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Abstract

It is well known that inefficient indistinguishability obfuscators (iO) with running time
poly(|C|, λ) · 2n, where C is the circuit to be obfuscated, λ is the security parameter, and n is
the input length of C, exists unconditionally : simply output the function table of C (i.e., the
output of C on all possible inputs). Such inefficient obfuscators, however, are not useful for
applications.

We here consider iO with a slightly “non-trivial” notion of efficiency: the running-time
of the obfuscator may still be “trivial” (namely, poly(|C|, λ) · 2n), but we now require that
the obfuscated code is just slightly smaller than the truth table of C (namely poly(|C|, λ) ·
2n(1−ε), where ε > 0); we refer to this notion as iO with exponential efficiency, or simply
exponentially-efficient iO (XiO). We show that, perhaps surprisingly, under the subexponential
LWE assumption, subexponentially-secure XiO for polynomial-size circuits implies (polynomial-
time computable) iO for all polynomial-size circuits.

∗This paper appears in PKC 2016.
†University of California at Santa Barbara, Email: rachel.lin@cs.ucsb.edu. Work supported in part by NSF

grants CNS-1528178 and CNS-1514526.
‡Cornell University, rafael@cs.cornell.edu. Work supported in part by a Microsoft Faculty Fellowship, Google

Faculty Award, NSF Award CNS-1217821, NSF Award CCF-1214844, AFOSR Award FA9550-15-1-0262 and DARPA
and AFRL under contract FA8750-11-2-0211. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.
§Cornell University, Email: karn@cs.cornell.edu.
¶Cornell University, Email: sidtelang@cs.cornell.edu.

1



1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its implementa-
tion details (making it hard to “reverse-engineer”), while preserving the functionality (i.e, in-
put/output behavior) of the program. In recent years, the notion of indistinguishability obfuscation
(iO) [BGI+01, GGH+13b] has emerged as the central notion of obfuscation. Roughly speaking,
this notion requires that obfuscations iO(C1), iO(C2) of any two functionally equivalent circuits
C1 and C2 (i.e., whose outputs agree on all inputs) from some class C (of circuits of some bounded
size) are computationally indistinguishable.

On the one hand, this notion of obfuscation is strong enough for a plethora of amazing ap-
plications (see e.g., [SW14, BCP14, BZ14, GGHR14, BGL+15, CHJV14, KLW14]); on the other
hand, it may plausibly exist [GGH+13b, BGK+13, PST14a, GLSW14], whereas stronger notion
of obfuscations have run into strong impossibility results, even in idealized models (see e.g.,
[BGI+01, GK05, CKP15, PS15, MMN15, LPST15])

However, despite all these amazing progress, to date, all candidate constructions of iO rely
on candidate constructions of multi-linear maps [GGH13a, CLT13, GGH15, CLT15], all of which
have non-trivial attacks [CHL+15, MF15], and it is not clear to what extent the security of the
obfuscators that rely on them are affected.

Can Inefficient iO be Useful? Let us emphasize that for all known application of iO, it is
important that the obfuscator is efficient—namely, polynomial-time. Indeed, as already observed
by [BGI+01], it is “trivial” to provide an inefficient iO with running time poly(|C|, λ) · 2n, where
C is the circuit to be obfuscated, λ is the security parameter, and n is the input length of C, exists
unconditionally : simply output the function table of C (i.e., the output of C on all possible inputs).
Recall that, in contrast, for “standard” (efficient) iO, the running time and size of the obfuscator
is required to be poly(|C|, λ)—namely, polylogarithmic in the size of the truth table of C).

In this paper, we consider iO with just a slightly “non-trivial” notion of efficiency: the running-
time of the obfuscator may still be “trivial” (namely, poly(|C|, λ) ·2n), but we now require that the
obfuscated code is just slightly smaller than the truth table of C (namely poly(|C|, λ)·2n(1−ε), where
ε > 0); we refer to this notion as iO with exponential efficiency, or simply exponentially-efficient
iO (XiO). The main question investigated in this paper is the following:

Can iO with just slightly non-trivial efficiency be useful for applications?

Main Theorem Perhaps surprisingly, we show that in the regime of subexponential security,
under the LWE assumption, XiO for P/poly implies (standard) iO for P/poly.

Theorem 1. Assume subexponential security of the LWE assumption, and the existence of subex-
ponentially secure XiO for Plog/poly. Then there exists subexponentially secure iO for P/poly.

Let us remark that in the proof of Theorem 1, we only employ the XiO on circuits that take
inputs of length O(log λ) (it would be surprising if we didn’t since we aim is to achieve an obfuscator
with polynomial efficiency). As a consequence, the proof of Theorem 1 also shows that (under the
subexponential LWE assumption), subexponentially secure XiO for circuits with such “short”
inputs (i.e., inputs of length O(log λ))—we refer to this class of circuits as Plog/poly—implies iO
for all polynomial-size circuits (with“long” inputs).1 We remark that in [BGL+15], the authors

1“Short-input” iO is more appealing than standard iO (for P/poly) in the sense that it can be efficiently checked
whether an attack on a candidate scheme succeeds [Nao03] (an attacker needs to come up with two circuits C1, C2 that
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(implicitly) considered a notion of “short-input” iO (as opposed to XiO) and demonstrate that for
some (but far from all) applications of iO, this weaker notion actually suffices. Our results show
that in the regime of subexponential security, “short-input” iO (and in fact, even XiO) implies
standard iO (and thus suffices for all applications of iO).

Techniques Our starting point are the recent beautiful works by Ananth and Jain [AJ15] and
Bitansky and Vaikuntanathan [BV15] which show that the existence of subexponentially-secure
functional encryption with sublinearly compact ciphertexts (a.k.a. sublinear compact FE) for P/poly
implies iO for P/poly. Roughly speaking, a (single-key) functional encryption scheme is a public-key
encryption scheme for which it is possible to release a (single) functional secret-key skC (for circuit
C of some a-priori bounded size S) such that knowledge of skC enables efficiently computing C(m)
given any encryption of the message m, (but nothing more); sublinear compactness means that the
encryption time is sublinear in the upper bound S on the circuit-size.2 We recently demonstrated
in [LPST15] that assuming subexponential LWE, it in fact suffices to start off with an FE satisfying
an even weaker notion of compactness—which we refer to as weak sublinear compactness—which
simply requires that the size of the ciphertext (but not the encryption time) is sublinear in the
circuit-size.

Our main technical contribution will be showing that XiO for Plog/poly implies weakly sublinear
compact FE for P/poly, which by the above-mentioned result implies our main theorem.

Theorem 2. Assume the LWE assumption (resp. subexponential security of the LWE assumption)
holds, and the existence of XiO for Plog/poly (resp. subexponentially-secure XiO for Plog/poly).
Then there exists weakly sublinear compact FE for P/poly (resp. subexponentially-secure weakly
sublinear compact FE for P/poly).

Note that Theorem 2 is interesting in its own right as it applies also in the regime of polynomial
security.3

The proof of Theorem 2 proceeds as follows. Following a proof template from [AJ15] (we discuss
this result in more detail below), we start off with the result of Goldwasser et al [GKP+13] which
shows that under the LWE assumption, there exists a functional encryption scheme for boolean
functions (i.e., functions with 1-bit outputs) in NC1 that has logarithmic compactness. Combined
with the bootstrapping result of [ABSV14], this can be used to construct a functional encryption
scheme for boolean functions in P/poly that still has logarithmic compactness. We next show how
to use XiO for Plog/poly to extend any such compact FE scheme for boolean functions to one
that handles arbitrary polynomial-sized circuits (with potentially long outputs). ([AJ15] provided
a similar transformation assuming, so-called, compact randomized encoding (for Turing machines)
instead of XiO.)

We now turn to describe our transformation from “single-bit compact FE” to “multi-bit weakly
sublinear compact FE”. As an initial approach, instead of simply encrypting a message m, encrypt
the sequence (m; 1), (m; 2), . . . (m; `), where ` is the maximum output length of the class of functions

are functionally equivalent for which it can distinguish obfuscations; checking whether two circuits are functionally
equivalent may be hard in general, but becomes efficient if the circuits are restricted to inputs of length O(log λ) by
simply enumerating all inputs).

2More precisely, in a functional encryption scheme (Setup,KeyGen,Enc,Dec), Setup samples a public-key, secret-
key pair (pk,msk), KeyGen(msk,C) generates the functional secret key skC ; Enc(pk,m) outputs an encryption c of
m, and Dec(skC , c) outputs C(m) if c is an encryption of m.

3Furthermore, as we remark later on, weakly sublinear compact FE trivially implies a variant of XiO and this
variant of XiO is also sufficient for our theorems. As such, by our results, XiO may be viewed as a new way to
characterize the complexity of weakly sublinear compact FE.
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we want to be able to evaluate. Then, instead of simply releasing a functional secret key for a circuit
C, release a secret key for the function C ′(m; i) = Ci(m), where Ci(m) denotes the ith output bit of
C(m). This approach clearly enables evaluating circuits with multi-bit outputs; but the encryption
scheme is no longer (even weakly) compact! The length of the ciphertext grows linearly with
the number of output bits. To retain compactness (or at least weakly sublinear compactness),
we have the encryption algorithm release an obfuscation of a program Π that generates all the `
encryptions—more precisely, given an index i, it applies a PRF (with a hard-coded seed) to the
index i to generate randomness ri and then outputs an encryption of (m; i). As long as obfuscation
size is “just-slightly-compressing”, the functional encryption will have weak sublinear compactness;
furthermore, the program we obfuscate only needs to take inputs of length O(log λ). Thus, it
suffices to assume the obfuscator satisfies XiO for Plog/poly.

To prove security of the construction, we use the ”one-input-at-a-time” technique from [BCP14,
GLW14, PST14b, GLSW14, CLTV15], and the punctured program technique of Sahai and Waters
[SW14]; the crucial point that enables us to keep the obfuscation small is that the output of the pro-
gram Π on different inputs uses independent randomness (since they are independent encryptions)
and thus in the hybrid arguments it suffices to puncture the PRF on a single point.

Let us end this section by briefly comparing our transformation to the above-mentioned trans-
formation by Ananth and Jain [AJ15]; [AJ15] shows how to use, so-called, “compact randomized
encoding” to transform single-bit compact FE for NC1 into multi-bit compact FE for NC1. As we
explain in more detail in Remark 3, compact randomized encoding can be viewed as a special case
of XiO for the class of Turing machines (as opposed to circuits) with short input. Turing machine
obfuscation is a significantly more challenging task than circuit obfuscation. We provide a brief
description of their transformation in Appendix A and explain why the transformation fails when
using XiO (for circuits).

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We denote by
PPT probabilistic polynomial time Turing machines, and by nuPPT non-uniform probabilistic
polynomial time Turing machines. The term negligible is used for denoting functions that are
(asymptotically) smaller than one over any polynomial. More precisely, a function ν(·) from non-
negative integers to reals is called negligible if for every constant c > 0 and all sufficiently large n,
it holds that ν(n) < n−c. For any algorithm A and input x we denote by outlenA(x), the output
length of A when run with input x.

Definition 1. We denote by Plog/poly the class of circuits {Cλ} where Cλ are poly(λ)-size circuits
that have input length c log λ for some constant c.

2.1 Puncturable PRF

Puncturable PRFs defined by Sahai and Waters [SW14], are PRFs for which a key can be given
out that allows evaluation of the PRF on all inputs, except for a designated polynomial-size set of
inputs.

Definition 2 (Puncturable PRF [SW14]). A puncturable pseudo-random function F is given by a
triple of efficient algorithms (F.Key, F.Punc, F.Eval), and a pair of computable functions n(·) and
m(·), satisfying the following conditions:
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• Functionality preserved under puncturing: For every polynomial size set S ⊆ {0, 1}n(λ)
and for every x ∈ {0, 1}n(λ)\S, we have that:

Pr[K ← F.Key(1λ),KS = F.Punc(K,S) : F.Eval(K,x) = F.Eval(KS , x)] = 1

• Pseudorandom at punctured points: For every polynomial size set S ⊆ {0, 1}n(λ) and
for every nuPPT adversary A we have that:

|Pr[A(KS ,F.Eval(K,S)) = 1]− Pr[A(KS , Um(λ)·|S|) = 1]| = negl(λ)

where K ← F.Key(1λ) and KS = F.Punc(K,S) and F.Eval(K,S) denotes the concatenation of
F.Eval(K,x1), . . .F.Eval(K,xk) where S = {x1, ..., xk} is the enumeration of the elements of
S in lexicographic order, U` denotes the uniform distribution over ` bits.

The GGM tree-based construction of PRFs [GGM86] from one-way functions are easily seen
to yield puncturable PRFs, as recently observed by [BW13, BGI14, KPTZ13]. Furthermore, it is
easy to see that if the PRG underlying the GGM construction is sub-exponentially hard (and this
can in turn be built from sub-exponentially hard OWFs), then the resulting puncturable PRF is
sub-exponentially pseudorandom.

2.2 Functional Encryption

We recall the definition of public-key functional encryption (FE) with selective indistinguishability
based security [BSW12, O’N10]. We note that in this work, we only need the security of the
functional encryption scheme to hold with respect to statically chosen challenge messages and
functions. We further consider FE schemes that only produce a single functional secret key for
each public key.

Definition 3 (Functional Encryption [O’N10, BSW12]). A public key functional encryption scheme
for a class of circuits {Cλ} is a tuple of PPT algorithms
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) that behave as follows:

• (msk, pk)← FE.Setup(1λ): FE.Setup takes as input the security parameter λ and outputs the
master secret key msk and public key pk.

• skC ← FE.KeyGen(msk,C): FE.KeyGen takes as input the master secret key and a circuit
C ∈ Cλ and outputs the functional secret key skC .

• c← FE.Enc(pk,m): FE.Enc takes as input the public key and message m ∈ {0, 1}∗ and outputs
the ciphertext c.

• y ← FE.Dec(skC , c): FE.Dec takes as input the functional secret key and ciphertext and
outputs y ∈ {0, 1}∗.

We require the following conditions to hold:

• Correctness: For every λ ∈ N, C ∈ Cλ with input length n and message m ∈ {0, 1}n, we
have that

Pr

 (pk,msk)← FE.Setup(1λ)
skC ← FE.KeyGen(msk,C)

c← FE.Enc(pk,m)
: C(m) = FE.Dec(skC , c)

 = 1
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• Selective Security: For every nuPPT A there exists a negligible function µ such that for
every λ ∈ N, every circuit C ∈ Cλ with input length n and pair of messages m0,m1 ∈ {0, 1}n
such that C(m0) = C(m1) we have that |Pr[A(D0) = 1]− Pr[A(D1) = 1]| ≤ µ(λ) where

Db = Pr

 (pk,msk)← FE.Setup(1λ)
skC ← FE.KeyGen(msk,C)

cb ← FE.Enc(pk,mb)
: (pk, skC , cb)


We say the scheme has sub-exponential security if there exists a constant ε such that for
every λ, every 2λ

ε
-size adversary A, |Pr[A(D0) = 1] − Pr[A(D1) = 1]| ≤ 1/2λ

ε
where Db is

defined above.

We recall the definition of compactness and succinctness for functional encryption schemes, as
defined in [BV15, AJ15].

Definition 4 (Compact Functional Encryption [BV15, AJ15]). We say a functional encryption
scheme for a class of circuits {Cλ} is compact if for every λ ∈ N, pk ← FE.Setup(1λ) and m ∈
{0, 1}∗ we have that

Time(FE.Enc(pk,m)) = poly(λ, |m|, log s)

where s = maxC∈Cλ |C|. We say the scheme has sub-linear compactness if the running time of
FE.Enc is bounded as

Time(FE.Enc(pk,m)) = poly(λ, |m|) · s1−ε

where ε > 0.

Definition 5 (Succinct Functional Encryption). A compact functional encryption scheme for a
class of circuits that output only a single bit is called a succinct functional encryption scheme.

Theorem 3 ([GKP+13]). Assuming (sub-exponentially secure) LWE, there exists a (sub-exponentially
secure) succinct functional encryption scheme for NC1.

We note that [GKP+13] do not explicitly consider sub-exponentially secure succinct functional
encryption, but their construction satisfies it (assuming sub-exponentially secure LWE). Addition-
ally, we have the following bootstrapping theorem:

Theorem 4 ([GHRW14, ABSV14, AJ15]). Assuming the existence of symmetric-key encryption
with decryption in NC1 (resp. sub-exponentially secure) and succinct functional encryption for
NC1 (resp. sub-exponentially secure), there exists succinct functional encryption for P/poly (resp.
sub-exponentially secure).

Following [LPST15], we here also consider a weaker compactness notion, where only the ci-
phertext size (but not the encryption time) is sublinear in the output length of the function being
evaluated.

Definition 6 (Weakly Sublinear Compact Functional Encryption [LPST15]). We say a functional
encryption scheme for a class of circuits {Cλ} is weakly sublinear compact if there exists ε > 0
such that for every λ ∈ N, pk ← FE.Setup(1λ) and m ∈ {0, 1}∗ we have that

TimeFE.Enc(pk,m) = poly(λ, |m|, s)
outlenFE.Enc(pk,m) = s1−ε · poly(λ, |m|)

where s = maxC∈Cλ |C|.
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2.3 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO).

Definition 7 (Indistinguishability Obfuscator [BGI+01, GGH+13b]). A PPT machine iO is an
indistinguishability obfuscator (also referred to as iO) for a circuit class {Cλ}λ∈N if the following
conditions are satisfied:

• Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1 .

• Indistinguishability: for any polysize distinguisher D, there exists a negligible function µ
such that the following holds: For all security parameters λ ∈ N, for all pairs of circuits
C0, C1 ∈ Cλ of the same size, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr

[
D(iO(C0)) = 1

]
− Pr

[
D(iO(C1)) = 1

]∣∣∣ ≤ µ(λ) .

We say the scheme has sub-exponential security if there exists a constant ε such that for
every λ, every 2λ

ε
-size adversary D, |Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1]| ≤ 1/2λ

ε
.

The recent beautiful results of [AJ15], Bitansky and Vaikuntanathan [BV15] show that subex-
ponentially secure sublinear compact functional encryption schemes implies iO for P/poly. In an
earlier work [LPST15], we demonstrated that (if we additionally assume subexponential LWE), it
suffices to start off with just a weakly sublinear compact functional encryption scheme (recall that
in such a scheme only the length of the ciphertext needs to be sublinear, but encryption time may
be polynomial).

Theorem 5 ([LPST15]). Assume the existence of sub-exponentially secure LWE. If there exists
a weakly sublinear compact functional encryption scheme for P/poly with sub-exponential security,
then there exists a sub-exponentially secure indistinguishability obfuscator for P/poly.

3 Exponentially-Efficient iO (XiO)

In this section, we define our new notion of exponentially-efficient indistinguishability obfuscation
(XiO), which allows the obfuscator to have running time as long as a brute-force canonicalizer that
outputs the entire truth table of the function, but requires the obfuscated program to be slightly
smaller in size than a brute-force canonicalization.

Definition 8 (Exponentially-Efficient Indistinguishability Obfuscation (XiO)). A machine XiO is
an exponentially-efficient indistinguishability obfuscator (also referred to as XiO) for a circuit class
{Cλ}λ∈N if it satisfies the same functionality and indistinguishability property of indistinguishability
obfuscators as in Definition 7 and the following efficiency requirement.

• Non-trivial Efficiency4. There exists a constant ε > 0 such that for any security parameter

4Our notion of “trivial” running-time is even more relaxed than the notion used in the introduction. We here
allow the running-time be polynomial in 2n, and opposed to just linear (as we described it in the introduction). This
even more relaxed notion of efficiency is useful in order to more cleanly compare XiO with the notion of compact
FE; see Remark 2.
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λ ∈ N, circuit C ∈ Cλ with input length n and C ′ ∈ XiO(1λ, C), we have that

TimeXiO(1λ, C) = poly(λ, |C|, 2n)

outlenXiO(1λ, C) = poly(λ, |C|) · 2n(1−ε)

Remark 1. (Circuits with logarithmic input length) Note that if we want the obfuscation to be
efficient (i.e., polynomial-time in λ and the size of the circuit to be obfuscated), then the above
definition is only meaningful when the class of circuits Cλ has input length O(log λ). Our results in
this paper hold assuming XiO for Plog/poly.

Remark 2. (XiO in the preprocessing model and comparison with Compact Functional Encryp-
tion) We can consider further a relaxation of the running-time requirement of the obfuscator. The
obfuscator may first perform a long ”pre-processing” step (without having seen the program to be
obfuscated), taking time poly(λ, s, 2n) (where s is the size bound on circuits to be obfuscated), and
outputting a (potentially long) pre-processing public-key Opk. The actual obfuscation then takes
Opk, and the circuit C as inputs, runs in time poly(λ, s, 2n) and outputs an obfuscated program of
size poly(λ, s) · 2n(1−ε), and then the evaluation of the obfuscated program may finally also access
the public-key Opk. All our results also apply to this relaxed notion of XiO.

Additionally, we note that weakly sublinear compact FE directly implies this notion as follows:
pre-processing public key Opk (generated in the pre-processing step) is the public key pk for the FE
and the functional secret key skFT corresponding to a function table generator program that takes as
input a circuit and outputs the function table of it; the obfuscation of a circuit C is an encryption of
the circuit C (w.r.t., the FE public key pk), and evaluation of the obfuscated code uses the functional
secret key skFT inside Opk to compute the function table of C and selects the appropriate output.
Sub-linear compactness of the functional encryption scheme implies the obfuscator has exponential
efficiency.

Remark 3. (Comparison with Compact Randomized Encoding for Turing machines) [AJ15] and
[LPST15] study a notion of compact randomized encodings [IK02, AIK04]. Roughly speaking, a
randomized encoding (RE) is a method for encoding a Turing Machine Π, an input x and a

running-time bound T , into a randomized encoding Π̂(x) from which Π(x) can be efficiently decoded;
furthermore the encodings does not leak anything more about Π and x than what can be (inefficiently)
deduced from just the output Π(x) (truncated at T steps).5 A randomized encodings is compact (resp.
sublinearly compact) if the encoding time is poly-logarithmic (resp sublinear) in T (and polynomial
in the size of Π and x). We note that sublinear compact RE directly implies XiO as follows: to

obfuscate a circuit C, compute an encoding F̂ TC of the function table generator Turing machine
FTC that has the circuit C hardcoded (i.e., FTC takes no inputs and simply computes the function

table of C); evaluation of the obfuscation on an input i simply decodes the encoding F̂ TC and picks
out the ith output. Sublinear compactness of the RE implies that the obfuscator is exponentially-
efficient. In fact, this obfuscator has a stronger efficiency guarantee than XiO: the running time
of the obfuscator is poly(λ, |C|) · 2n(1−ε) whereas XiO allows for a longer running time.

In fact, the above methods extend to show that (sublinearly) compact RE implies a notion of
XiO for Turing machines. We note that Turing machine obfuscation is a significantly harder
task than circuit obfuscation (indeed, all known construction of Turing machine obfuscators first

5Or equivalently, for any two programs Π1,Π2 and inputs x1, x2 such that Π1(x1) = Π2(x2), a randomized encoding
of Π1, x1 is indistinguishable from an encoding of Π2, x2.
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go through circuit obfuscation). We also point out that whereas (subexponentially-secure) iO for
circuits is known to imply iO for Turing machine [BGL+15, CHJV14, KLW14], these techniques
do not apply in the regime of programs with short input (and thus do not seem amenable in the
regime of inefficient iO either).

4 iO from XiO

In this section, we show how to achieve “standard” (polynomially-efficient) iO from XiO.

4.1 Weakly Sublinear Compact FE from Succinct FE and XiO

We first give our construction of weakly sublinear compact FE from succinct FE and XiO for
circuits with input-size O(log(λ)). At a high-level, our idea is to have the ciphertext for the FE
scheme be XiO of a circuit that, on input i, generates a succinct FE encryption of (m, i). The
secret key corresponding to C consists of a single key for the succinct FE scheme, that, given a
ciphertext encrypting (m, i), computes the ith output bit of C(m).

Let F be a puncturable pseudorandom function, XiO be an exponentially-efficient indistin-
guishability obfuscator for Plog/poly and sFE be a succinct functional encryption scheme (resp.
with sub-exponential security) for an appropriate class of circuits {C′λ} that includes C ′ defined
below. We define a compact functional encryption scheme FE for a class of poly-size circuits {Cλ}
as follows:

(msk, pk)← FE.Setup(1λ): FE.Setup is identical to sFE.Setup and has the same output.

c← FE.Enc(pk,m): FE.Enc samples a puncturable PRF key K ← F.Key(1λ) and outputs Π ←
XiO(1λ, G[pk,K,m]) where G[pk,K,m] is a circuit with input length n = log s where s =
maxC∈Cλ outlen(C), defined as follows:

G[pk,K,m](i) = sFE.Enc(pk, (m, i);F.Eval(K, i))

G is padded to be the same size as circuits G′ and G′′ that we will define later in the security
proof. All circuits G, G′, and G′′ will ultimately have size bounded by S = poly(λ, |m|, log s)
where s = maxC∈Cλ |C|, and are padded to size S.

skC ← FE.KeyGen(msk,C): FE.KeyGen outputs sFE.KeyGen(msk,C ′) where C ′ on input (m, i) out-
puts the ith bit of C(m), or outputs ⊥ if i is greater than the output length of C.

y ← FE.Dec(skC ,Π): FE.Dec runs ci ← Π(i) and yi ← sFE.Dec(skC , ci) for every i and outputs
y1, . . . y2n .

Let {C′λ} be a class of circuits that includes C ′ as defined above for every C ∈ Cλ.

Theorem 6. Assuming F is a puncturable pseudorandom function (resp. with subexponential se-
curity), XiO is an exponentially efficient indistinguishability obfuscator for Plog/poly (resp. with
subexponential security) and sFE is a succinct functional encryption scheme for {C′λ} (resp. with
subexponential security), we have that FE as defined above is a functional encryption scheme for
{Cλ} with weakly sub-linear compactness (resp. and with subexponential security).

Proof. We first show weak sublinear compactness of FE. Consider any λ, C ∈ Cλ, message m, pk ∈
FE.Setup(1λ) and puncturable PRF key K ∈ F.Key(1λ). Time(FE.Enc(pk,m)) is the time XiO takes

9



to obfuscate the circuit G[pk,K,m], which is of size S = poly(λ, |m|, log s) where s = maxC∈Cλ |C|.
Hence we have that

TimeXiO(1λ, G[pk,K,m]) = poly(λ, |m|, log s, 2n) ≤ poly(λ, |m|, s)

outlenXiO(1λ, G[pk,K,m]) = poly(λ, |m|, log s) · 2n(1−ε) ≤ poly(λ, |m|) · s1−ε′

where ε′ is a constant with 0 < ε′ < ε.
Next we show the selective security of FE. We proceed by using the ”one-input-at-a-time”

technique from [BCP14, GLW14, PST14b, GLSW14, CLTV15]. More precisely, we proceed by
a hybrid argument where in each hybrid distribution, the circuit being obfuscated, on input i,
produces ciphertexts of m1 when i is less than a “threshold”, and ciphertexts of m0 otherwise.
Indistinguishability of neighboring hybrids is shown using the “punctured programming” technique
of [SW14], as was done in [CLTV15] for constructing iO for probabilistic functions. (This technique
is also used extensively in other applications of iO, eg., [BGL+15], [CHJV14], [KLW14] and more.)

Assume for contradiction there exists a nuPPT A and polynomial p such that for sufficiently
large λ, circuit C ∈ Cλ and messages m0,m1 such that C(m0) = C(m1), A distinguishes D0 and
D1 with advantage 1/p(λ), where

Db =

 (msk, pk)← FE.Setup(1λ)
K ← F.Key(1λ)
skC ← FE.KeyGen(msk,C)

: pk, skC ,XiO(G[pk,K,mb])


For j ∈ [`], we define the jth hybrid distribution Hj as follows:

Hj =

 (msk, pk)← FE.Setup(1λ)
K ← F.Key(1λ)
skC ← FE.KeyGen(msk,C)

: pk, skC ,XiO(G′[pk,K, j,m0,m1])


where G′[pk,K, j,m0,m1], where G′ is defined as follows

G′[pk,K, j,m0,m1](i) =

{
sFE.Enc(pk, (m0, i);F(K, i)) if i > j
sFE.Enc(pk, (m1, i);F(K, i)) if i ≤ j

We also require G′ to be padded to be of the same size S as G[pk,K,m].
We consider the hybrid sequence D0, H1, . . . ,H`,D1. By a hybrid argument, there exists a

pair of neighboring hybrids in this sequence such that A distinguishes the pair with probability
1

p(λ)·(`+2) = 1
poly(λ) . We show a contradiction by proving that each pair of neighboring hybrids is

computationally indistinguishable.
We first note thatD0 is indistinguishable fromH0. This follows by observing thatG′[pk,K, 0,m0,m1]

is functionally identical to G[pk,K,m0], and applying the security of XiO. The same argument also
shows that H` is indistinguishable from D1.

Next, we show Hj∗ and Hj∗+1 are indistinguishable for each j∗ ∈ [`]. Define hybrid distribution
H ′0 which is identical to Hj∗ except that XiO obfuscates a different circuit G′′[pk,Kj∗ , j

∗,m0,m1, c]
where Kj∗ ← F.Punc(λ, j∗) and c← sFE.Enc(pk, (m0, j

∗);R) using uniformly sampled randomness
R. G′′ on input i has the same behavior as G′ except i = j∗, where it outputs the hardcoded
ciphertext c. By the “punctured programming” technique of Sahai-Waters [SW14], which relies on
the security of the obfuscator XiO and puncturable PRF F, it follows that for sufficiently large λ,
A distinguishes between Hj∗ and H ′0 with negligible probability.

The puncturing programming technique itself works in two hybrid steps:
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• First the circuit G′ is replaced with circuit G′′[pk,Kj∗ , j
∗,m0,m1, c] where the hardwired

ciphertext is c = sFE.Enc(pk, (m0, j
∗);F(K, j∗)), which is the same ciphertext G′ previously

computed. Since this doesn’t change the functionality of the circuit, indistinguishability
follows from the security of XiO.

• Second, the hardcoded ciphertext is modified to be generated from real randomness R, and
indistinguishability follows from the security of the puncturable PRF.

Next, we define hybrid distribution H ′1 which is identical to H ′0 except that the hardcoded
ciphertext c is generated as sFE.Enc(pk, (m1, j

∗);R) for uniformly sampled randomness R. Since
C(m0) is identical to C(m1), from the security of sFE, A distinguishes H ′0 and H ′1 with negligible
probability.

Finally, note that H ′1 and Hj∗+1 differ in the same way H ′0 and Hj∗ do, and are hence indistin-
guishable by a similar argument. Hence A distinguishes Hj∗ and Hj∗+1 with negligible probability
and we have a contradiction. This completes the proof.

We note that the proof above is described in terms of computational indistinguishability, but
in fact also can be applied to show that FE is subexponentially-secure, if both XiO and sFE are
subexponentially secure.

4.2 Putting Pieces Together

Theorem 7. Assuming sub-exponentially hard LWE, if there exists a subexponentially secure expo-
nentially efficient indistinguishability obfuscator for Plog/poly then there exists an indistinguisha-
bility obfuscator for P/poly with subexponential security.

Proof. By Theorem 3 and Theorem 4, assuming subexponentially secure LWE, there exists a suc-
cinct functional encryption scheme for P/poly that is subexponentially secure. Using this with
a subexponentially secure exponentially efficient indistinguishability obfuscator for Plog/poly, by
Theorem 6, we get weakly sublinear compact function encryption for P/poly with sub-exponential
selective security. Together with Theorem 5, this gives us iO for P/poly.

Remark 4. (XiO for NC1 suffices) We remark it in fact suffices to assume XiO for only NC1

(instead of P/poly) if rely on the existence of puncturable PRFs in NC1. Indeed, if encryption
algorithm of the succinct FE scheme and the puncturable PRF are both in NC1, then in our con-
struction it suffices to obfuscate NC1 circuits (we also need to verify that the “merged” circuit used
in the hybrid argument is in NC1, which directly follows). By the result of [AIK04], assuming the
existence of pseudorandom generators in NC1, we can assume without loss of generality that the
succinct FE encryption we rely on also has encryption in NC1 (in fact even NC0, but this will not be
useful to us): the encryption algorithm for the new succinct FE scheme computes the “randomized
encoding” of the original encryption function.

Acknowledgments: We thank Vinod Vaikuntanathan for insightful discussions.
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A Comparison with [AJ15]

In this section we briefly describe the related result by [AJ15] and compare it with our result.
[AJ15] show how to construct a compact functional encryption scheme from a succinct functional
encryption scheme and “compact randomized encodings for Turing machines” (see Remark 3 for an
informal description of randomized encodings). The rough idea is as follows: the compact functional
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secret key for a function f is a sequence of ` independent succinct functional secret keys where `
is the output length of f . The ith succinct functional secret key corresponds to the function that
outputs the ith bit of f . The compact functional ciphertext for a message m is the randomized
encoding of a machine Π that takes no input and when run, outputs {Enc(pki,m)}i∈[`] where pki is

the public key corresponding to the ith instance of the succinct functional scheme (these instances
are generated using a PRF, hence the description size of Π is independent of `). The compactness of
the functional encryption scheme follows from the compactness of the randomized encoding scheme.

Note that the above result necessarily requires the computation being encoded to be represented
as a Turing machine, since the description size is required to be independent of the output length.
As we explain in Remark 3, such a notion of randomized encodings for Turing machine does not
seem useful for our purposes.

15


