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Abstract—Securely sharing confidential data over a distributed
ledger with a fully decentralized and efficient access-control
mechanism is a non-trivial challenge to solve. Current blockchain
systems either do not support such a functionality or fall back to
semi-centralized solutions that provide storage and access control
for sensitive data off-chain. In this work we present CALYPSO,
the first fully decentralized, auditable access-control framework
for secure blockchain-based data sharing which builds upon two
abstractions. First, on-chain secrets enable collective management
of (verifiably shared) secrets under a Byzantine adversary where
an access-control blockchain enforces user-specific access rules
and a secret-management cothority administrates encrypted data.
Second, skipchain-based identity and access management enables
efficient administration of dynamic, sovereign identities and
access policies and, in particular, permits clients to maintain long-
term relationships with respect to evolving user identities thanks
to the trust-delegating forward links of skipchains. The evaluation
of our CALYPSO implementation shows that the latency for pro-
cessing read and write requests scales linearly with the number
of secret-management trustees and is in the range of 0.2 to 8
seconds for 16 to 128 trustees. Lastly, three specific deployments
of CALYPSO illustrate its feasibility and applicability to data-
sharing problems faced by real-world organizations.

I. INTRODUCTION

The massive aggregation of user-generated data by central-
ized service providers combined with the lack of mechanisms
for users to audit and control the usage of their data presents
a continuous threat to the privacy of billions [55]. This threat
can turn into concrete perils for democracy itself as illustrated
by the Facebook scandal [33], where Cambridge Analytica
allegedly exploited personally identifiable information from
millions of Facebook users to influence voter opinion in the
2016 US presidential election. New data privacy legislation,
such as the European Union General Data Protection Regu-
lation (GDPR) [10], is an important step towards addressing
data abuses, however, it needs to be complemented by modern
technological solutions that put users back into control.

Decentralized trust technologies have gained significant
traction due to the success of cryptocurrencies such as Bit-
coin [39] and Ethereum [56]. While they present a promising
path forward to address the above data sharing challenges, they
are not without issues. Blockchain-based applications [34],
[42], [51], [57] often assume a shared access to sensitive
data between independent and mutually distrustful parties
but unfortunately fail to manage private data securely over
the blockchain. These applications either ignore the problem
altogether [24], [58], fall back to naive solutions [15] of
simply publishing encrypted data on Bitcoin, or utilize semi-
centralized approaches [3], [20], [59], where access informa-

Fig. 1. Private, auditable data sharing in CALYPSO: (1) Wanda encrypts data
under the secret-management cothority’s key, specifying Ron as the authorized
reader in the policy, and sends it to the access-control cothority which verifies
and logs the information. (2) Ron downloads the encrypted secret from the
blockchain and then requests access to it from the access-control cothority
which logs the query if valid. (3) Ron asks the secret-management cothority
for the secret shares of the key needed to decrypt the secret by proving that
the previous authorization was successful. (4) Ron decrypts the secret.

tion and hashes of the data are put on-chain but the secret
data itself is not only stored but also managed off-chain in
centralized or distributed storage [50] systems, creating single
points of compromise or failure.

From these observations, we identified the following key
challenges that a secure blockchain-based data sharing system
with access-control support should address: (1) Enable data
owners to share and maintain control over their data and, in
particular, enable them to update access-control rules, e.g.,
to add or revoke access rights, retroactively. (2) Provide
auditability of all data accesses, e.g., to be able to hold
misbehaving users accountable. (3) Allow users to update their
identities without losing access to already shared data. (4)
Ensure atomic execution of data access requests as well as
identities and access rights updates, e.g., to prevent participants
from exploiting race conditions to gain unauthorized access
to confidential data. (5) Support efficient data sharing with
individual users and groups of users. (6) Prevent any single
point of compromise or failure in the system.

In this paper we introduce CALYPSO, a new secure
blockchain-based data sharing framework with access-control
support that addresses the above challenges. Figure 1 provides
an overview of CALYPSO which consists of two main com-
ponents called on-chain secrets (OCS) and skipchain-based
identity and access (control) management (SIAM).



On-chain secrets combine threshold cryptography [45], [47],
[49] and blockchain technology [28], [56] to enable clients
to securely share their encrypted data and the corresponding
access-control policies with collective authorities (cothorities)
responsible for enforcing access-control policies and deliv-
ering data to authorized readers. When a reader requests
access to an on-chain secret, he provides a cryptographic
authorization proof. CALYPSO atomically logs both request
and proof to guarantee auditability and then delivers the
information necessary for the reader to access the secret. We
present two specific implementations of on-chain secrets, one-
time secrets and long-term secrets, which have different trade-
offs with respect to computational and storage overheads as
well as the functionality they provide. Finally, we present two
extensions to on-chain secrets that ensure user anonymity and
provide post-quantum security, respectively.

Skipchain-based identity and access management supports
both personal and federated identities and fine-grained re-
source access policies. It enables users to verifiably update
their identities (public keys) and to efficiently share secrets
even with large groups of people under custom rules with-
out the need to create individual transactions. SIAM uses
skipchains [40] to securely and efficiently enable dynamic
identity and policy updates and revocation. Lastly, SIAM
protects against race conditions by serializing identity and
policy updates with data access requests over the blockchain.

To evaluate CALYPSO, we implemented a prototype in Go
and ran experiments on commodity servers. We implemented
both versions of on-chain secrets and show that they have a
moderate overhead of 0.2 to 8 seconds for cothorities of 16
and 128 trustees, respectively, overall scaling linearly in the
number of trustees in the cothorities. We also implemented
SIAM and show that the overheads of dynamic identities and
access policies are negligible compared to the static versions.
Finally, we also discuss several deployments of CALYPSO that
address the data sharing needs of real-world organizations.

In summary, this paper makes the following contributions.
• We introduce CALYPSO, a decentralized framework for

auditable access control of protected resources over a
distributed ledger that maintains confidentiality of the
shared data and enables participants to update access rules
for their resources even after they have been released.

• We present on-chain secrets and its two concrete imple-
mentations, one-time and long-term secrets, that enable
fully transparent and efficient management of secret data
over a blockchain via threshold cryptography.

• We introduce skipchain-based identity and access man-
agement for third-party verifiable, dynamic and sovereign
identities and updateable access policies.

• We demonstrate the feasibility of using CALYPSO to
address the data sharing needs of actual organizations
by presenting three concrete deployments, auditable in-
voice issuing, clearance-enforcing document sharing, and
patient-centric medical data sharing. We also provide an
open-source implementation and evaluation results.

II. BACKGROUND

A. Blockchains and Skipchains

A blockchain is a distributed, append-only and tamper-
evident log that is composed of blocks which are joined
together via cryptographic hashes. Blockchains are used in
many decentralized applications [7], [39]. CALYPSO can be
deployed on top of any blockchain that supports programma-
bility (e.g., smart contracts [2], [54], [56]) which enables us
to perform custom validation of transactions before logging.

In Section V, we introduce identity skipchains which are
based on the skipchains data structure [40] that is similar to a
simple blockchain but doubly-linked. Skipchains (Figure 3)
track configuration changes of a well-known decentralized
authority (a cothority [53]) by using every block as a rep-
resentation of all public keys of the cothority necessary to
authenticate the next block. When the cothority wants to alter
its configuration, it creates a new block that includes the new
set of public keys and signs it with the old set of public keys
delegating the authority to the new set. This signature is a
forward link [27] which clients follow through the skipchain
to get up-to-date with the current authoritative group.

B. Threshold Cryptosystems

A (t, n)-secret sharing scheme [4], [47] enables a dealer
to share a secret s among n trustees such that any subset of
t trustees can reconstruct s, whereas smaller subsets cannot.
Hence, the sharing scheme can withstand up to t−1 malicious
participants. The downside of simple secret sharing schemes
is that they assume an honest dealer. Verifiable secret sharing
(VSS) [12] solves the problem by enabling the trustees to
verify that the shares distributed by the dealer are consistent.
VSS has a wide range of applications such as threshold signing
and threshold encryption, described below. Finally, publicly
verifiable secret sharing (PVSS) [45] is a variation of VSS that
enables any external third-party to verify distributed shares.

Once we are able to securely share and hold a collective
secret, we can construct more complex systems out of it.
A distributed key generation (DKG) [16] protocol allows
to create a collective public-private key pair without any
dependence on a trusted dealer. Each trustee runs their own
secret sharing protocol in parallel to contribute their own secret
towards the key pair. The trustees validate each run, reach a
consensus on validly shared secrets, and finally combine all
shares to generate a private-public key pair (sk, gsk) such that
the public key pk = gsk is known to everyone whereas the
private key sk is not known to any single trustee and can only
be used when a threshold of them collaborates.

After the key pair is generated, anyone can encrypt data un-
der the collective public key, for example, by using a threshold
version of ElGamal [9]. For CALYPSO we use this threshold
ElGamal cryptosystem in combination with non-interactive
zero knowledge (NIZK) proofs [36], [49] (see Appendix B)
to protect against chosen ciphertext and malleability attacks.



III. CALYPSO OVERVIEW

In this section we present an overview of CALYPSO. We
start with a strawman solution called SIMPLESHARE to moti-
vate the challenges that any secure, decentralized data sharing
system with access control like CALYPSO should address.
We then outline the system goals that we derive from our
observations about SIMPLESHARE, describe system and threat
models, and finally present a high-level overview on the secret
sharing process in CALYPSO as outlined in Figure 1.

A. Strawman Data Sharing Solution

SIMPLESHARE consists of a tamper-resistant public log,
such as Bitcoin’s blockchain, and a centralized identity
provider, such as a PGP key server. As a motivation, consider
a situation where Wanda wants to asynchronously share some
secret data with Ron, i.e., Wanda and Ron do not have to be
online concurrently for the exchange and to guarantee that the
data is available for Ron to retrieve at any point.

In SIMPLESHARE, Wanda first needs to get Ron’s public
key from Ron’s identity provider (a PGP server), then encrypt
the secret under Ron’s key, and finally post the ciphertext on
the public blockchain to ensure availability. Later on, Ron can
download the ciphertext from the blockchain and decrypt the
data using his private key.

SIMPLESHARE already provides functionality similar to
what we envision for CALYPSO but has several drawbacks. (1)
Once the encrypted data gets published, Wanda loses control
over its access policy, e.g., she cannot revoke access later since
the ciphertext is encrypted under Ron’s public key and publicly
available. (2) Wanda does not know if Ron ever accessed the
data, i.e., there is no accountability of data accesses and hence
Ron has plausible deniability should the data be misused. (3) If
Wanda wants to share the same data with multiple people, she
would need to encrypt it under each individual public key and
publish all resulting ciphertexts. (4) If Ron wants to change his
public key, e.g., if his private key is compromised, he would
lose access to the previously posted ciphertexts unless Wanda
re-publishes the data using Ron’s new key. (5) The identity
provider is a single point of compromise or failure.

To address these issues, we introduce two components to
SIMPLESHARE thereby transforming it into CALYPSO.

1) To enable auditability of data accesses and ensure atomic
data delivery, we introduce on-chain secrets (OCS) in
Section IV.

2) To enable decentralized, dynamic user-sovereign identi-
ties and access policies, we introduce skipchain-based
identity and access management (SIAM) in Section V.

B. System Goals

CALYPSO has the following primary goals.
1) Confidentiality of Secrets: Secrets stored on-chain can

only be decrypted by authorized clients.
2) Auditability: All access transactions are third-party veri-

fiable and recorded in a tamper-resistant log (blockchain).

3) Atomic Data Delivery: A client is guaranteed to receive
a secret they are authorized for if any only if they posted
an access request for that secret on the blockchain.

4) Dynamic Sovereign Identities: Users or organizations
fully control their identities (public keys) and can update
them in a third-party verifiable way.

5) Decentralization: No single point of compromise or
failure.

C. System Model

There are four main entities in CALYPSO: writers who
put secrets on-chain, readers who retrieve secrets, an access-
control collective authority who is responsible for logging
write and read transactions on-chain enforcing access control
for secrets, and a secret-management collective authority who
is responsible for managing and delivering secrets. In the rest
of the paper we use Wanda and Ron to refer to a (generic)
writer and reader, respectively. A collective authority or
cothority is an abstract decentralized entity that is responsible
for some authoritative action. For example, the set of Bitcoin
miners can be considered a cothority that is maintaining the
consistency of Bitcoin’s state. We call the nodes of a cothority
trustees and remark that these nodes do not need to be agreed
upon and individually publicly known.

The access-control cothority requires a Byzantine fault-
tolerant consensus [28], [29], [31], [39]. There are various
ways to implement an access-control cothority, e.g., as a set of
permissioned servers that maintain a blockchain through BFT
consensus or as an access-control enforcing smart contract
on top of a permissionless cryptocurrency such as Ethereum.
In our implementation, see Section VIII, we use BFT-based
consensus due to its performance benefits [28].

The secret-management cothority may be set up on a per-
secret basis or in a more persistent manner, the differences
of which are discussed in Section IV. The secret-management
trustees maintain their private keys and may need to maintain
additional secret state, such as private key shares. They do not
run consensus for every transaction.

We denote private and public key pairs of Wanda and
Ron by (skW , pkW ) and (skR,pkR). Analogously, we write
(ski,pki) to refer to the key pair of trustee i. To denote a list
of elements we use angle brackets, e.g., we write ⟨pki⟩ to refer
to a list of public keys pk1, . . . , pkn. We assume that there is a
registration mechanism through which writers have to register
their public keys pkW with the blockchain before they can
start any secret-sharing processes. We denote an access-control
label by policy, with policy = pkR being the simplest case
where Ron is the only intended reader of Wanda’s secret.

D. Threat Model

We make the usual cryptographic assumptions, namely
that the adversary is computationally bounded, that crypto-
graphically secure hash functions exist, and that there is a
cyclic group G (with generator g) in which the decisional
Diffie-Hellman assumption holds. We assume that participants,



including cothority trustees, verify the signatures of the mes-
sages they receive and process those that are correctly signed.

In the respective cothorities, we denote the total number of
trustees by n and those that are malicious by f . Depending
on the consensus mechanism that is used for the blockchain
underlying the access-control cothority, we either require an
honest majority n = 2f+1 for Nakamoto-style consensus [39]
or n = 3f + 1 for classic BFT consensus [28]. In the secret-
management cothority, we require n = 2f + 1 and set the
threshold to recover a secret to t = f + 1. To ensure a
proper ratio of honest and dishonest trustees, CALYPSO can
use unbiasable publicly verifiable randomness [52] to select
trustees from a larger pool of available nodes.

We emphasize the importance of ensuring consensus on
any transaction included in the blockchain before the trustees
hand out the corresponding inclusion proofs. This is especially
important for Nakamoto-style consensus where forks might
still occur within the last few blocks.

We assume that readers and writers do not trust each other.
We assume that writers encrypt the correct data and share the
correct symmetric key with the secret-management cothority,
as readers can release a protocol transcript and prove the
misbehavior of writers. Conversely, readers might try to get
access to a secret and claim later that they have never received
it. Additionally, writers might try to frame readers by claiming
that they shared a secret although they have never done so.

We guarantee data confidentiality up to the point where an
authorized reader gains access. To maintain confidentiality af-
ter this point, writers may rely on additional privacy-preserving
technologies such as differential privacy [5] or homomorphic
encryption [11]. Combining these techniques with CALYPSO
is beyond the scope of this paper.

E. Architecture Overview

On a high level CALYPSO’s enables Wanda, the writer, to
share a secret with Ron, the reader, under a specific access-
control policy. Figure 1 shows the general steps of sharing
and retrieving secrets. When Wanda wishes to put a secret
on-chain, she prepares an access-control policy, encrypts the
secret and then sends a write transaction (txw) to the access-
control cothority. The access-control cothority verifies and
then logs txw making the secret available for retrieval by
the authorized reader Ron. To request access to a secret,
Ron downloads the secret from the blockchain and then
sends a read transaction (txr) to the access-control cothor-
ity. If Ron is authorized to access the requested secret, the
access-control cothority logs txr. Subsequently, Ron contacts
the secret-management cothority to recover the secret. The
secret-management trustees verify Ron’s request against the
blockchain and then deliver the secret shares of the key needed
to decrypt Wanda’s secret as shared in txw.

IV. ON-CHAIN SECRETS

In this section we introduce two on-chain secrets protocols,
one-time secrets and long-terms secrets. Figure 2 provides an
overview of on-chain secrets. The assumptions listed in the
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Fig. 2. On-chain secrets protocol steps: (1) Write transaction, (2) Read
transaction, (3) Share retrieval, (4) Secret reconstruction.

previous section apply to both protocols. We also present two
protocol extensions: an on-chain blinded key exchange that
allows to conceal the identities of the readers as well as a
post-quantum secure version of on-chain secrets.

One-time secrets uses PVSS and employs a per-secret
secret-management cothority. One-time secrets’ simplicity en-
ables each txw to define a fresh, ad hoc group of secret-
management trustees without any setup or coordination. This
simplicity, however, comes at a price. The txw size and the
encryption/decryption overhead are linear in the size of the
secret-management cothority because all encrypted shares are
included in the transaction and the number of secret shares is
equal to the size of the secret-management cothority.

Long-term secrets, the second approach to implementing
on-chain secrets, requires the secret-management cothority to
perform a coordinated setup phase to generate a collective key
(DKG) and to maintain a minimal state of their DKG secret
shares. As a result, however, long-term secrets offers a con-
stant encryption overhead and a flexible secret-management
cothority membership through re-sharing the shared key or
re-encrypting existing secrets to a new shared key.

The on-chain private key exchange protocol can be applied
to both on-chain secrets protocols and hide the reader’s identity
by blinding the reader’s public key in the write and read trans-
actions. Lastly, the post-quantum on-chain secrets describe the
modifications needed to achieve post-quantum security.

A. One-Time Secrets

One-time secrets is based on PVSS [45]. Wanda, the writer,
first prepares a secret she wants to share along with a policy
that lists the public key of the intended reader. She then
generates a symmetric encryption key by running PVSS for
the secret-management cothority members, encrypts the secret
with the key she shared and then stores the resulting cipher-
text either on-chain or off-chain. Finally, she sends a write
transaction txw containing the information necessary for the
verification and retrieval of her secret to the access-control
cothority to have it logged. Ron, the reader, creates and sends



to the access-control cothority a read transaction txr for a
specific secret. The trustees check txr against the secret’s
access policy and if Ron is authorized to access the secret,
they log the transaction creating a proof of access. Ron sends
this proof together with the encrypted secret shares from txw
to each secret-management (PVSS) trustee and gets the secret
key shares. Once Ron has received a threshold of valid shares,
he recovers the symmetric key and decrypts the original data.

Write transaction protocol: Wanda, the writer and each
trustee of the access-control cothority perform the following
protocol to log the write transaction txw on the blockchain.
Wanda initiates the protocol as follows.

1) Compute h = H(policy) to map the access-control policy
to a group element h to be used as the base point for the
PVSS polynomial commitments.

2) Choose a secret sharing polynomial s(x) =
∑t−1

j=0 ajx
j

of degree t− 1. The secret to be shared is s = gs(0).
3) For each secret-management trustee i, compute the en-

crypted share ŝi = pk
s(i)
i of the secret s and create the

corresponding NIZK proof πŝi that each share is correctly
encrypted (see Appendix A). Create the polynomial com-
mitments bj = haj , for 0 ≤ j ≤ t− 1.

4) Set k = H(s) as the symmetric key, encrypt the secret
message m to be shared as c = enck(m), and compute
Hc = H(c). Set policy = pkR to designate Ron as the
intended reader of the secret message m.

5) Finally, prepare and sign the write transaction

txw = [⟨ŝi⟩ , ⟨bj⟩ , ⟨πŝi⟩ ,Hc, ⟨pki⟩ ,policy]sigskW

and send it to the access-control cothority.
The access-control cothority then logs the write transaction

on the blockchain as follows.
1) Derive the PVSS base point h = H(policy).
2) Verify each encrypted share ŝi against πŝi using ⟨bj⟩ and

h (see Appendix A). This step guarantees that Wanda
correctly shared the encryption key.

3) If all shares are valid, log txw in block bw.
Read transaction protocol: After the write transaction

has been recorded, Ron needs to log the read transaction txr
through the access-control cothority before he can request the
secret. To do so, Ron performs the following steps.

1) Retrieve the ciphertext c and bw, which stores txw, from
the access-control cothority.

2) Check that H(c) is equal to Hc in txw to ensure that the
ciphertext c of Wanda’s secret has not been altered.

3) Compute Hw = H(txw) as the unique identifier for the
secret that Ron requests access to and determine the proof
πtxw showing that txw has been logged on-chain.

4) Prepare and sign the transaction

txr = [Hw, πtxw
]sigskR

and send it to the access-control cothority.
The access-control cothority then logs the read transaction

on the blockchain as follows.
1) Retrieve txw using Hw and use pkR, as recorded in

policy, to verify the signature on txr.

2) If the signature is valid and Ron is authorized to access
the secret, log txr in block br.

Share retrieval protocol: After the read transaction has
been logged, Ron can recover the secret message m by running
first the share retrieval protocol with the secret-management
cothority to obtain shares of the encryption key used to secure
m. To do so, Ron initiates the protocol as follows.

1) Create and sign a secret-sharing request

reqshare = [txw, txr, πtxr ]sigskR

where πtxr proves that txr has been logged on-chain.
2) Send reqshare to each secret-management trustee to obtain

the decrypted shares.
Each trustee i of the secret-management cothority responds

to Ron’s request as follows.
1) Use pkR in txw to verify the signature of reqshare and

πtxr to check that txr has been logged on-chain.
2) Compute the decrypted share si = (ŝi)

sk−1
i , create a

NIZK proof πsi that the share was decrypted correctly
(see Appendix A), and derive ci = encpkR

(si) to ensure
that only Ron can access it.

3) Create and sign the secret-sharing reply

repshare = [ci, πsi ]sigski

and send it back to Ron.
Secret reconstruction protocol: To recover the secret key

k and decrypt the secret m, Ron performs the following steps.
1) Decrypt each si = decpkR

(ci) and verify it against πsi .
2) If there are at least t valid shares, use Lagrange interpo-

lation to recover s.
3) Recover the encryption key as k = H(s) and use it to de-

crypt the ciphertext c to obtain the message m = deck(c).
Achieving system goals: The one-time secrets protocol

achieves all goals except for dynamic sovereign identities.
Confidentiality of Secrets. The secret message m is en-

crypted under a symmetric key k which is securely secret-
shared using PVSS among the secret-management trustees
such that t = f + 1 shares are required to reconstruct it.
The access-control trustees verify and log on the blockchain
the encrypted secret shares which, based on the properties of
PVSS, do not leak any information about k. After the secret-
management trustees receive a valid request reqshare, they
respond with their secret shares encrypted under the public
key listed in policy from the respective write transaction txw.
Further, a dishonest reader cannot obtain access to someone
else’s secret through a new write transaction that uses a policy
that lists him as the reader but copies secret shares from
another transaction in hopes of having them decrypted by the
secret-management cothority. This is because each transaction
is bound to a specific policy which is used to derive the
base point for the PVSS NIZK consistency proofs. Without
the knowledge of the decrypted secret shares (and the key k),
the malicious reader cannot generate correct proofs and all
transactions without valid proofs are rejected. This means that
only the intended reader obtains a threshold of secret shares
necessary to recover k and then access m.



Auditability. Under the assumption that the access-control
cothority provides Byzantine consensus guarantees, all prop-
erly created read and write transactions are logged by the
access-control cothority on the blockchain. Once a transaction
is logged, anyone can verify this fact and obtain a third-party
verifiable transaction inclusion proof.

Atomic Data Delivery. Once a read transaction txr is logged
by the access-control cothority, the reader can run the share
retrieval protocol with the secret-management cothority. Under
the assumption that n = 2f + 1, the reader receives at least
t = f + 1 shares of the symmetric encryption key k from the
honest trustees. This guarantees that the reader has enough
shares to reconstruct k and access the secret message m using
the secret reconstruction protocol.

Dynamic Sovereign Identities. While all participants main-
tain their own private keys and hence their identities, the
identities used in write transactions cannot be updated without
re-encrypting the secrets and posting new write transactions.

Decentralization. The protocols do not assume a trusted
third party and they tolerate up to t− 1 failures.

Protocol advantages and shortcomings: The one-time
secrets protocol uses existing and proven to be secure building
blocks and its design is simple to implement and analyze.
Further, it does not require a setup phase among the secret-
management members, e.g., to generate a collective private-
public key pair. It also enables the use of a different secret-
management cothority for each secret, without requiring the
servers to maintain any protocol state.

However, one-time secrets has a few shortcomings too. First,
it incurs high PVSS setup and share reconstruction costs as
Wanda needs to evaluate the secret sharing polynomial at n
points, create n encrypted shares and NIZK proofs, along
with t polynomial commitments. Similarly, Ron has to verify
up to n decrypted shares against the NIZK proofs and to
reconstruct the secret on his device. Second, the transaction
size increases linearly with the secret-management cothority
size. Because the secret-management trustees do not store
any per-secret protocol state making them nearly stateless,
the write transaction txw must contain the encrypted shares,
NIZK proofs and the polynomial commitments. Lastly, one-
time secrets does not enable re-encryption of the shares to
another set of trustees, preventing the possibility of moving
shares from one set of secret-management trustees to another.

B. Long-Term Secrets

Long-term secrets address the above limitations through a
dedicated secret-management cothority that persists over a
long period of time and that maintains a collective private-
public key pair used to secure access to the secrets.

After a one-time distributed key generation (DKG) phase
(see Section II for details) performed by the secret-
management cothority, Wanda, the writer, prepares her secret
message, encrypts it with a symmetric key and then encrypts
that key with the shared public key of the secret-management
cothority. As a result, the overhead of encrypting secrets is
constant as each write transaction contains a single ciphertext

instead of individual shares. Ron, the reader, recovers the sym-
metric key by obtaining a threshold of securely blinded shares
of the collective private key and reconstructing the symmetric
key himself or with the help of a trustee he selects. Further-
more, the configuration of the secret-management cothority
can change by re-sharing the shared key or re-encrypting all
the secrets to a new secret-management cothority.

Protocol setup: Before any transactions can be created
and processed, the secret-management cothority needs to run
a DKG protocol to generate a shared private-public key
pair. There exist a number of DKG protocols that are syn-
chronous [16] or asynchronous [25]. Given the rarity of the
setup phase, we assume a pessimistic synchrony assumption
for the DKG (e.g., every message is posted to the access-
control cothority blockchain) and implement the DKG by
Gennaro et al. [16] because of its simplicity and the fact that
it permits a higher threshold of corruptions.

The output of the setup phase is a collective public key
pksmc = gsksmc , where sksmc is the unknown collective private
key. Each server i holds a share of the secret key denoted as
ski and all servers know the public counterpart pki = gski .
The secret key can be reconstructed by combining a threshold
t = f + 1 of the individual shares. We assume that pksmc is
registered on the blockchain of the access-control cothority.

Write transaction protocol: Wanda and each trustee of the
access-control cothority perform the following protocol to log
the write transaction txw on the blockchain. Wanda initiates
the protocol through the following steps.

1) Retrieve the collective public key pksmc of the secret-
management cothority.

2) Choose a symmetric key k and encrypt the secret mes-
sage m to be shared as cm = enck(m) and compute
Hcm = H(cm). Set policy = pkR to designate Ron as
the intended reader of the secret message m.

3) Encrypt k towards pksmc using a threshold variant of the
ElGamal encryption scheme [49]. To do so, embed k as
a point k′ ∈ G, pick a value r uniformly at random,
compute ck = (pkrsmck

′, gr) and create the NIZK proof
πck to guarantee that the ciphertext is correctly formed,
CCA-secure and non-malleable (see Appendix B).

4) Finally, prepare and sign the write transaction

txw = [ck, πck ,Hcm , policy]sigskW

and send it to the access-control cothority.
The access-control cothority then logs the write transaction.

1) Verify the correctness of the ciphertext ck using the NIZK
proof πck .

2) If the check succeeds, log txw in block bw.
Read transaction protocol: After txw has been recorded,

Ron needs to log a read transaction txr through the access-
control cothority before he can request the decryption key
shares. To do so, Ron performs the following steps.

1) Retrieve the ciphertext cm and the block bw, which stores
txw, from the access-control cothority.

2) Check that H(cm) is equal to Hcm in txw to ensure that
the ciphertext cm of Wanda’s secret has not been altered.



3) Compute Hw = H(txw) as the unique identifier for the
secret that Ron requests access to and determine the proof
πtxw showing that txw has been logged on-chain.

4) Prepare and sign the read transaction

txr = [Hw, πtxw ]sigskR

and send it to the access-control cothority.
The access-control cothority then logs txr as follows.

1) Retrieve txw using Hw and use pkR, as recorded in
policy, to verify the signature on txr.

2) If the signature is valid and Ron is authorized to access
the secret, log txr in block br.

Share retrieval protocol: After the read transaction has
been logged, Ron can recover the secret data by running the
share retrieval protocol with the secret-management cothority.
To do so Ron initiates the protocol as follows.

1) Create and sign a secret-sharing request

reqshare = [txw, txr, πtxr ]sigskR

where πtxr proves that txr has been logged on-chain.
2) Send reqshare to each secret-management trustee to re-

quest the blinded shares.
Each trustee i of the secret-management cothority responds

to Ron’s request as follows.
1) Get gr and pkR from txw and prepare a blinded share

ui = (gr pkR)
ski with a NIZK correctness proof πui .

2) Create and sign the secret-sharing reply

repshare = [ui, πui
]sigski

and send it back to Ron.
Secret reconstruction protocol: To retrieve the decryption

key k and recover the secret m, Ron performs as follows.
1) Wait to receive at least t valid shares ui = g(r+skR)ski =

gr
′ski and then use Lagrange interpolation to recover the

blinded decryption key

pkr
′

smc =
t∏

k=0

(gr
′ski)λi ,

where λi is the ith Lagrange element.
2) Unblind pkr

′

smc to get the decryption key pkrsmc for ck via

(pkr
′

smc)(pk
skR
smc)

−1 = (pkrsmc)(pk
skR
smc)(pk

skR
smc)

−1

3) Retrieve the encoded symmetric key k′ from ck via

(ck)(pk
r
smc)

−1 = (pkrsmck
′)(pkrsmc)

−1,

decode it to k, and finally recover m = deck(cm).
Ron may delegate the costly verification and combination

of shares to a trustee, i.e., the first step of the above protocol.
The trustee is assumed to be honest-but-curious and to not
DoS Ron. The trustee cannot access the secret, as he does not
know skR and hence cannot unblind pkr

′

smc. Ron can detect if
the trustee carries out the recovery incorrectly.

Evolution of the secret-management cothority: The
secret-management cothority is expected to persist over a long
period of time and to remain secure and available. However,
a number of issues can arise over its lifetime. First, servers
can join and leave the cothority resulting in churn. Second,
even if the secret-management cothority membership remains
static, the private shares of the servers should be regularly
(e.g., every month) refreshed to thwart an attacker who can
attempt to collect a threshold of shares over a period of time.
Lastly, the collective private key of the secret-management
cothority should be rotated periodically e.g., once every year
or two. Any change of the current collective private-public key
pair would require re-encrypting all of the long-lived secrets,
however, if done by simply choosing a new key pair.

We address the first two problems by periodically re-
sharing [19] the existing collective public key when a server
joins or leaves the secret-management cothority, or when
servers wants to refresh their private key shares. Lastly, when
the secret-management cothority wants to rotate the collective
public/private key pair (pksmc, sksmc), CALYPSO needs to
collectively re-encrypt each individual secret under the new
collective public key. To achieve this, we can generate and
use translation certificates [23] such that the secrets can be re-
encrypted without the involvement of their writers and without
exposing the underlying secrets to any of the servers.

Achieving system goals: Long-term secrets achieves its
goals similarly to one-time secrets with these differences.

Confidentiality of Secrets. In long-term secrets, the secret
message m is encrypted under a symmetric key k which is
subsequently encrypted under a collective public key of the
secret-management cothority such that at least t = f + 1
trustees must cooperate to decrypt it. The ciphertext is bound
to a specific policy through the use of NIZK proofs [49] so it
cannot be reposted in a new write transaction with a malicious
reader listed in its policy. The access-control trustees log the
write transaction txw that includes the encrypted key which,
based on the properties of the encryption scheme, does not
leak any information about k. After the secret-management
trustees receive a valid request reqshare, they respond with the
blinded shares of the collective private key encrypted under
the public key in policy from the respective txw. Based on
the properties of the DKG protocol, the collective private key
is never known to any single entity and can only be used if t
trustees cooperate. This means, only the intended reader gets a
threshold of secret shares necessary to recover k and access m.

C. On-chain Blinded Key Exchange

In both on-chain secrets protocols, Wanda includes the
public key of Ron in a secret’s policy to mark him as the
authorized reader. Once Wanda’s write transaction is logged,
everyone knows that she has shared a secret with Ron and
correspondingly, once his read transaction is logged, everyone
knows that he has obtained the secret. While this property is
desirable for many deployment scenarios we envision, certain
application may benefit from concealing the reader’s identity.
See Section VII for a discussion of CALYPSO’s deployment.



We introduce an on-chain blinded key exchange protocol,
an extension that can be applied to both on-chain secrets pro-
tocols. This protocol allows the writer to conceal the intended
reader’s identity in the write transaction and to generate a
blinded public key for the reader to use in his read transaction.
The corresponding private key can only be calculated by the
reader and the signature under this private key is sufficient for
the writer to prove that the intended reader created the read
transaction. The protocol works as follows.

1) Public Key Blinding. Wanda generates a random blinding
factor b and uses it to calculate a blinded version of Ron’s
public key pkR̃ = pkbR = gb skR .

2) Write Transaction. Wanda follows either the one-time
secrets or long-term secrets protocol to create txw with
the following modifications. Wanda encrypts b under
pkR to enable Ron to calculate the blinded version of
his public key by picking a random number b′ and
encrypting b as (cb1 , cb2) = (gskR b′b, gb

′
). Then, she

uses pkR̃ instead of pkR in the policy. Wanda includes
cb = (cb1 , cb2) and policy in txw. After txw is logged, she
notifies Ron on a separate, secure channel that she posted
txw such that he knows which transaction to retrieve.

3) Read Transaction. When Ron wants to read Wanda’s
secret, he first decrypts cb using skR to retrieve b =
(cb1)(c

skR

b2
)−1 = (gskR b′b)(gb

′skR)−1. Then, he can com-
pute skR̃ = b skR and use this blinded private key to
anonymously sign his txr.

4) Auditing. If Wanda wants to prove that Ron generated
the txr, she can release b. Then, anyone can unblind
Ron’s public key pkR = pk−b

R̃
, verify the signature on the

transaction and convince themselves that only Ron could
have validly signed the transaction as he is the only one
who could calculate skR̃.

The on-chain blinded key exchange protocol enables Wanda
to protect the identity of the intended reader of her secrets
without forfeiting any of the on-chain secrets’s guarantees,
however, it requires the knowledge of the reader’s public key.
As a consequence, this protocol does not support dynamic
identities discussed in Section V, as we cannot predict and
blind an unknown, future public key. Nonetheless, this protocol
provides a viable option for applications where relationship
privacy is more important than dynamic identity evolution.
An extension of this protocol that allows blinding of dynamic
identities remains an open challenge to be addressed in future
work.

D. Post-Quantum On-chain Secrets

The security of both on-chain secrets implementations relies
on the hardness of the discrete logarithm (DL) problem. An
efficient quantum algorithm [48] for solving the DL problem
exists, however. One solution to provide post-quantum security
in CALYPSO is to use post-quantum cryptography (e.g., lattice-
based cryptography [8]). Alternatively, we can implement on-
chain secrets using the Shamir’s secret sharing [47] scheme
which is information theoretically secure. Unlike the publicly-
verifiable scheme we previously used, Shamir’s secret sharing

does not prevent a malicious writer from distributing bad secret
shares because the shares cannot be verified publicly.

To mitigate this problem, we add a step to provide account-
ability of the secret sharing phase by (1) requiring the writer
to commit to the secret shares she wishes to distribute and (2)
requesting that each secret-management trustee verifies and
acknowledges that the secret share they hold is consistent with
the writer’s commitment. As a result, assuming n = 3f + 1
and secret sharing threshold t = f + 1, the reader can hold
the writer accountable for producing a bad transaction should
he fail to correctly decrypt the secret message.

Write transaction protocol: Wanda prepares her write
transaction txw with the help of the secret-management and
access-control cothorities, where each individual trustee car-
ries out the respective steps. Wanda initiates the protocol by
preparing a write transaction as follows.

1) Choose a secret sharing polynomial s(x) =
∑t−1

j=0 ajx
j

of degree t− 1. The secret to be shared is s = s(0).
2) Use k = H(s) as the symmetric key to compute the

ciphertext c = enck(m) for the secret message m and
set Hc = H(c).

3) For each trustee i, generate a commitment qi = H(vi ∥
s(i)), where vi is a random salt value.

4) Specify the access policy and prepare and sign txw.

txw = [⟨qi⟩ , Hc, ⟨pki⟩ , policy]sigskW

5) Send the share s(i), salt vi, and txw to each secret-
management trustee using a post-quantum secure channel.

The secret-management cothority verifies txw as follows.
1) Verify the secret share by checking that (s(i), vi) corre-

sponds to the commitment qi. If yes, sign txw and send
it back to Wanda as a confirmation that the share is valid.

The access-control cothority finally logs Wanda’s txw.
1) Wait to receive txw signed by Wanda and the secret-

management trustees. Verify that at least 2f + 1 trustees
signed the transaction. If yes, log txw.

Read transaction, share request, and reconstruction
protocols: The other protocols remain unchanged except that
the secret-management trustees are already in possession of
their secret shares and the shares need not be included in txr.
Once Ron receives the shares from the trustees, he recovers the
symmetric key k as before and decrypts c. If the decryption
fails, then the information shared by Wanda (the key, the
ciphertext, or both) was incorrect. Such an outcome would
indicate that Wanda is malicious and did not correctly execute
the txw protocol. In response, Ron can release the transcript
of the txr protocol in order to hold Wanda accountable.

V. SKIPCHAIN IDENTITY AND ACCESS MANAGEMENT

The CALYPSO protocols described so far do not provide dy-
namic sovereign identities. They only support static identities
(public keys) and access policies as they provide no mecha-
nisms to update these values. These assumptions are rather
unrealistic though, as the participants may need to change
or add new public keys to revoke a compromised private
key or to extend access rights to a new device, for example.
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Fig. 3. Skipchain-based identity and access management (SIAM): First, Ron
updates his personal identity skipchain idRon to include pkssh. Afterwards,
he uses sklab to extend the federated identity skipchain idlab to add idAna as
a member. Finally, he adds idAna as an admin and idlab as authorized readers
to the resource policy skipchain idpaper by using skdoc.

Similarly, it should be possible to change access polices so
that access to resources can be extended, updated or revoked
and to define access-control rules for individual identities and
groups of users for greater flexibility and efficiency. Finally,
any access-control system that supports the above properties
should be efficient as well as secure to prevent freeze and
replay attacks [40], and race conditions between applying
changes to access rights and accessing the resources.

In order address these challenges and achieve dynamic
sovereign identities, we introduce the skipchain-based identity
and access management (SIAM) subsystem for CALYPSO that
provides the following properties: (1) Enable users to specify
and announce updates to resource access keys and policies.
(2) Support identities for both individual users and groups of
users. (3) Protect against replay and freeze attacks. (4) Enforce
atomicity of accessing resources and updating resource access
rights to prevent race conditions.

A. Architecture

In SIAM, we introduce three types of skipchains [40], struc-
tures similar to a blockchain but doubly-linked, see Section II
for details. Personal identity skipchains store the public keys
that individual users control and use to access resources. A
user can maintain a number of public keys that correspond
to his identity that are used for access to resources on
different devices, for example. Federated identity skipchains
specify identities and public keys of a collective identity
that encompasses users that belong to some group, such as
employees of a company, members of a research lab, a board
of directors, etc. Resource policy skipchains track access rights
of identities, personal or federated, to certain resources and
enable dynamic access control. In addition to listing identities

and their public keys, policy skipchains include access-control
rules allowing to enforce fine-grained update conditions for
write transactions. Section VIII describes a simple access-
control list (ACL) we created for our implementation.

The main insight is that skipchains securely maintain a
verifiable timeline of changes to the identities and policies they
represent. This means that these identities or polices can evolve
dynamically and independently of the specific applications that
make use of them and that at any point the applications can
verfiably obtain the most up-to-date version of each.

The SIAM skipchains are under the self-sovereign control
of individual users or groups of users. To track administrative
rights, each SIAM skipchain includes in its skipblocks the
(public) admin keys of users authorized to make updates and
the policy under which a skipchain can be updated. These
update policies can be expressed as arbitrary boolean circuits,
e.g., requiring approvals from just a single administrator or a
certain set of them. Since the admin keys are used only for
skipchain updates, they should be stored in cold wallets, such
as hardware security modules, for increased security.

To evolve a SIAM skipchain and consequently the iden-
tities or access policies it represents, its admins follow the
skipchain’s update policies and create a new skipblock that
reflects the necessary changes, and then publicly announce
it, e.g., by pushing the update to the storage provider(s)
maintaining a public interface to the SIAM skipchain. Users
and services that follow SIAM skipchains can get notified
automatically about those updates and accept them if they
are proposed by authorized users and adhere to the update
policies. Since the latest skipblock represents the current state
of a skipchain, i.e., identities of all currently authorized users
or all current access rules, revocation is trivially supported
as the admins simply push a new skipblock to the respective
skipchain that omits the public key or access rule that needs
to be revoked. Figure 3 provides an overview on SIAM.

B. Integration Into CALYPSO

To integrate SIAM with CALYPSO, the long-term secrets
protocols described in Section IV-B are adapted as follows.
Assume that Ron has logged the unique identifier idR of his
personal identity skipchain on the access-control blockchain.
If Wanda wants to give Ron access to a resource, she simply
sets policy = idR instead of policy = pkR in txw.

This means that instead of defining access rights in terms
of Ron’s static public pkR, she does so in terms of Ron’s
skipchain and consequently, any public key(s) specified in
the most current most current block of idR. Then, the re-
source is encrypted under the shared public key of the secret-
management cothority as before. To request access, Ron
creates the read transaction

txr = [Hw, πtxw , pkR′ ]sigsk
R′

where Hw = H(txw) is the unique identifier for the secret
that Ron requests access to, πtxw is the blockchain inclusion
proof for txw, and pkR′ is one of Ron’s public keys that



he wishes to use from the latest block of the idR skipchain.
After receiving txr, the access-control cothority follows the
idR skipchain to retrieve the latest skipblock and verifies
pkR′ against it. Then, the access-control cothority checks the
signature on txr using pkR′ and, if valid, logs txr. Once
txr is logged, the rest of the protocol works as described
in Section IV-B, where the secret-management cothority uses
pkR′ for re-encryption to enable Ron to retrieve the resource.

C. Achieving SIAM Goals

When SIAM is used, Ron is able to evolve the idR skipchain
arbitrarily, e.g., rotate existing access keys or add new devices,
and still retain access to the encrypted resource without need-
ing Wanda to update the initial write transaction. Analogously,
Wanda can efficiently provide a group of users access to a
resource by using a federated identity idF that these users are
a part of, instead of adding each user individually, by setting
policy = idF in txw. This approach outsources the resource
access maintenance to the admins of the idF skipchain as they
are in charge of the federated identity’s membership and can
add and remove members at will. Alternatively, Wanda can
set up a resource policy skipchain idP she is in charge of
and include idF as non-administrative members along with
any other rules she wants to have enforced. Then, Wanda
would use policy = idP in txw authorizing idF to access
the respective resource under the specified rules.

In order for users to defend against freeze and replay attacks
we require them to generate freshness proofs of their SIAM
skipchains. To do this they submit in regular time periods (e.g.,
every hour) the head of their skipchain for timestamping on
the blockchain. This prevents freeze and replay attacks as an
adversary that managed to subvert an old SIAM skipblock
cannot convince a client to accept the adversarial actions as
authoritative, given that the skipblock the adversary refers to
is different from the fresh one appearing on the blockchain.
This practice further ensures the atomicity of read, write, and
(skipchain) update operations, as the moment a SIAM update
happens the client should send the new SIAM skipblock for
timestamping. This effectively serializes reads, writes, and
updates and therefore prevents race conditions.

VI. FURTHER SECURITY CONSIDERATION

Our contributions are mainly pragmatic rather than theoret-
ical as we employ only existing, well-studied cryptographic
algorithms. We already discussed achieving CALYPSO’s secu-
rity goals in the previous sections. On-chain secrets protocols
achieve all goals but dynamic sovereign identities which is
addressed by SIAM. In this section, we discuss the effect of
malicious parties on CALYPSO.

Malicious readers and writers: CALYPSO’s functionality
resembles a fair-exchange protocol [41] in which a malicious
reader may try to access a secret without paying for it and
a malicious writer may try to get paid without revealing
the secret. In CALYPSO, we protect against such attacks by
employing the access-control and secret-management cothor-

ities as decentralized equivalents of trusted third parties that
mediate interactions between readers and writers.

The access-control cothority logs a write transaction on the
blockchain only after it successfully verifies the encrypted
data against the corresponding consistency proof. This en-
sures that a malicious writer cannot post a transaction for a
secret that cannot be recovered. Further, as each txw binds
its contents to its policy, it protects against attacks where
malicious writers naively extract contents of already posted
transactions and submit them with a different policy listing
themselves as the authorized readers. Similarly, before logging
a read transaction, the access-control cothority verifies that it
refers to a valid txw and it is sent by an authorized reader
as defined in the policy of txw. A logged read transaction
serves as an access approval. The secret-management cothority
releases the decryption shares to the authorized reader only
after confirming the reader presents an auditable proof of txr.

Malicious trustees: Our threat model permits a fraction
of the access-control and secret-management cothority trustees
to be dishonest. The thresholds (t = f + 1) used in on-chain
secrets, however, prevent the malicious trustees from being
able to pool their secret shares and access writers’ secrets or to
prevent an an authorized reader from accessing their secret by
withholding the secret shares. Further, even if some individual
malicious trustees refuse to accept requests from the clients or
to participate in the protocols altogether, the remaining honest
trustees are be able to carry out all protocols by themselves
thereby ensuring service availability.

Malicious storage providers: Wanda may choose to store
the actual encrypted data either on-chain or off-chain by
choosing to outsource the storage to external providers. Be-
cause the data is encrypted, it can be shared with any number
of possibly untrusted providers. Before Ron creates a txr he
needs to retrieve and verify the encrypted data against the hash
posted in txw. If Ron cannot obtain the encrypted data from
the provider, he can contact Wanda to expose the provider as
dishonest and receive the encrypted data directly from Wanda
or an alternative storage provider.

VII. CALYPSO IN THE WILD

Below we describe three real-world deployments, two com-
pleted and one in-progress, of CALYPSO that resulted from
collaborations with companies that needed a flexible, secure,
and decentralized solution to share data.

A. Auditable Online Invoice Issuing

Together with the main invoice regulator of a European
country, we built an auditable online invoice issuing system. It
uses HyperLedger Fabric v1.0 as the access-control blockchain
together with long-term secrets. While the system uses static
identities, they are blinded as needed using the protocol
described in Section IV-C.

Problem definition: The system consists of a set of
potentially mutually distrustful sellers and buyers as well as
a regulator, who are all part of a dynamic ecosystem. To
keep track of all business relationships without the need for



an intermediary the system relies on blockchain technology.
A seller wishes to verifiably issue an invoice to a buyer
while granting additional access to the regulator. The invoice
contains confidential information that both parties want to
protect. The goal was to allow the invoices to be logged and
tracked, and to enable the regulator to access the details if an
issue arises between the parties.

Solution with CALYPSO: This system required a straight-
forward deployment of CALYPSO. The sellers generate write
transactions where the secret message is the invoice and the
authorized readers are both the buyer and the regulator. When
the buyer sees the respective write transaction, he issues a read
transaction to access the invoice. If there is an issue with the
invoice or no invoice has been issued for a certain amount
of time, the buyer reports it to the regulator who can audit
the transactions and the invoice. Analogously, the seller can
request the regulator to audit if an issue arises on his side.
Using CALYPSO’s blinded identities in the write transactions
hides the relationships between the sellers and buyers and
consequently details such as trade frequencies and types of
purchases, which is advantageous from a business perspective.

B. Clearance-enforcing Document Sharing

We have used CALYPSO to deploy a decentralized,
clearance-enforcing document sharing system than enables
two organizations, A and B, to share a document D, such
that a confidential policy can be enforced on D. We have
realized this system with a contractor of the Defense Ministry
of a European country using ByzCoin [28] adapted for a
permissioned setting as the blockchain and long-term secrets.

Problem definition: Organization A wants to share with
organization B a document D whose entirety or certain parts
are classified as confidential and should only be accessible by
people with a proper clearance. The clearance is granted (or
revoked) to employees individually as needed or automatically
when they join (or leave) a specific department so the set
of authorized employees continuously changes. The goal is
to enable the mutually distrustful A and B to share D while
dynamically enforcing the specific clearance requirement and
securely tracking accesses to D for auditing purposes.

Solution with CALYPSO: First, A and B agree on a mutu-
ally trusted blockchain system to implement the access-control
cothority whose trustees include servers controlled by both
organizations. Then, each organization establishes confidential
federated identity skipchains, idA and idB , respectively. The
hashes of the skipchains’ genesis blocks are logged on the
access-control cothority blockchain and write and read trans-
actions can be posted by employees authortized in idA and
idB , respectively. Organization A creates a document D, labels
each paragraph as confidential or unclassified and encrypts
each paragraph using a different symmetric key. A shares
the ciphertext with B and generates write transactions whose
payload are the symmetric keys of the classified paragraphs
and policy = idB . Any employee of B whose public key
is included in the set of classified employees as defined in
the most current skipblock of idB can retrieve the symmetric

keys by creating read transactions. The access-control and
secret-management cothorities log the txr, create a proof of
access and deliver the key. Both organizations can update
their identity skipchains as needed to ensure that at any given
moment only authorized employees can post transactions.

C. Patient-centric Medical Data Sharing

CALYPSO lends itself well for applications that require se-
cure data sharing for research purposes. We are in the process
of working with a few hospitals and research institutions from
a European country to build a patient-centric system to share
patient medical data. We expect to use a sharded blockchain
(e.g., OmniLedger [29]) along with long-term secrets.

Problem definition: Researchers face difficulties in gath-
ering medical data from hospitals as patients increasingly
refuse to approve access to their data for research purposes
amidst rapidly growing privacy concerns [21]. Patients dislike
consenting once and completely losing control over their
data and are more likely to approve to share their data with
specific institutions [26]. The goal of this collaboration is to
enable patients to remain sovereign over their data, hospitals
to verifiably obtain patients’ consent for specific purposes, and
researchers to obtain access to valuable patient data.

Solution with CALYPSO: We have designed a preliminary
architecture for a data sharing application that enables a patient
P to share her data with multiple potential readers over time.
The main difference from the previously described deploy-
ments is the fact that the data generator (hospital) and the data
owner (P) are different. For this reason, we use a resource
policy skipchain idP such that the hospital can represent
P wishes with respect to her data. Policy skipchains can
dynamically evolve, adding and removing authorized readers,
and can include rich access-control rules.

CALYPSO enables P to initialize idP when she first registers
with the medical system, Initially, idP is empty indicating that
P’s data cannot be shared. If a new research organization or
another hospital requests to access some of P’s data, then P
can update idP by adding a federated identity of the research
organization and specific rules. When new data is available for
sharing, the hospital generates a new write transaction which
consists of encrypted and possibly obfuscated or anonymized
medical data and idP as policy. As before, users whose
identities are included in idP can post read transactions to
obtain access. This way P remains in control of her data and
can unilaterally update or revoke access at any point.

VIII. IMPLEMENTATION

We implemented all components of CALYPSO, on-chain
secrets and SIAM, in Go [17]. For cryptographic operations
we relied on Kyber [32], an advanced crypto library for
Go. In particular, we used its implementation of the Ed-
wards25519 elliptic curve that provides a 128-bit security
level. For the consensus mechanism required for the access-
control cothority, we used a publicly available implementation
of ByzCoin [28], a scalable Byzantine consensus protocol. We
implemented both on-chain secrets protocols, one-time and



long-term secrets, run by the secret-management cothority. For
SIAM, we implemented signing and verifying using a JSON-
based ACL as described below. All of our implementations
are available under an open source license on GitHub.

We used a simple JSON-based access-control language to
describe policies in CALYPSO, however, different deployments
of CALYPSO might benefit from more expressive ACLs. A
policy consists of a unique identifier, a version number, and
a list of rules that regulate the access to secrets stored in txw.
A rule has the following three fields. An action field which
refers to the activity that can be performed on the secret (e.g.,
READ or UPDATE). A subjects field listing the identities (e.g.,
idRon) that are permitted to perform the action. Lastly, an
expression field which is a string of the form operator :
[operands], where the operator is a logical operation (AND
and OR in our case) and operands are either subjects or
other expressions that describe the conditions under which
the rule can be satisfied. More concretely, a sample expression
could be {AND : [idLab, idRon]}, which means that signatures
of both idLab and idRon are required to satisfy that rule. To
express more complex conditions we can nest expressions,
for example {OR : [{AND : [id1, id2]}, {AND : [id3, id4]}]}
evaluates to ((id1 AND id2) OR (id3 AND id4)). We describe
single and multi-signature access requests against policies and
outline how they are created and verified in Appendix C.

IX. EVALUATION

We evaluated and compared both on-chain secrets protocols
as well as the overheads introduced through the use of the
dynamic identities and policies of SIAM. The primary ques-
tions we wish to investigate for on-chain secrets are whether
its latency overheads are acceptable when deployed on top of
blockchain systems and whether it can scale to hundreds of
validators as required to ensure a high degree of confidence in
the security of the system. In all experiments we checked the
time it takes to create read and write transactions given differ-
ent sizes of secret-management and access-control cothorities.
For SIAM, we evaluate the latency overhead of creating and
verifying access requests against SIAM skipchains both for
simple identities as well as for complex policies.

We ran all our experiments on 4 Mininet [38] servers, each
equipped with 256GB of memory and 24 cores running at
2.5GHz. To mimic realistic network conditions, we configured
Mininet with a 100ms point-to-point latency between all nodes
and a maximum bandwidth of 100Mbps for each node.

A. On-chain Secrets

In our experiments, we measure the overall latency of both
on-chain secrets protocols, as shown in Figure 2, where we
investigate the cost of the write, read, share retrieval and share
recontruction sub-protocols. In the experiments, we vary the
number of trustees to determine the effects on the latency and
we remark that in our implementation all trustees are part of
both cothorities.
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Fig. 4. Latency of one-time secrets protocol for varying sizes of the secret-
management (SM) and access-control (AC) cothorities.

One-time secrets: Figure 4 shows the latency results
for varying sizes of access-control and secret-management
cothorities. First, we observe that the client-side creation of the
txw is a costly operation which takes almost one second for
64 secret-management trustees. This is expected as preparing
the txw involves picking a polynomial and evaluating it at
n points, and setting up the PVSS shares and commitments,
all of which involve expensive ECC operations. Second, we
observe that the txw and txr processing times at the access-
control cothority are comparable, but a write takes ≈ 250ms
longer on average than a read. This is due to the fact that
the access-control trustees verify all NIZK encryption proofs.
Our experiments also show that verifying the NIZK decryption
proofs and recovering the shared secret are substantially faster
than creating the txw and differ by an order of magnitude
for large numbers of shares (e.g., for 128 shares, ≈ 250ms
vs ≈ 3 sec). This is due to the fact that verifying the NIZK
proofs and reconstructing the shared secret require less ECC
computations than the computationally expensive setup of the
PVSS shares. Finally, we observe that the overhead for the
secret-management cothority part of the secret recovery is an
order of magnitude higher than the client side. This is expected
as the client sends a request to each secret-management trustee
and waits until a threshold of them replies.

Long-term secrets: Figure 5 presents the overall latency
costs of the cothority setup (DKG), write, read, share retrieval
and share reconstruction sub-protocols. Except for the DKG
setup, all steps of the long-term secrets protocol scale linearly
in the size of the cothority. Even for a large cothority of
128 servers, it takes less than 8 seconds to process a write
transaction. The CPU-time is significantly lower than the wall-
clock time due to the network (WAN) overhead that is included
in the wall-clock measurements. While the DKG setup is
quite costly, especially for a large number of servers, it is
a one-time cost incurred only at the start of a new epoch.
The overhead of the share retrieval is linear in the secret-
management cothority as the number of shares t, which need
to be validated and interpolated, increases linearly in the size
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of the secret-management cothority.

B. Skipchain-based Identity and Access Management

For SIAM, we benchmark the cost of validating the signa-
ture on a read transaction which is the most resource and time
intensive operation. We distinguish single and multi-signature
requests. The single signature case represents simple requests
where one identity is requesting access while multi-signature
requests occur for more complex access-control rules.

Single-signature request verification: For single-
signature requests, the verification time is the sum of the
signature verification and the time to validate the identity
of the reader requesting access by checking it against the
identity of the target reader as defined in the policy. The
validation is done by finding the path from the target’s
skipchain to the requester’s skipchain. We vary the depth
of the requester, which refers to the distance between the
two skipchains. Figure 6 shows the variation in request
verification time depending on the requester’s depth. We
observe that most of the request verification time is required
for signature verification which takes ≈ 385 µs and accounts
for 92.04− 99.94% of the total time.

Multi-signature request verification: As signature veri-
fication is the main overhead, we investigate the effect of
verifying multi-signature requests. We create requests with
a varying number of signers and investigate the number of
request per second we can verify. Figure 7 shows the results
for a requester skipchain’s depth of 2 and 10. There is a
significant reduction in the number of requests that can be
verified when the number of signers increases whereas the
depth of the requester is not significant.

X. RELATED WORK

The decentralized data management platform Enigma [59],
[60] provides comparable functionality to CALYPSO. Users
own and control their data and a blockchain enforces access
control by logging valid requests (as per the on-chain pol-
icy). However, Enigma stores the confidential data at a non-
decentralized storage provider who can read and/or decrypt
the data or refuse to serve the data even if there is a valid
on-chain proof. The storage provider in Enigma is therefore
a single point of compromise/failure. Other projects [3], [6],
[22], [46], [60] commonly rely on centralized key-management
and/or storage systems as well and hence suffer from compa-
rable issues with respect to atomicity and robustness against
malicious service providers. Vanish [14] is another secure
data-sharing system which ensures that no-longer-usable data
self-destructs to protect against accidental leakage. CALYPSO
can provide similar functionality by adding time-outs to write
transactions after which (honest) trustees destroy their secret
key shares making the secret inaccessible. Vanish, however,
relies on DHTs and is thus not as robust as the blockchain-
based CALYPSO. Other privacy-focused blockchains [37], [44]
do not address the issue of data sharing and access control but
instead focus on hiding identity and transaction data through
zero-knowledge proofs. Existing decentralized identity man-
agement systems, such as UIA [13] or SDSI/SPKI [43] enable
users to control their identities but they lack authenticated
updates via trust-delegating forward links of skipchains which
enable CALYPSO to support secure long-term relationships
between user identities and secure access control over shared
data. OAuth2 [18] is an access-control framework where an
authorization server can issue access tokens to authenticated
clients which the latter can use to retrieve the requested data
from a resource server. CALYPSO can emulate OAuth2 without
any single points of compromise/failure where the access-
control blockchain and the secret-management cothority act
as decentralized versions of the authorization and resource
servers, respectively. Further, thanks to CALYPSO’s serializa-
tion of access requests and SIAM updates, it is not vulnerable
to attacks exploiting race conditions when revoking access
rights or access keys like OAuth2 [35]. ClaimChain [30] is a
decentralized PKI where users maintain repositories of claims
about their own and contacts’ public keys. However, it permits
transfer of access-control tokens, which can result in unautho-
rized access to the claims. Finally, Blockstack [1] uses Bitcoin
to provide naming and identity functionality, but it does not
support private-data sharing with access control. CALYPSO can
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work along a Blockstack-like system if implemented on top of
an expressive enough blockchain [56] and include Blockstack
identities as part of SIAM.

XI. CONCLUSION

We have presented CALYPSO, the first fully decentralized
framework for auditable access control on protected resources
over a distributed ledger that maintains confidentiality and
control of the resources even after they have been shared.
CALYPSO achieves its goals by introducing two separate com-
ponents. The first component, on-chain secrets, is deployed on
top of a blockchain to enable transparent and efficient man-
agement of secret data via threshold cryptography. The second
component, skipchain-based identity and access management,
allows for dynamic identities and resource access policies.
We have implemented CALYPSO and shown that it can be
efficiently deployed with blockchain systems to enhance their
functionality. Lastly, we described three deployments of CA-
LYPSO to illustrate its applicability to real-world applications.
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APPENDIX A
PUBLICLY VERIFIABLE SECRET SHARING

We follow the protocol in [45] where a dealer wants to
distribute shares of a secret value among a set of trustees. Let

G be a cyclic group of prime order q where the decisional
Diffie-Hellman assumption holds. Let g and h denote two
distinct generators of G. We use N = {1, . . . , n} to denote
the set of trustees, where each trustee i has a private key ski
and a corresponding public key pki = gski . The protocol runs
as follows:

Dealing the shares: The dealer initiates the PVSS protocol
as follows.

1) Choose a secret sharing polynomial s(x) =
∑t−1

j=0 ajx
j

of degree t− 1. The secret to be shared is s = gs(0).
2) For each trustee i ∈ {1, . . . , n}, compute the encrypted

share ŝi = pk
s(i)
i of the shared secret s and create the

corresponding NIZK encryption consistency proof πŝi .
Create the polynomial commitments bj = haj , for 0 ≤
j < t.

3) Publish all ŝi, πŝi , and bj .
πŝi proves that the corresponding encrypted share ŝi is

consistent. More specifically, it is a proof of knowledge of
the unique s(i) that satisfies:

Ai = hs(i), ŝi = pk
s(i)
i

where Ai =
∏t−1

j=0 bj
ij . In order to generate πŝi , the dealer

picks at random wi ∈ Zq and computes:

a1i = hwi , a2i = pkwi
i ,

Ci = H(Ai, ŝi, a1i, a2i), ri = wi − s(i)Ci

where H is a cryptographic hash function, Ci is the chal-
lenge, and ri is the response. Each proof πŝi consists of Ci

and ri, and it shows that logh Ai = logpki
ŝi.

Verification of the shares: Each trustee i verifies their
encrypted share ŝi against the corresponding NIZK encryption
consistency proof πŝi to ensure the validity of the encrypted
share. To do so, each trustee performs the following steps.

1) Compute Ai =
∏t−1

j=0 cj
ij using the polynomial commit-

ments cj , 0 ≤ j < t.
2) Compute a′1i = hriACi

i and a′2i = pkrii ŝi
Ci

3) Check that H(Ai, ŝi, a
′
1i, a

′
2i) matches the challenge Ci.

Decryption of the shares: If their share is valid, each
trustee i creates their decrypted share as follows.

1) Compute the decrypted share si = (ŝi)
sk−1

i and the
corresponding NIZK decryption consistency proof πsi ,
which proves that si is the correct decryption of ŝi.
The proof shows the knowledge of the unique value that
satisfies logg pki = logsi ŝi.

2) Publish si and πsi .
Reconstructing the shared secret: If there are at least t

correctly decrypted shares, then the Lagrange interpolation can
be used to recover the shared secret s.

APPENDIX B
FULL ENCRYPTION/DECRYPTION PROTOCOL FOR

LONG-TERM SECRETS

We follow the extension of the TDH2 protocol of
Shoup [49] described by Lueks [36]. Let G be a cyclic group
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of prime order q with generators g and ḡ. We assume the
existence of two hash functions: H1 : G6 × {0, 1}l → G and
H2 : G3 → Zq .

Encryption: A client encrypts a message under the collec-
tive public key pksmc such that it can be decrypted by anyone
that is included in policy1 L ∈ {0, 1}l. The client performs
the following steps.

1) Choose a symmetric key k to symmetrically encrypt the
message and then embed k as a point k′ ∈ G.

2) Choose at random r, s ∈ Zq . Compute:

c = pkrsmck
′, u = gr, w = gs, ū = ḡr, w̄ = ḡs,

e = H1 (c, u, ū, w, w̄, L) , f = s+ re.

The ciphertext is (c, L, u, ū, e, f).
Decryption of the shares: Given a ciphertext

(c, L, u, ū, e, f) and a matching authorization to L, each
trustee i performs the following steps.

1) Check if e = H1 (c, u, ū, w, w̄, L) by computing w = gf

ue

and w̄ = ḡf

ūe , which is a NIZK proof that logg u = logḡ ū.
2) If the share is valid, choose si ∈ Zq at random and

compute:

ui = uski , ûi = usi , ĥi = gsi ,

ei = H2

(
ui, ûi, ĥi

)
, fi = si + skiei

3) Publish (i, ui, ei, fi), where ui is the corresponding share.
Note that if the policy L has changed, then e cannot be

computed correctly. Given that an adversary will not know r,
he cannot change the e to match his new policy.

Secret reconstruction: A client can reconstruct the secret
and obtain the decryption key k both on the client side or at
an untrusted server. We describe both schemes below.

Secret reconstruction at the client:
1) Run the decryption share check to make sure that the

trustees are not misbehaving.
2) If the check passes then verify that (u, ui, hi) is a DH

triple by checking that ei = H2

(
ui, ûi, ĥi

)
, where ûi =

ufi

ui
ei

and ĥi =
gfi

hi
ei

.
3) If there are at least t valid shares, (i, ui), the recovery

algorithm is doing Lagrange interpolation of the shares:

pkrsmc =
t∏

k=0

ui
λi

where λi is the ith Lagrange element.
4) Compute the inverse of pkrsmc and find k′ = c

pkr
smc

. From
k′ derive the decryption key k and recover the original
message.

1This policy is the identifier (hash of genesis block) of an identity skipchain

Fig. 8. Verifier’s path checking for multi-signature requests.

Secret reconstruction at the trusted server: The client
authenticates themselves using their public key gxc . One of
the trustees is assigned to do the reconstruction for the client.

1) Each trustee that created their decryption share as grxi =
ui, ElGamal encrypts the share for the client using xi as
the blinding factor instead of a random r′. The new share
becomes grxigxcxi = g(r+xc)xi = gr

′xi = u′xi = u′
i.

Then the trustee computes ĥi, as before and û′
i = u′si .

Finally e′i = H2

(
u′
i, û

′
i, ĥi

)
and f ′

i = si + xie
′
i

2) Any trustee can pool the shares and reconstruct the secret
with Lagrange interpolation as shown above. The end
result is gr

′x = g(r+xc)x

3) The client gets g(r+xc)x and as they know gx and xc, they
can find −xc and compute gx

−xc
= g−xxc . Finally they

compute grx = g(r+xc−xc)x and decrypt as mentioned
above.

APPENDIX C
ACCESS REQUESTS AND VERIFICATION

In this section, we outline how we create and verify access
requests. A request consists of the policy and the rule invoked
that permits the requester to perform the action requested.
There is also a message field where extra information can
be provided e.g., a set of documents is governed by the same
policy but the requester accesses one specific document.. A
request req is of the form: req = [idPolicy, indexRule,M ],
where idPolicy is the ID of the target policy outlining the
access rules; indexRule is the index of the rule invoked by the
requester; and M is a message describing extra information.

To have accountability and verify that the requester is
permitted to access, we use signatures. The requester signs
the request and creates a signature consisting of the signed
request (sigreq) and the public key used (pk). On receiving an
access request, the verifier checks that the sigreq is correct. The
verifier then checks that there is a valid path from the target
policy, idPolicy, to the requester’s public key, pk. This could
involve multiple levels of checks, if the requester’s key is not
present directly in the list of subjects but included transitively
in some federated SIAM that is a subject. The verifier searches
along all paths (looking at the last version timestamped by the
access-control cothority) until the requester’s key is found.

Sometimes, an access request requires multiple parties to
sign. Conditions for multi-signature approval can be described
using the expression field in the rules. An access request in
this case would be of the form (req, [sigreq]) where [sigreq] is



a list of signatures from the required-for-access parties. The
verification process is similar to the single signature case.

Figure 8 shows an example of the path verification per-
formed by the verifier. Report X has a policy with a Rule
granting read access to Bob and Amy. There is an ex-
pression stating that both Bob’s and Amy’s signatures are
required to obtain access. Hence, if Bob wants access, he
sends a request (req, [sigreq,pk1

, sigreq,pk4
]), where req =

[1234, 2, “ReportX ′′] The verifier checks the paths from the
policy to Bob’s pk4 and Amy’s to pk1 are valid. Paths are
shown in red and blue respectively. Then the expression AND
: [0,1] is checked against the signatures. If all checks pass, the
request is considered to be verified.

APPENDIX D
JSON ACCESS-CONTROL LANGUAGE

A sample policy for a document, expressed in the JSON
based language, is shown in Figure 9. The policy states that it
has one Admin rule. The admins are S1 and S2 and they are
allowed to make changes to the policy. The Expression field
indicates that any changes to the policy require both S1 and
S2’s signatures.

Fig. 9. Sample Policy in JSON access-control language.
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