer enormous memory requirements, which render them inefficient in realistic attack scenarios and, hence, make their general consideration when assessing security questionable. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets using only a polynomial amount of memory. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and Dilithium variants, showing that our new approach outperforms previous memory-efficient algorithms. For instance, considering uniformly random ternary secrets of length $n$ we improve the best known time complexity for polynomial memory algorithms from $2^{1.063n}$ down-to $2^{0.926n}$. We obtain even larger gains for LWE secrets in $\{-m,\ldots,m\}^n$ with $m=2,3$ as found in Kyber and Dilithium. For example, for uniformly random keys in $\{-2,\ldots,2\}^n$ as is the case for Dilithium we improve the previously best time from $2^{1.742n}$ down-to $2^{1.282n}$. Our fastest algorithm incorporates various different algorithmic techniques, but at its heart lies a nested collision search procedure inspired by the Nested-Rho technique from Dinur, Dunkelman, Keller and Shamir (Crypto 2016). Additionally, we heavily exploit the representation technique originally introduced in the subset sum context to make our nested approach efficient.
Last updated:  2023-11-08
Simulation-Secure Threshold PKE from LWE with Polynomial Modulus
Daniele Micciancio and Adam Suhl
In LWE based cryptosystems, using small (polynomially large) ciphertext modulus improves both efficiency and security. In threshold encryption, one often needs "simulation security": the ability to simulate decryption shares without the secret key. Existing lattice-based threshold encryption schemes provide one or the other but not both. Simulation security has seemed to require superpolynomial flooding noise, and the schemes with polynomial modulus use Rényi divergence based analyses that are sufficient for game-based but not simulation security. In this work, we give the first construction of simulation-secure lattice-based threshold PKE with polynomially large modulus. The construction itself is relatively standard, but we use an improved analysis, proving that when the ciphertext noise and flooding noise are both Gaussian, simulation is possible even with very small flooding noise. Our modulus is small not just asymptotically but also concretely: this technique gives parameters roughly comparable to those of highly optimized non-threshold schemes like FrodoKEM. As part of our proof, we show that LWE remains hard in the presence of some types of leakage; these results and techniques may also be useful in other contexts where noise flooding is used.
Last updated:  2023-11-08
A Formal Treatment of Envelope Encryption
Shoichi Hirose and Kazuhiko Minematsu
Envelope encryption is a method to encrypt data with two distinct keys in its basic form. Data is first encrypted with a data-encryption key, and then the data-encryption key is encrypted with a key-encryption key. Despite its deployment in major cloud services, as far as we know, envelope encryption has not received any formal treatment. To address this issue, we first formalize the syntax and security requirements of envelope encryption in the symmetric-key setting. Then, we show that it can be constructed by combining encryptment and authenticated encryption with associated data (AEAD). Encryptment is one-time AEAD satisfying that a small part of a ciphertext works as a commitment to the corresponding secret key, message, and associated data. Finally, we show that the security of the generic construction is reduced to the security of the underlying encryptment and AEAD.
Last updated:  2023-11-07
CSIDH with Level Structure
Steven D. Galbraith, Derek Perrin, and José Felipe Voloch
We construct a new post-quantum cryptosystem which consists of enhancing CSIDH and similar cryptosystems by adding a full level $N$ structure. We discuss the size of the isogeny graph in this new cryptosystem which consists of components which are acted on by the ray class group for the modulus $N$. We conclude by showing that, if we can efficiently find rational isogenies between elliptic curves, then we can efficiently find rational isogenies that preserve the level structure. We show that one can reduce the group action problem for the ray class group to the group action problem for the ideal class group. This reduces the security of this new cryptosystem to that of the original one
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.