
Multiple Group Action Dlogs
with(out) Precomputation

Alexander May and Massimo Ostuzzi

Ruhr-University Bochum, Bochum, Germany
alex.may@rub.de, massimo.ostuzzi@rub.de

Abstract. Let ⋆ : G×X → X be the action of a group G of size N = |G|
on a set X . Let y = g ⋆ x ∈ X be a group action dlog instance, where our
goal is to compute the unknown group element g ∈ G from the known
set elements x, y ∈ X . The Galbraith-Hess-Smart (GHS) collision finding

algorithm solves the group action dlog in N
1
2 steps with polynomial

memory.
We show that group action dlogs are suitable for precomputation at-
tacks. More precisely, for any s, t our precomputation algorithm com-
putes within st steps a hint of space complexity s, which allows to solve
any group action dlog in an online phase within t steps. A typical in-

stantiation is s = t = N
1
3 , which gives precomputation time N

2
3 and

space N
1
3 , and online time only N

1
3 .

Moreover, we show that solving multiple group action dlog instances
y1, . . . , ym allows for speedups. Namely, our collision finding algorithm

solves m group action dlogs in
√
mN

1
2 steps, instead of the straight-

forward mN
1
2 steps required for running m times GHS. Our multiple

instance approach can be combined with our precomputations, allowing
for a variety of tradeoffs.
Technically, our precomputation and multiple instance group action dlog
attacks are adaptations of the techniques from the standard dlog setting
in abelian groups. While such an adaptation seems natural, it is per
se unclear which techniques transfer from the dlog to the more general
group action dlog setting, for which X does not offer a group structure.
Our algorithms have direct implications for all group action based cryp-
tosystems, such as CSIDH and its variants. We provide experimental
evidence that our techniques work well in the CSIDH setting.

Keywords: group actions · CSIDH · preprocessing · multi-instance dlogs
· random walks.

1 Introduction

The invention of the discrete logarithm (dlog) based Diffie-Hellman (DH) key
exchange in 1976 marks the birth of modern public-key cryptography. DH is
nowadays used ubiquitously in practice. As a consequence, the discovery of
Shor’s polynomial time quantum algorithm for computing dlogs in any abelian

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

2 Alexander May and Massimo Ostuzzi

group [29] came as a shock to the cryptographic community, turning DH insecure
in a quantum world.

While one would like to replace the group-based dlog problem by some quan-
tum resistant problem, it is also desirable to retain the benefits of DH key ex-
change, such as small public keys, efficient computations, and compatibility with
existing protocols.

The group action dlog problem evolved as a natural and elegant way to re-
place group-based dlogs, and group actions are the fruitful basis for a part of
the new research area called isogeny-based cryptography [4,9,32,20] [19,11]. This
gave birth to the key exchange protocol CSIDH [5], which provides an efficient
instantiation of group actions, leading to a highly attractive and promising re-
placement of DH in a quantum world. The hope is that group action dlogs
preserve all benefits from group based dlogs, while providing more security, es-
pecially against quantum computers.

Indeed, the group action dlog problem is a hidden shift problem [7], for which
the best quantum algorithm by Kuperberg [22] has subexponential complexity.
Nowadays, it is still an open question whether concrete instantiations of Kuper-
berg’s algorithm [25,3,6] pose threats to current group action dlog parameters.

Adaptation from Dlog Algorithms. Before considering a widespread replacement
of DH by some group action based scheme like CSIDH, it is crucial to understand
to which extent dlog attacks transfer to the group action dlog setting.

Using Pollard’s collision finding algorithm [27], we can compute a single dlog

in any abelian group of size N in O(N
1
2) steps. The counterpart for group actions

dlogs of instance size N is the algorithm of Galbraith, Hess and Smart [15,14],

likewise requiring O(N
1
2) steps.

Other dlog algorithms do not transfer naturally. One crucial example is again
Shor’s polynomial time dlog algorithm, for which its group action counterpart
Kuperberg’s algorithm requires subexponential time. A second example is the
Silver-Pohlig-Hellman algorithm [26], that exploits smoothness of the group or-
der, for which currently no counterpart is believed to exist in the group action
dlog setting [5].

Therefore it is of great importance to understand which dlog algorithms can
be transferred into the group action setting at all.

Dlog Precomputation and Multi-Instances. The discrete log setting has the nice
feature that one can standardize groups that are believed to be especially ef-
ficient, and for which the dlog problem is considered hard. Examples are the
current elliptic curve standards, like NIST P-256. These standardized groups
provide an advantage over RSA based key exchange, for which users may gen-
erate insecure instances [18].

An analogous property holds for group action based schemes. For instance
CSIDH-512 provides an efficient systemwide instantiation of a group action that
all users are supposed to use securely. In fact, it seems that the group action
setting is even more restrictive, in the sense that it is harder to find suitable
instantiations that are both efficient and secure [5].

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 3

The drawback of systemwide instantiations is that they are attractive targets
for powerful adversaries. It appears plausible that a large scale adversary, such
as a national state agency, has the capabilities to perform a heavy precompu-
tation. For a cryptographic (group action) standard that is used by billions of
devices, such a precomputation may run over several years to produce some hint.
The hint in turn could allow the large scale adversary for significantly more ef-
ficient (group action) dlog computations in an online phase. In the dlog setting,
precomputations have been studied by [1,8].

Moreover, large scale adversaries interested in mass surveillance of users not
only desire to compute a single (group action) dlog, but aim to amortize their
costs for recovering a plethora of cryptographic keys. In the dlog setting, it is
known that m dlogs can be computed in time

√
mN

1
2 [21,13,34], instead of the

naive mN
1
2 by applying Pollard’s algorithm m times, thereby amortizing the

attack costs.
Our main contribution is to transfer both the precomputation and the multi-

instance attacks from the dlog to the group action dlog setting. To this end, let
us work out in the following the similarities (and limitations) of both settings in
a bit more detail.

Discrete Logarithms. Let us recap the discrete logarithm in a finite cyclic
group H generated by h ∈ H, in which we denote the group operation as mul-
tiplication. We write H = ⟨h⟩ = {h, h2, . . . , hord(h)}, with ord(h) = |H|. We
denote the integers modulo |H| by Z|H| := Z/|H|Z.

Let us consider the exponentiation map φh : Z → H, v 7→ hv. Notice that
λ = ker(φh) = |H|Z is a 1-dimensional lattice in Z. Therefore, the following map
is a bijection

fh : Z/λ → H, v 7→ hv.

Let y = hv = fh(v). The discrete logarithm (dlog) problem in H is to invert fh
on y, namely to compute the unique v = f−1

h (y) mod λ.
In group action terminology, for our discrete logarithm problem the group

G := Z/λ = Z|H| acts on the group H. The group structure of H itself is
exploited in many algorithms, such as Shor’s algorithm [29] and Pollard’s Rho
algorithm [27].

Pollard Rho uses the technique of collision finding. Let y = hv and define

fh,y : G × G → H, (x, z) 7→ hxyz.

Moreover, suppose (x, z) ̸= (x′, z′) is a collision in fh,y, namely fh,y(x, z) =
fh,y(x

′, z′). We have
fh,y(x, z) = hxyz = hx+vz,

and likewise
fh,y(x

′, z′) = hx′
yz

′
= hx′+vz′

.

We conclude that the collision (x, z), (x′, z′) directly yields the discrete logarithm

as v = x−x′

z′−z mod λ, provided that z′ − z is invertible modulo λ. Notice that our
reasoning relies on H’s group structure.

4 Alexander May and Massimo Ostuzzi

Group Action Dlogs. Let us now introduce the group action discrete logarithm
(GA-dlog) problem, and discuss its similarities and differences to the ordinary
discrete logarithm problem in a group H.

Let X be a set, without any group structure. Let x ∈ X be a distinguished
element, called the origin, that plays the role of a generator of X . Namely, we let
some finite abelian group G act on X with ⋆ via the origin x, such that {g ⋆ x |
g ∈ G} = X . Notice that our definition of X already implies N = |G| ≥ |X |, but
we will furthermore require that |X | = |G|.

Let us assume that g = {g1, . . . , gn} is a finite set of generators for G, denoted
G = ⟨g⟩ = ⟨g1, . . . , gn⟩. Moreover, for any integer vector v = (v1, . . . , vn) ∈ Zn

we write gv = gv11 · . . . · gvn
n .

Let us consider the exponentiation map φg : Zn → G,v 7→ gv. Notice that
Λ = ker(φg) is an n-dimensional lattice in Zn. The following map is a bijection

fg,x : Zn/Λ → X , v 7→ gv ⋆ x. (1)

Let y = gv ⋆ x = fg,x(v). Then the GA-dlog problem in X is to invert fg,x on y,
namely to compute the unique v = f−1

g,x(y) mod Λ, that in turn represents the
group element gv ∈ G.

Notice that the missing group structure of X prevents a straight-forward
adaptation of Pollard’s collision finding technique, as well as an adaptation of
Shor’s quantum dlog algorithm.

Our Contributions. Let y = gv ⋆x be a GA-dlog problem for a group G = ⟨g⟩
of size N = |G|. We define the two functions

fg,x : Zn/Λ → X , v 7→ gv ⋆ x,

fg,y : Zn/Λ → X , v 7→ gv ⋆ y,

Let (v1,v2) be a collision of fg,x, fg,y, namely fg,x(v1) = fg,y(v2). Then we
have

fg,x(v1) = gv1 ⋆ x, and

fg,y(v2) = gv2 ⋆ y = gv2 ⋆ (gv ⋆ x)
(∗)
= (gv2+v) ⋆ x,

where (∗) holds by a group action property called compatibility. By injectivity
of the map in Equation (1), we obtain the GA-dlog as v = v1 − v2 mod Λ.

Precomputation. Observe that the function fg,x, as opposed to fg,y, solely de-
pends on the group action defined via (g, x), but not on a GA-dlog instance y.
Therefore, we call fg,x instance-independent, while fg,y is called instance-dependent.
The instance-independence of fg,x allows us to precompute via (g, x) alone a hint
for the group action. On obtaining a concrete GA-dlog instance y, one can then
use the hint to compute more efficiently a collision via fg,y.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 5

More concretely, for fg,x we precompute s instance-independent random
walks, each of them of length t. This requires time st and space s, by stor-
ing only their endpoints, which then serve as our hint. Let us look at a typical
parameter choice s = t = N

1
3 . Then precomputation requires time st = N

2
3 and

space only s = N
1
3 .

We show that our precomputation already touches roughly st = N
2
3 points

in X . Thus, we expect that any instance-dependent walk with fg,y of length

t = N
1
3 collides with one of these points, thereby yielding a solution to the

GA-dlog problem.

Multiple Instances. Let y1, . . . , ym be m GA-dlog instances. Solving all instances
via the Galbraith-Hess-Smart algorithm requires time mN

1
2 . We show that one

can solve all instances in time only
√
mN

1
2 , thereby saving a

√
m-factor and

solving a single instance in amortized (over all m instances) cost
(
N
m

) 1
2 .

Precompution and Multiple Instances. The idea of precomputation allows for
a combination with the multi-instance setting. Namely, one first precomputes
an instance independent structure. On obtaining m instances y1, . . . , ym, one
then lets m instance-dependent random walks fg,y1

, . . . , fg,ym
collide into the

precomputed points.
This allows for various tradeoffs. For instance, one may precompute in time

mN
2
3 a structure of sizem2N

1
3 , which then in turn allows to solve all m instances

in time only N
1
3 .

Precomputation includes Multi-Instance. Technically, we apply and transfer the
precomputation dlog framework by Corrigan-Gibbs and Kogan [8]. This frame-
work was already successfully applied to transfer precomputation and multi-
instances from dlogs to the Legendre PRF setting [23]. In fact, our analysis
closely follows the reasoning for the precomputation setting in [8,23].

However, for the multi-instance setting without precomputation we slightly
deviate from [23]. Namely, we observe that the multi-instance setting (without
precomputation) is a special case of the multi-instance precomputation setting.
While we will see that our observation is somewhat straight-forward, to the
best of our knowledge it has been overlooked in the cryptographic literature so
far. Despite its triviality, our observation is also a bit counter-intuitive, probably
explaining why it slipped through. Indeed, why should an algorithm without pre-
computation drop out from a precomputation scenario, which is usually expected
to perform a heavy initial precomputation phase?

In fact, the trick is to perform only a light precomputation, balancing the
cost between precomputation and online phase. This implies that we do not
have to separate between precomputation and online phase any longer, thereby
omitting precomputation altogether.

As a consequence of our observation, we obtain for free an appealingly sim-
ple multi-instance algorithm with a clean and elegant analysis for GA-dlogs.
The same is true for ordinary dlogs, for which we explicitly provide a multi-
instance algorithm from its precomputation algorithm. As opposed to other

6 Alexander May and Massimo Ostuzzi

multi-instance dlog algorithms, our approach does not require the use of dis-
tinguished point techniques [21,13], or heavy graph theory analysis [13]. It is
easy to see that our technique transfers to other settings as well, as e.g. to
multi-instance Legendre PRF [23] or to multi-user Even-Mansour [13].

Lower Bounds and Optimality. Our algorithms are fully generic. Namely, they
work for any group action and only require equality testing of elements. Any
improvement on generic GA-dlog algorithms would immediately yield an im-
provement on generic algorithms for dlogs. However, this would contradict the
optimality of current generic dlog algorithms, as shown by the lower bounds of
Yun [34] and Corrigan-Gibbs, Kogan [8]. We achieve upper bounds matching the
lower bounds in [34,8], showing optimality of our generic algorithms.

The Role of the Lattice Λ. Notice that in an ordinary discrete log setting over a
group H, we assume the group order |H| to be known. This helps during random
walks to update all discrete logs modulo |H|, thereby controlling their sizes. In
elliptic curve groups the knowledge of |H| is a reasonable assumption, since it
can be computed via Schoof’s algorithm [28] in polynomial time.

Just as we assume knowledge of |H| in the dlog setting, we assume in the
group action dlog setting knowledge of a basis of Λ as input to our algorithms.
Analogously, this allows us during random walks to update all GA-dlogs mod-
ulo Λ. In the CSIDH group action setting, a basis of Λ can be computed in
quantum polynomial time [17]. Classically, we may compute such a basis in
subexponential time via the algorithm of [16]. For instance, for CSIDH-512 a
basis has been computed in [2]. Strictly speaking, our algorithms also work
without knowing Λ, but operating with the output GA-dlog without any re-
duction modulo Λ might take exponential time, depending on the specific group
action. For example, CSIDH group action evaluation using Vélu’s formulae takes
exponential time in the size of the coordinates of v ∈ Zn. However, recent de-
velopments [19,24] allow to evaluate the class group action in polynomial time
with no lattice reduction, leveraging the attack on SIDH in a constructive way.

Provability. We prove correctness, complexity and success probability of our
algorithms without any heuristic assumptions, solely relying on a PRF realizing
a mapping X → Zn/Λ that we need for the analysis of our random walks. In our
experiments for CSIDH, we show that we can easily realize a random mapping
for CSIDH that works well in practice (although not being a PRF).

Notice that, by our mapping X → Zn/Λ, a single step in our random walks
does not coincide with moving to a random neighbor in the so-called isogeny
graph (as in other algorithms like [14,12]), but we rather randomly jump in X .
This has the advantage that we do not have to care about the isogeny graph’s
mixing properties. On the downside, a single step in our walks is computationally
more expensive. In our approach, we prefer clarity of exposition and provability
over potential implementation practicality.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 7

Implications for CSIDH-512. CSIDH-512 works with elliptic curves over Fp with
512-bit prime p, leading to N = |G| = |X | of 256 bit size. Therefore, CSIDH-512
offers 128 bit security against the Delfs-Galbraith algorithm. Using our precom-
putation algorithm with parameter choice s = t = N

1
3 would lead to 171 bit of

precomputations for a large scale adversary, resulting in a hint of size 85 bits.
Such a hint would allow to solve single GA-dlogs within only 285 bit operations.
Since such a large scale attacker seems unrealistic, our precomputation attack
currently does not directly affect the CSIDH-512 security level.

Organization of the paper. In Section 2, we define group action dlogs. Sec-
tion 3 is devoted to our GA-dlog algorithm for a single instance with precompu-
tation, which we generalize to multiple instances in Section 4. In Section 5, we
show that a multi-instance GA-dlog without precomputation follows as a spe-
cial case from the algorithm in Section 4. In Section 6, we provide as a further
application and, for completeness, the analogous multi-instance dlog algorithm.
In Section 7, we show that our precomputation GA-dlog algorithm works well
in practice for small-scale parameter sets of CSIDH.

Implementation. The code for our CSIDH experiments is available at https:

//github.com/maxostuzzi/precomputation_attack.

2 Preliminaries

Let us define a group action and the discrete logarithm problem for group actions.

Definition 1 (Group action). Let (G, ·) be a multiplicative group, and let X
be a set. The map

⋆ : G × X → X

is called a group action of G on X , denoted (G,X , ⋆), if it satisfies the properties

1. Identity: 1 ⋆ x = x, for all x ∈ X .
2. Compatibility: (g · h) ⋆ x = g ⋆ (h ⋆ x), for all g, h ∈ G and x ∈ X .

For efficient computations, we require that we can compactly represent G and
X . To this end we assume that G is finite and generated by g = {g1, . . . , gn},
denoted as G = ⟨g⟩. Moreover, we let x ∈ X be a distinguished element called
origin, satisfying

X = {g ⋆ x | g ∈ G} and |X | = |G| := N. (2)

In other words, the map G → X , g 7→ g ⋆ x is a bijection. Group actions satisfy-
ing Equation (2) are called regular in the literature.

Definition 2 (Representation). Let v = (v1, . . . , vn) ∈ Zn. We denote gv :=
gv11 · . . . · gvnn ∈ G. For some group element gv ∈ G, we call its exponent vector v
a representation.

https://github.com/maxostuzzi/precomputation_attack
https://github.com/maxostuzzi/precomputation_attack

8 Alexander May and Massimo Ostuzzi

Consider the exponentiation map ϕg : Zn → G,v → gv. It is a surjective map
and its kernel Λ := ker(ϕg) is an n-dimensional lattice in Zn. Therefore, the map
Zn/Λ → G is an isomorphism, and every element in G has a representation that
is unique modulo Λ. To simplify the notation, we are going to write simply
v ∈ Zn/Λ for the equivalence class of the vector v ∈ Zn.

Definition 3 (GA-dlog). Let (G,X , ⋆) be regular group action with generators
g and origin x, namely

G = ⟨g⟩ = ⟨g1, . . . , gn⟩ ∼= Zn/Λ, X = {g ⋆ x | g ∈ G} and |G| = |X |.

In the group action discrete logarithm (GA-dlog) problem, the goal is to find
on input (g, x, y) ∈ Gn × X 2 the unique representation v ∈ Zn/Λ satisfying
y = gv ⋆ x.

3 Solving GA-dlogs with Precomputation

High-Level Description. Let us first give a high-level description of our group
action dlog algorithm with precomputation, see also Figure 1.

x
(1)
0 x

(2)
0 x

(i)
0 x

(s−1)
0 x

(s)
0

.

gv

y

x

Lx
(1)
t x

(2)
t x

(i)
t x

(s−1)
t x

(s)
t

Fig. 1: Collision finding for GA-dlog instance y = gv ⋆ x with precomputation.

Our precomputation phase is instance-independent and solely relies on the
parameters (g, x) defining the group action. We start s instance-independent
random walks W (1), . . . ,W (s) on X , and store only their endpoints in a list L.

In the online phase, we receive a group action dlog instance y = gv ⋆ x. We
then start an instance-dependent random walk, and let it collide into one of the
walks W (1), . . . ,W (s). The collision is identified via the stored endpoints. In the
following we show that a collision immediately yields the desired GA-dlog v.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 9

Precomputation Phase. Let us describe a single random walk W (i) from

the precomputation phase. To this end, we choose a random w
(i)
0 ∈ Zn/Λ that

defines a random starting point x
(i)
0 := gw

(i)
0 ⋆ x ∈ X .

Let h : X → Zn/Λ be a pseudorandom function (PRF), which allows us to
define our random walk as

x
(i)
j := gh(x

(i)
j−1) ⋆ x

(i)
j−1 for j ≥ 1. (3)

In Section 7, we show how to instantiate h for the group action in CSIDH, as
an example in a concrete setting. Moreover, let us define

w
(i)
j := h(x

(i)
j−1) +w

(i)
j−1

= h(x
(i)
j−1) + h(x

(i)
j−2) +w

(i)
j−2 = . . . = w

(i)
0 +

j−1∑
k=0

h(x
(i)
k) for j ≥ 1. (4)

Notice that, by the definition of our random walk and by the Compatibility
property of Definition 1, we have

x
(i)
j = gh(x

(i)
j−1)⋆(gh(x

(i)
j−2)⋆. . .⋆(gh(x

(i)
0)⋆(gw

(i)
0 ⋆x)) . . .) =

(
gw

(i)
0

j−1∏
k=0

gh(x
(i)
k)

)
⋆x.

Therefore, we conclude that x
(i)
j has GA-dlog w

(i)
j , as defined in Eq. (4).

For each of the s random walks W (i) of length t, we store only their endpoint

x
(i)
t together with its GA-dlog w

(i)
t .

The resulting precomputation is detailed inPrecompute-GA (Algorithm 1).

Online Phase. Let y = gv ⋆ x be a GA-dlog instance. We start a random walk
W as defined in Equation (3) from the starting point x0 := y, see also Figure 1.
As in the precomputation phase, we keep track of the GA-dlog. Namely, the
random walk point xj after j steps has GA-dlog

v +

j−1∑
k=0

h(xk) = v +wj . (5)

However, notice that v is the desired unknown GA-dlog of y, therefore we
only store the value wj =

∑j−1
k=0 h(xk).

Eventually, our walk W collides into one of the precomputed walks. Let W (ℓ)

be the colliding walk. Let us first show that once W collides into W (ℓ), both
walks subsequently visit the same points.

Colliding walks stay together. Let xj = x
(ℓ)
k be the first collision between W and

W (ℓ). Then, by Equation (3), we have

xj+1 = gh(xj) ⋆ xj = gh(x
(ℓ)
k) ⋆ xj = gh(x

(ℓ)
k) ⋆ x

(ℓ)
k = x

(ℓ)
k+1.

10 Alexander May and Massimo Ostuzzi

Algorithm 1: Precompute-GA

Input: group action parameters (g, x) ∈ Gn ×X , N := |G|, basis for Λ ⊆ Zn,
PRF h : X → Zn/Λ

Output: hint list L of endpoints/GA-dlogs
(
x
(i)
t ,w

(i)
t

)
∈ X × Zn/Λ

1 Choose s, t ∈ N s.t. 4st2 ≤ N // E.g. s, t = ⌊ 1
2
N

1
3 ⌋

2 L ← ∅
3 for i = 1, . . . , s // Compute random walks W (1), . . . ,W (s).

4 do

5 Choose a random w
(i)
0 ∈ Zn/Λ.

6 Let x
(i)
0 := gw

(i)
0 ⋆ x ∈ X . // Randomized starting point.

7 for j = 1, . . . , t // Each walk W (i) has length t.
8 do

9 Let x
(i)
j := gh(x

(i)
j−1) ⋆ x

(i)
j−1 ∈ X and w

(i)
j := h(x

(i)
j−1) +w

(i)
j−1 mod Λ.

10 L ← L ∪
{(

x
(i)
t ,w

(i)
t

)}
// Store endpoint/GA-dlog in hint L.

11 Sort L by first entry. // Allows for binary search in L.
12 return L

Inductively, we obtain xj+i = x
(ℓ)
k+i for all i ≥ 0, which means that the walks

stay together, see also Figure 1. As a consequence, the online phase walk W will

eventually reach W (ℓ)’s stored endpoint x
(ℓ)
t , together with its GA-dlog w

(ℓ)
t . It

remains to show that the tuple (x
(ℓ)
t ,w

(ℓ)
t) reveals the solution of the GA-dlog

instance y.

Endpoints solve GA-dlog. Let xj = x
(ℓ)
t be the colliding endpoints of W and

W (ℓ). By Equation (5) and Equation (4), their GA-dlogs are

v +wj , respectively w
(ℓ)
t = w

(ℓ)
0 +

t−1∑
k=0

h(x
(ℓ)
k).

Since v +wj = w
(ℓ)
t mod Λ, we obtain the desired GA-dlog of y as

v = w
(ℓ)
t −wj mod Λ.

The resulting online phase is detailed in Online-GA-dlog (Algorithm 2).

Remark 1. Notice that Online-GA-dlog fails if we do not collide within 2t
steps into one of the precomputed walks W (1), . . . ,W (s). In practice, one may
then restart only the online walk with a fresh re-randomized starting point
x0 := gw0 ⋆ y, for some random w0 ∈ Zn/Λ. This amplifies the success prob-
ability arbitrarily close to 1, see also our experiments for CSIDH in Section 7.
In subsequent sections, we will use re-randomized starting points to allow for
success amplification.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 11

Algorithm 2: Online-GA-dlog

Input: (g, x, y = gv ⋆ x) ∈ Gn ×X 2, N := |G|, basis for Λ ⊆ Zn,
precomputed hint L ∈ (X × Zn/Λ)s, t, PRF h : X → Zn/Λ

Output: GA-dlog v ∈ Zn/Λ or FAIL
1 Let w0 = 0n and x0 := y.
2 for j = 1, . . . , 2t // 2t-step walk W
3 do

4 Let xj := gh(xj−1) ⋆ xj−1 ∈ X and wj := h(xj−1) +wj−1 mod Λ.

5 if
(
xj ,w

(ℓ)
t

)
∈ L for some ℓ ∈ {1, . . . , s} // Endpoint in L?

6 then

7 return v := w
(ℓ)
t −wj mod Λ

8 return FAIL

Theorem 1. Let (G,X , ⋆) be a regular group action with N = |G| = |X |. For
any choice of s, t ∈ N with 4st2 ≤ N , Precompute-GA-dlog (Algorithm 1)
precomputes within st steps a hint L of size Õ(s). Using L, Online-GA-dlog
(Algorithm 2) solves a GA-dlog instance within O(t) steps with success probability

Ω

(
st2

N

)
.

Proof. Precompute-GA computes s random walks of length t in a total of
st steps. Since we store only their endpoints/GA-dlogs in our hint list L, our
memory requirement is Õ(s). Online-GA-dlog performs at most 2t = O(t)
steps to find a collision. If Online-GA-dlog collides within its first t steps into
some precomputed walk W (i), then it reaches within its subsequent t steps an
endpoint in L. By the previous discussion, the endpoint yields the solution to
the GA-dlog instance y = gv ⋆ x.

It remains to show that Online-GA-dlog succeeds to collide within t steps

into a precomputed walk with probability Ω(st
2

N). To this end, we show that
Precompute-GA touches with probability at least 1

2 within its st steps at
least st/2 different elements in X .

Let Xi be a random variable for the number of elements in X newly visited
by walk Wi. Let X =

∑s
i=1 Xi ≤ st. Using the randomness property of our PRF

h, Bernoulli’s inequality, and 4st2 ≤ N , we show that each walk W (i) newly
visits the maximum number of Xi = t new elements from X with probability at
least

P[Xi = t] ≥

(
N − st

N

)t

=

(
1−

st

N

)t

≥ 1−
st2

N
≥

3

4
.

12 Alexander May and Massimo Ostuzzi

Hence, we have on expectation E[Xi] ≥
3t

4
newly visited X -elements for each

precomputed walk and, by linearity of expectation,

E[X] =

s∑
i=1

E[Xi] ≥
3

4
st.

Using Markov’s inequality, we obtain

P

[
X <

st

2

]
≤ P

[
st−X ≥

st

2

]
≤

st−E[X]
st
2

≤
1

2
.

Hence, with probability at least 1
2 Precompute-GA visits within its st steps

at least X ≥ st/2 distinct elements in X .
Let Ct be the event that Online-GA-dlog collides within the first t steps

with one of the precomputed X -elements, which is sufficient for Online-GA-
dlog to solve the GA-dlog problem.

Using 1− x ≤ e−x and 1− e−x ≥ x/2 for x ≤ 1, we obtain

P

[
Ct | X ≥ st

2

]
≥ 1−

(
1−

st

2N

)t

≥ 1− e−
st2

2N ≥
st2

4N
.

Hence, Online-GA-dlog succeeds with probability at least

P

[
Ct ∩

(
X ≥ st

2

)]
= P

[
X ≥ st

2

]
·P
[
Ct | X ≥ st

2

]
≥

st2

8N
= Ω

(
st2

N

)
.

4 Solving Multiple GA-Dlogs with Precomputation

If an attacker makes the effort of a heavy precomputation for some group action
instance (G,X , ⋆), then the goal is usually not to online tackle just a single
GA-dlog instance, but rather to solve a large quantity of GA-dlog instances
simultaneously.

Let y1 = gv1 ⋆ x, . . . , ym = gvm ⋆ x be m GA-dlog instances. Our goal is to
solve all instances. In a nutshell, a slightly heavier precomputation pays off in
amortizing the cost over allm instances. As an example, we show in the following
that a precomputation in time m2N

2
3 that produces a hint of size m2N

1
3 allows

to solve all m instances in total time only N
1
3 . Various other tradeoffs between

precomputation time, hint size and online time are possible.

High-Level Idea. The multiple instance setting with precomputation is a nat-
ural generalization of the single instance setting from Section 3. Again, we pre-
compute s random walks W (1), . . . ,W (s) in X , and store only their endpoints,
together with their GA-dlogs. During the online phase we then let all m online

walks W
(1)

, . . . ,W
(m)

collide into one of the precomputed walks. However, in
order to obtain constant success probability for solving all m GA-dlog instances,
we have to adjust the lengths of all walks during precomputation and online
phase accordingly. Details of this adjustment follow.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 13

x
(1)
0 x

(2)
0 x

(i)
0 x

(s−1)
0 x

(s)
0

.y2y1 ym

x

Lx
(1)
t x

(2)
t x

(i)
t x

(s−1)
t x

(s)
t

Fig. 2: Collision finding for multiple GA-dlogs with precomputation.

Generalization to the Multi-Instance Setting. We provide our algorithms
Precompute-mult-GA, Online-mult-GA-dlog and All-GA-dlog in Al-
gorithms 3 to 5. We advise the reader to compare the first two to Precompute-
GA and Online-GA-dlog (Algorithms 1 and 2) from Section 3.

While in the single instance setting we obtained constant success proba-
bility by the parameter choice st2 = Θ(N), in the multi-instance setting the
time/memory/instance tradeoff is st2 = Θ(m2N). This requires slightly larger
s, t.

However, whereas in the single instance setting we needed walk lengths t
and 2t for precomputation and online walks respectively, in the multi-instance
setting shorter walks of length t/m and 2t/m respectively are sufficient, as we
show with the following theorem.

Theorem 2. Let (G,X , ⋆) be a regular group action with N = |G| = |X |, and
let yi = gvi ⋆ x, 1 ≤ i ≤ m be GA-dlog instances. For any choice of s, t ∈ N with
4st2 ≤ m2N , Precompute-Mult-GA (Algorithm 3) precomputes within st/m
steps a hint L of size Õ(s). Using L, Online-Mult-GA-dlog (Algorithm 4)
runs in a total of O(t) steps, and solves each GA-dlog yi instance with success

probability Ω

(
st2

m2N

)
.

Proof. The proof will closely follow the one for Theorem 1. Precompute-Mult-
GA computes s walks with t/m steps each, with a total of st/m steps. Storing s
endpoints requires memory Õ(s). Moreover Online-Mult-GA-dlog performs

m walks W
(1)

, . . . ,W
(m)

with 2t/m steps, that is a total of O(t) steps. It remains
to show the success probability of Online-Mult-GA-dlog.

14 Alexander May and Massimo Ostuzzi

Algorithm 3: Precompute-Mult-GA

Input: group action parameters (g, x) ∈ Gn ×X , N := |G|, number of
instances m, basis for Λ ⊆ Zn, PRF h : G → Zn/Λ

Output: list L of endpoints/GA-dlogs
(
x
(i)

t/m,w
(i)

t/m

)
∈ X × Zn/Λ

1 Choose s, t ∈ N s.t. 4st2 ≤ m2N ▷ E.g. s = m2N
1
3 , t = 1

2
N

1
3

2 L ← ∅
3 for i = 1, . . . , s // Compute random walks W (1), . . . ,W (s).

4 do

5 Choose a random w
(i)
0 ∈ Zn/Λ.

6 Let x
(i)
0 := gw

(i)
0 ⋆ x ∈ X . // Randomized starting point.

7 for j = 1, . . . , t/m // Each walk W (i) has length t/m.

8 do

9 Let x
(i)
j := gh(x

(i)
j−1) ⋆ x

(i)
j−1 ∈ X and w

(i)
j := h(x

(i)
j−1) +w

(i)
j−1 mod Λ.

10 L ← L ∪
{(

x
(i)

t/m,w
(i)

t/m

)}
// Store endpoint/GA-dlog in hint L.

11 Sort L by first entry. // Allows for binary search in L.
12 return L

Let Xi be a random variable counting the number of new elements in X
touched by the precomputed random walk Wi, for i ∈ {1, . . . , s}. Let X =∑s

i=1 Xi. As Xi ≤ t
m , we have that X ≤ st

m . Using Bernoulli’s inequality and
4st2 ≤ m2N , each walk touches the maximum numberXi = t/m of new elements
with probability

P[Xi = t/m] ≥

(
N − st

m

N

)t/m

=

(
1−

st

mN

)t/m

≥ 1−
st2

m2N
≥

3

4
.

Therefore, we have E[Xi] ≥ 3
4 ·

t
m = 3t

4m and E[X] ≥ 3st
4m . By Markov’s inequality,

we obtain

P

[
X <

st

2m

]
≤ P

[
st

m
−X ≥

st

2m

]
≤

st
m −E[X]

st
2m

≤
1

2
.

Let E(i) be the event that online walk W
(i)

collides with some precomputed

walk within the first t/m steps. In this case, W
(i)

reaches within the subsequent
t/m steps an endpoint in L, thereby solving the GA-dlog instance yi = gvi ⋆ x.

Using 1− x ≤ e−x and 1− e−x ≥ x/2 for x ≤ 1, we obtain

P

[
E(i) | X ≥ st

2m

]
≥ 1−

(
1−

st

2mN

) t
m

≥ 1− e−
st2

2m2N ≥
st2

4m2N
.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 15

Algorithm 4: Online-mult-GA-dlog

Input: (g, x, y1 = gv1 ⋆ x, . . . , ym′ = gvm′ ⋆ x) ∈ Gn ×Xm′+1, N := |G|,
basis of Λ ⊆ Zn, hint L ∈ (X × Zn/Λ)s, m, t, PRF h : X → Zn/Λ

Output: GA-dlog v1, . . . ,vm′ ∈ Zn/Λ or FAIL
1 for i = 1, . . . ,m′ // Initially m′ = m, see also Algorithm 5.

2 do
3 Choose a random w0 ∈ Zn/Λ.

4 Let x0 := gw0 ⋆ yi. // Start walk W
(i)

for randomized instance yi.
5 for j = 1, . . . , 2t/m // 2t/m-step walk.

6 do

7 Let xj := gh(xj−1) ⋆ xj−1 ∈ X and wj := h(xj−1) +wj−1 mod Λ.

8 if
(
xj ,w

(ℓ)

t/m

)
∈ L for some ℓ ∈ {1, . . . , s} // Endpoint in L?

9 then

10 return vi := w
(ℓ)

t/m −wj mod Λ

11 return FAIL

Thus, the i-th instance yi can be solved with probability at least

P

[
E(i) ∩

(
X ≥

st

2m

)]
≥

st2

8m2N
= Ω

(
st2

8m2N

)
.

Assume that we choose our parameters such that st2 = Ω(m2N). Then
Theorem 2 guarantees constant success probability of Online-mult-GA-dlog

for each GA-dlog instance yi = gvi ⋆ x using a single online walk W
(i)
. In

other words, after running all online walks W
(1)

, . . . ,W
(m)

once, we have already
solved a constant fraction of all GA-dlogs. We then iterate only with online walks
for unsolved instances, until we eventually solve all GA-dlogs.

The resulting algorithm All-GA-Dlogs is provided as Algorithm 5.

Algorithm 5: All-GA-dlogs

Input: (g, x, y1 = gv1 ⋆ x, . . . , ym = gvm ⋆ x) ∈ Gn ×Xm+1, N := |G|,
basis of Λ ⊆ Zn, hint L ∈ (X × Zn/Λ)s, m, t, PRF h : X → Zn/Λ

Output: all GA-dlog v1, . . . ,vm ∈ Zn/Λ
1 Let Y := {y1, . . . , ym}. // Set of unsolved instances.

2 while Y ̸= ∅ do
3 Y ′ ← Online-Mult-GA-Dlog(g, x, Y,N,B(Λ),L,m, t, h)
4 return Y ′. // Output solved instances.

5 Y := Y \ Y ′. // Remove solved instances.

16 Alexander May and Massimo Ostuzzi

Theorem 3. Let (G,X , ⋆) be a regular group action with N = |G| = |X |, and
let yi = gvi ⋆ x, 1 ≤ i ≤ m be GA-dlog instances. For any choice s, t ∈ N
with 4st2 ≤ m2N and st2 = Ω(m2N), Precompute-Mult-GA (Algorithm 3)
precomputes within st/m steps a hint L of size Õ(s). Using L, All-GA-dlogs
(Algorithm 5) outputs all GA-dlogs v1, . . . ,vm in an expected number of O(t)
steps.

Proof. Let Tj be the total number of steps in all random walks in the j-th
application of Online-Mult-GA-dlog, and let T =

∑
j≥1 Tj denote the total

number of steps of All-GA-dlogs.
By our parameter choice st2 = Ω(m2N) and Theorem 2, in the first iteration

of the while-loop Online-Mult-GA-dlog solves each single GA-dlog instance

yi within T1 = O(t) steps with probability Ω
(

st2

m2N

)
= Ω(1). Let Xi be an

indicator random variable for the event that instance yi remains unsolved after
the first iteration of the while-loop of algorithm All-GA-dlogs. Thus, there
exists a positive constant 0 < c < 1, such that P[Xi = 0] ≥ c.

Let X = X1 + . . . +Xm denote the amount of unsolved instances after the
first execution of the while-loop. Then, we have E[X] ≤ (1 − c)m. That is,
in the second iteration of the while-loop we expect at most a (1 − c)-fraction
of unsolved instances. Notice that during the second application of Online-
Mult-GA-dlog we start an expected E[|Y |] = E[X] ≤ (1− c)m random walks
of length (still) 2t/m. Hence, the expected number of steps during the second
iteration is

E[T2] ≤ E

[
2t

m
X

]
=

2t

m
E[X] =

2t

m
(1− c)m = O((1− c)t).

In general, we obtain E[Tj] = O((1− c)j−1t). Thus, the expected total number
of steps is

E[T] =
∑
j≥1

E[Tj] = O

t ·
∑
j≥0

(1− c)j

 = O

(
t

c

)
= O(t).

5 Solving Multiple GA-dlogs (without Precomputation)

Interestingly, our multi-instance GA-dlog algorithms Precompute-mult-GA
(Algorithm 3), Online-mult-GA-dlog (Algorithm 4) and All-GA-dlog (Al-
gorithm 5) also provide a solution to the multi-instance GA-dlog problem without
precomputation.

Let y1 = gv1 ⋆ x, . . . , ym = gvm ⋆ x be m GA-dlog instances. Now apply
Theorem 2 with the parameter choice s = m and t = 1

2

√
mN . We obtain the

following corollary.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 17

Corollary 1. Let (G,X , ⋆) be a regular group action with N = |G| = |X |, and
let yi = gvi ⋆ x, 1 ≤ i ≤ m be GA-dlog instances. Then Precompute-Mult-
GA (Algorithm 3) precomputes within t = O(

√
mN) steps a hint L of size

Õ(s) = Õ(m). Using L, Online-Mult-GA-dlog (Algorithm 4) runs in a total
of O(t) = O(

√
mN) steps, and solves each GA-dlog instance yi with constant

success probability.

Notice that our parameter choice balances the run times of the precom-
putation phase and the online phase. Thus, we can rewrite Corollary 1 more
compactly as follows.

Corollary 2. Let (G,X , ⋆) be a regular group action with N = |G| = |X |, and
let yi = gvi ⋆ x, 1 ≤ i ≤ m be GA-dlog instances. Then one can solve each
GA-dlog yi with constant success probability within a total of O(

√
mN) steps.

Using the technique of Algorithm 5 and Theorem 3, one obtains the following
result.

Corollary 3. Let (G,X , ⋆) be a regular group action with N = |G| = |X |, and
let yi = gvi ⋆x, 1 ≤ i ≤ m be GA-dlog instances. Then one can solve all GA-dlog
yi within an expected total of O(

√
mN) steps.

Multiple GA-dlog Algorithm. Our algorithm behind Corollary 2 computes
in a first phase (previously: precomputation) m instance-independent walks
W (1), . . . ,W (m). In a second phase (previously: online), we let all instance-

dependent walks W
(i)
, 1 ≤ i ≤ m collide into the walks W (1), . . . ,W (m), thereby

solving all GA-dlog instances yi.

Intuition of the Achieved
√
m Speedup. The GHS algorithm can be con-

sidered a special case of our aforementioned multiple GA-dlog algorithm with
m = 1. The GHS algorithm lets some instance-independent walk W (1) of length√
N collide with an instance-dependent walk of length

√
N . Since both walks

have length
√
N we have (

√
N)2 pairs of elements in X that can potentially

collide, resulting in constant success probability.
Moreover, our multiple GA-dlog algorithm can be considered as running m

copies of GHS simultaneously. So why do we actually achieve run time O(
√
mN)?

And why do we achieve a
√
m speedup over the naive O(m

√
N)?

Indeed, running m independent copies of GHS gives us run time O(m
√
N).

Our speedup comes from the simultaneous instantiation. After the first phase, we
have m walks W (1), . . . ,W (m), each of length t/m, visiting a total of (roughly)

m · t
m = t elements. For any instance yi, it suffices that its walk W

(i)
with length

roughly t/m collides into any of these m walks. This happens with constant
probability if the product of visited elements in X in all instance-independent
walks with the instance-dependent walk length roughly equals N . More precisely,
we require (

m · t

m

)
· t

m
= Θ(N).

18 Alexander May and Massimo Ostuzzi

Solving for run time t yields t = Θ(
√
mN).

6 Classical Multiple Dlogs (without Precomputation)

The algorithm underlying Corollary 2 also applies in the classical multi-instance
dlog setting [8], as well as for other multi-instance settings [13,23].

We provide themulti-instance dlog algorithm for completeness in Algorithm 6,
since this setting is of great importance in cryptography. The algorithm is ap-
pealingly simple and allows for a clean analysis.

Algorithm 6: Mult-dlog

Input: (g, y1 = gv1 , . . . , ym = gvm) ∈ Gm+1, N := |G|, PRF h : G→ ZN

Output: all dlogs v1, . . . , vm ∈ ZN

1 L ← ∅
2 for i = 1, . . . ,m // Compute random walks W (1), . . . ,W (m).

3 do

4 Choose a random w
(i)
0 ∈ ZN .

5 Let x
(i)
0 := gw

(i)
0 ∈ G. // Randomized starting point.

6 for j = 1, . . . , t/m // Each walk W (i) has length t/m.

7 do

8 Let x
(i)
j := gh(x

(i)
j−1) · x(i)

j−1 ∈ G and w
(i)
j := h(x

(i)
j−1) + w

(i)
j−1 mod N .

9 L ← L ∪ {(x(i)

t/m, w
(i)

t/m)} // Store endpoint/dlog in L.

10 Sort L by first entry. // Allows for binary search in L.
11 for i = 1, . . . ,m do
12 while instance yi is unsolved do

13 Let w0 ∈R ZN and x0 := gw0 · yi. // Walk W
(i)

for instance yi.
14 for j = 1, . . . , 2t/m // 2t/m-step walk

15 do

16 Let xj := gh(xj−1) · xj−1 ∈ G and wj := h(xj−1) + wj−1 mod N .

17 if
(
xj , w

(ℓ)

t/m

)
∈ L for some ℓ ∈ {1, . . .m} // Endpoint in L?

18 then

19 return vℓ := w
(ℓ)

t/m − wj mod N

Let (G, ·) = ⟨g⟩ be a finite abelian group withN = |G|. Let y1 = gv1 , . . . , ym =
gvm be m dlog instances with vi ∈ ZN . Then Mult-dlog (Algorithm 6) de-
scribes an algorithm for solving all dlog instances.

Theorem 4. Let (G, ·) = ⟨g⟩ be an abelian group with order N = |G|, and let
yi = gvi , 1 ≤ i ≤ m be dlog instances. Then Mult-dlog (Algorithm 6) outputs
within an expected O(

√
mN) steps all dlogs vi ∈ Zn.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 19

Proof. The proof is a special case of the proofs of Theorem 2 and Theorem 3
with the parameter choice s = m and t = 1

2

√
mN . Theorem 2 guarantees for

this parameter choice for every dlog instance yi constant success probability
c = Ω(1). Therefore, we solve every instance yi after an expected 1

c = O(1)

re-randomized runs of W
(i)
.

7 Experimental Results for CSIDH

In this section, we instantiate our precomputation algorithm from Section 3 for
the prominent group action based post-quantum scheme CSIDH.

Recall that, by Definition 1, for a group G and a set X a group action is
given by a mapping ⋆ : G × X → X . Moreover, a group action is called regular
if X = {g ⋆ x | g ∈ G} and |X | = |G|. In order to instantiate our algorithms, we
first need to define (G,X , ⋆) for CSIDH.

The Group G in CSIDH. Let E be an elliptic curve defined over Fp, for some
prime number p ≥ 5, and let O denote the Fp-rational endomorphism ring of
E. We say that E is supersingular if it satisfies |E(Fp)| = p+ 1. We choose the
prime p such that p+ 1 = 4 ·

∏n
i=1 ℓi, where ℓ1 < . . . < ℓn are small odd primes

and ℓ1 = 3. This property ensures that the ideal ℓiO splits as the product of
two prime ideals li and li, namely ℓiO = lili. Moreover, let us denote by Cl(O)
the class group of O, and by [a] ∈ Cl(O) the equivalence class of a in Cl(O), see
[10] for details.

We now define the (sub)group G = ⟨g⟩ ⊆ Cl(O), where g = {[l1], . . . , [ln]}.
According to a heuristic from [30], for a given prime p of this form, the size of
the group G is approximately N ≈ p1/2.

The Set X and the Action ⋆ in CSIDH. Up to isomorphism, every super-
singular elliptic curve over Fp is defined by an equation

Y 2 = X3 +AX2 +X,

where A ∈ Fp is called Montgomery coefficient. As shown in [5], supersingular
elliptic curves can be uniquely represented (up to isomorphism) by their Mont-
gomery coefficient A. Let M ⊆ Fp be the set of all Montgomery coefficients of
supersingular curves over Fp. By our choice of the prime p, we have that the
curve with equation Y 2 = X3 +X is supersingular with Montgomery coefficient
A = 0 ∈ M. We define x = 0 ∈ M as the origin of X .

It is known that the class group Cl(O) acts regularly on M, see [12,31].
Let us denote this action by ⋆ : Cl(O) × M → M, and let us define the set
X = {g ⋆ x | g ∈ G}. This implies regularity of the action ⋆ : G × X → X
restricted to G ⊆ Cl(O) and X ⊆ M ⊆ Fp.

We now have a well-defined regular group action (G,X , ⋆) with origin x = 0
and generators g = {[l1], . . . , [ln]}. As in Definition 2, we have representations
for the group G, namely for v = (v1, . . . , vn) ∈ Zn we denote gv =

∏n
i=1[li]

v1 .

20 Alexander May and Massimo Ostuzzi

Admissible Representations. Let v ∈ Zn be a representation. The complex-
ity for evaluating the action of the group element gv scales proportionally with
||v||1, see [1,33]. Therefore, only group elements with small 1-norm representa-
tion can be efficiently computed via the action. For this reason, CSIDH only uses
representations within the set R = {−d, ..., d}n, for some integer d ∈ N, see [5].
We say that a representation v is admissible if v ∈ R. In practice, CSIDH
parameters require the inequality (2d + 1)n ≥ N to ensure that {−d, ..., d}n
properly covers a large portion of G. The smallest d satisfying this inequality is

d =
⌈

n√
N−1
2

⌉
.

Algorithm 7: CSIDH ha,b

Input: Montgomery coefficient A ∈ X ⊆ Fp, a, b ∈ Fp, p, d, n ∈ N
Output: admissible CSIDH representation v ∈ Zn

2d+1

1 Let y := aA+ b mod p. // Re-randomize A.

2 Expand y in base (2d+ 1) as y =
∑2n−1

i=0 yi(2d+ 1)i with yi ∈ Z2d+1.
3 for i = 0, . . . , n− 1 do
4 Let vi := yi − yi+n mod 2d+ 1.

5 return v = (v1, . . . , vn) ∈ Zn
2d+1

Instantiating a Random Function for CSIDH. Let us identify {−d, . . . , d}
with Z2d+1. For instantiating our algorithm from Section 3 in the CSIDH setting
we need a function h : X → Zn

2d+1, where X ⊆ Fp and p
1
2 ≈ N = |X | ≤ (2d+1)n.

We provide our function ha,b in Algorithm 7 for some a, b ∈ Fp chosen uni-
formly at random. The purpose of a, b is to re-randomize elements from X in
Fp. Clearly, our function is not a PRF in the cryptographic sense, but our ex-
periments indicate that its randomness properties are sufficient for practical
purposes.

Experiments. We implemented our GA-dlog algorithms Precompute-GA
(Algorithm 1) and Online-GA-dlog (Algorithm 2) from Section 3 together
with the function ha,b (Algorithm 7). Our code is available at https://github.
com/maxostuzzi/precomputation_attack.

In our implementation, we slightly deviate from the description of Online-
GA-dlog by restarting an online walk with a re-randomized starting point if it
fails to collide into an endpoint after 2t steps, see also Remark 1 and Algorithm 6.
Our algorithms are instantiated with the parameter choice s, t = N

1
3 .

We applied our algorithm Online-GA-Dlog on ten different primes p. For
each prime p, we ran ten GA-dlog instances y1, . . . , y10, until all of them were
successfully solved. In Table 1, we list our CSIDH primes p with their respective
small odd primes ℓi, where p+ 1 = 4

∏
i ℓi.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491
https://github.com/maxostuzzi/precomputation_attack
https://github.com/maxostuzzi/precomputation_attack

Multiple Group Action Dlogs with(out) Precomputation 21

Table 1: CSIDH instances and average number of random walk.

p ℓi small odd primes # of runs

1019 3, 5, 17 1.3

78539 3, 5, 7, 11, 17 1.0

1021019 3, 5, 7, 11, 13, 17 1.2

19399379 3, 5, 7, 11, 13, 17, 19 1.0

1450388939 3, 5, 7, 11, 13, 19, 31, 41 1.0

53664390779 3, 5, 7, 11, 13, 19, 31, 37, 41 1.0

8575569646643 3, 7, 11, 13, 17, 19, 31, 37, 41, 47 1.1

454505191272131 3, 7, 11, 13, 17, 19, 31, 37, 41, 47, 53 1.2

26815806285055787 3, 7, 11, 13, 17, 19, 31, 37, 41, 47, 53, 59 1.1

138624083338000259 3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 47, 53, 61 1.1

For every prime p, we measured the number of random walks of length 2t
we had to perform for y1, . . . , y10, and then averaged the number over all 10
instances.

From Table 1, we see that all averages are close to 1. In fact, out of our total
of 100 solved instances, 91 were solved by running a single 2t-step random walk,
indicating a large success probability per random walk. Our experiments also
clearly show that our function ha,b (Algorithm 7) provides sufficient randomness
in practice.

Fig. 3: Performance of Online-GA-dlog on CSIDH.
For every of our 10 choices for p, we average the number
of steps over 10 solved instances.

22 Alexander May and Massimo Ostuzzi

Figure 3 shows the logarithm of the number of steps (as a function of logN =
1
2 log p) that Online-GA-dlog performed until it successfully recovered a GA-
dlog, including potential restarts of a walk.

Again, for every p we averaged the number of steps over all 10 solved in-
stances. Despite the re-randomization, which clearly increases the number of
steps in the online phase, the slope of the fitting line for our experiments is 0.33,
as expected.

Disclosure of Interests. The authors have no competing interests.

Acknowledgments. Alexander May is supported by DFG under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972. Massimo Ostuzzi is part
of the Quantum-Safe Internet (QSI) ITN, which received funding from the Eu-
ropean Union’s Horizon-Europe programme as Marie Sklodowska-Curie Action
(PROJECT 101072637 - HORIZON - MSCA-2021-DN-01). The authors would
like to thank Steven Galbraith and the anonymous reviewers for helpful com-
ments.

References

1. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. pp. 317–
338 (2012). https://doi.org/10.1007/978-3-642-34931-7_19

2. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based
signatures through class group computations. pp. 227–247 (2019). https://doi.
org/10.1007/978-3-030-34578-5_9

3. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. pp. 493–
522 (2020). https://doi.org/10.1007/978-3-030-45724-2_17

4. Brassard, G., Yung, M.: One-way group actions. pp. 94–107 (1991). https://doi.
org/10.1007/3-540-38424-3_7

5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient
post-quantum commutative group action. pp. 395–427 (2018). https://doi.org/
10.1007/978-3-030-03332-3_15

6. Chávez-Saab, J., Chi-Domı́nguez, J.J., Jaques, S., Rodŕıguez-Henŕıquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low ex-
ponents. Journal of Cryptographic Engineering 12(3), 349–368 (2022)

7. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014)

8. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. pp. 415–447 (2018). https://doi.org/10.1007/978-3-319-78375-8_14

9. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

10. Cox, D.A.: Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex
Multiplication with Solutions, vol. 387. American Mathematical Soc. (2022)

11. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from
ordinary isogeny graphs. pp. 365–394 (2018). https://doi.org/10.1007/

978-3-030-03332-3_14

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491
https://doi.org/10.1007/978-3-642-34931-7_19
https://doi.org/10.1007/978-3-642-34931-7_19
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14

Multiple Group Action Dlogs with(out) Precomputation 23

12. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular el-
liptic curves over Fp 78(2), 425–440 (2016). https://doi.org/10.1007/

s10623-014-0010-1

13. Fouque, P.A., Joux, A., Mavromati, C.: Multi-user collisions: Applications to
discrete logarithm, Even-Mansour and PRINCE. pp. 420–438 (2014). https:

//doi.org/10.1007/978-3-662-45611-8_22

14. Galbraith, S., Stolbunov, A.: Improved algorithm for the isogeny problem for ordi-
nary elliptic curves. Applicable Algebra in Engineering, Communication and Com-
puting 24(2), 107–131 (2013)

15. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil descent attack.
pp. 29–44 (2002). https://doi.org/10.1007/3-540-46035-7_3

16. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. Journal of the American mathematical society 2(4), 837–850 (1989)

17. Hallgren, S.: Fast quantum algorithms for computing the unit group and class
group of a number field. In: Proceedings of the thirty-seventh annual ACM sym-
posium on Theory of computing. pp. 468–474 (2005)

18. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your ps and
qs: Detection of widespread weak keys in network devices. pp. 205–220 (2012)

19. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V.,
Urbanik, D., Pereira, G., Karabina, K., Hutchinson, A.: SIKE. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.

gov/Projects/post-quantum-cryptography/round-4-submissions

20. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. pp. 19–34 (2011). https://doi.org/10.1007/

978-3-642-25405-5_2

21. Kuhn, F., Struik, R.: Random walks revisited: Extensions of Pollard’s rho al-
gorithm for computing multiple discrete logarithms. pp. 212–229 (2001). https:
//doi.org/10.1007/3-540-45537-X_17

22. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing 35(1), 170–188 (2005)

23. May, A., Zweydinger, F.: Legendre PRF (multiple) key attacks and the power
of preprocessing. pp. 428–438 (2022). https://doi.org/10.1109/CSF54842.2022.
9919640

24. Panny, L., Petit, C., Stopar, M.: KLaPoTi: An asymptotically efficient isogeny
group action from 2-dimensional isogenies. Cryptology ePrint Archive, Paper
2024/1844 (2024), https://eprint.iacr.org/2024/1844

25. Peikert, C.: He gives C-sieves on the CSIDH. pp. 463–492 (2020). https://doi.
org/10.1007/978-3-030-45724-2_16

26. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance. IEEE Transactions on Information The-
ory 24(1), 106–110 (1978)

27. Pollard, J.M.: Monte Carlo methods for index computation. Mathematics of com-
putation 32(143), 918–924 (1978)

28. Schoof, R.: Counting points on elliptic curves over finite fields. Journal de théorie
des nombres de Bordeaux 7(1), 219–254 (1995)

29. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

30. Siegel, C.: Über die Classenzahl quadratischer Zahlkörper. Acta Arithmetica 1(1),
83–86 (1935)

https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/3-540-46035-7_3
https://doi.org/10.1007/3-540-46035-7_3
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1109/CSF54842.2022.9919640
https://doi.org/10.1109/CSF54842.2022.9919640
https://doi.org/10.1109/CSF54842.2022.9919640
https://doi.org/10.1109/CSF54842.2022.9919640
https://eprint.iacr.org/2024/1844
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

24 Alexander May and Massimo Ostuzzi

31. Silverman, J.H.: Advanced topics in the arithmetic of elliptic curves, vol. 151.
Springer Science & Business Media (1994)

32. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

33. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des
Sciences 273, 238–241 (1971)

34. Yun, A.: Generic hardness of the multiple discrete logarithm problem. pp. 817–836
(2015). https://doi.org/10.1007/978-3-662-46803-6_27

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491
https://doi.org/10.1007/978-3-662-46803-6_27
https://doi.org/10.1007/978-3-662-46803-6_27

	Multiple Group Action Dlogs with(out) Precomputation

