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Abstract
Klapper [1] showed that there are binary sequences of period qn−

1(q is a prime power pm, p is an odd prime) with the maximal possi-
ble linear complexity qn−1 when considered as sequences over GF (2),
while the sequences have very low linear complexities when considered
as sequences over GF (p). This suggests that the binary sequences with
high GF (2) linear complexities and low GF (p) linear complexities are
note secure in cryptography. In this note we give some simple con-
structions of the binary sequences with high GF (2) linear complexities
and low GF (p) linear complexities. We also prove some lower bounds
on the GF (p) linear complexities of binary sequences and a lower
bound on the number of the binary sequences with high GF (2) linear
complexities and low GF (p) linear complexities .

Index Terms—Cryptography, stream cipher, GF (2) linear com-
plexity, GF (p) linear complexity
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I. Introduction and Preliminaries

In cryptography stream ciphers use binary sequences with good pseudo-
randomness as key streams to encrypt messages [2]. The linear complexity
of a periodic binary sequence is defined as the length of the shortest lin-
ear feedback shift register to generate the sequence. The periodic binary
sequences with low linear complexity are not secure, since people can com-
pute the whole sequence based on given knowledge of a few initial bits of
the sequence. For example, for any period n binary sequence the Berlekamp-
Massey algorithm can be used to compute its linear complexity and minimal
connection polynomial with the time complexity O(n2) ([2]).

For a binary sequence a = a0, a1, ..., al−1, a0, ..., where ai ∈ GF (2), with
period l, its generating function A(x) = a0 + a1x + .... + aix

i + ..... =

Σi≥0aix
i = a0+a1x+...al−1xl−1

1−xl . Let gcd(a0 + a1x + ... + al−1x
l−1, 1 − xl) be

the greatest common divisor of the two polynomials in GF (2)[x]). It is
well-known (see [2]) that the (GF (2))linear complexity of the sequence a is
LC2(a) = deg(1 − xl) − deg(gcd(a0 + a1x + ... + al−1x

l−1, 1 − xl)) and the

minimal connection polynomial is m(a)(x) = 1−xl

gcd(a0+a1x+...+al−1xl−1,1−xl)
(see

[2]).

A very important progress was made in Klapper’s pioneering work[1]. It
is suggested the consideration, for a periodic binary sequences, of the linear
complexity relative to an odd prime. That is, for cryptographic purpose we
should study the linear complexity of the binary sequence considered as a
sequence over GF (p)(whose elements happen to be the 0 and 1 in GF (p)). If
this linear complexity relative to GF (p) is small, it is easy to get the whole
sequence by the Berlekamp-Massey algorithm over GF (p) based the knowl-
edge of the few initial elements of the sequence, thus this binary sequence is
not secure in cryptography. We call this linear complexity relative to GF (p)
as GF (p) linear complexity. It is defined as follows. For a (binary) sequence
a = a0, a1, ..., al−1, a0, ..., where ai = 0 or 1,∈ GF (p), with period l, let
g(x) = gcdp(a0 + a1x + ... + al−1x

l−1, 1− xl) be the greatest common divisor
of the two polynomials a0 + a1x + ... + al−1x

l−1 and 1 − xl considered as
polynomials in GF (p)[x]. Then the GF (p) linear complexity LCp(a) of the
binary sequence a is deg(1− xl)− deg(g(x)). As indicated in [1] for crypto-
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graphic purpose we should at least consider the GF (p) linear complexity of
a binary sequence for small p′s.

In [1] Klapper constructed some binary sequences of period qn−1 (where
q is a prime power pm, p an odd prime) with the maximal GF (2) linear
complexity qn − 1, but with relatively very low GF (p) linear complexity. In
this note we give some simple constructions of binary sequences with high
GF (2) linear complexities and low GF (p) linear complexities. We also prove
some lower bounds on the GF (p) linear complexities of the binary sequences
with special periods. A lower bound on the number of the binary sequences
with high GF (p) linear complexities and low GF (p) linear complexities is
also given.

The following are some binary sequences of period 2n whose GF (3) linear
complexities are about the half of their GF (2) linear complexities. These bi-
nary sequences are constructed by using the factorization of the polynomial
1− x2n

in GF (3)[x].

Sequence a

The binary sequence a of period 2n is a = a0, a1, ...., a2n−1, a0... = 1 0...0︸ ︷︷ ︸
2n−2−1

1

0...0︸ ︷︷ ︸
2n−3−1

1 0...0︸ ︷︷ ︸
5·2n−3−1

1....

It is clear its generating function is A(x) = Σiaix
i = x3·2n−3

+x2n−2
+1

1−x2n . In

GF (2)[x], it is clear 1−x2n
= (1−x)2n

and gcd(1−x, x3·2n−3
+x2n−2

+1) = 1
and thus LC2(a) = 2n. In GF (3)[x], 1− x2n

= (x3·2n−3
+ x2n−2

+ 1)(x2n−3
+

1)(x2n−2
+1)(x2n−2

+x2n−3
+1). Thus the GF (3) linear complexity LC3(a) =

5 · 2n−3.

Sequence b

The binary sequence b of period 2n is b = b0, b1, ...., b2n−1, b0... = 1 0...0︸ ︷︷ ︸
2n−4−1

1

0...0︸ ︷︷ ︸
2n−5−1

1 0...0︸ ︷︷ ︸
5·2n−5−1

1 0...0︸ ︷︷ ︸
2n−4−1

1 0...0︸ ︷︷ ︸
2n−5−1

1 0...0︸ ︷︷ ︸
2n−5−1

1 0...0︸ ︷︷ ︸
2n−4−1

1 0...0︸ ︷︷ ︸
2n−5−1

1 0...0︸ ︷︷ ︸
17·2n−5−1

1....
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It is clear its generating function is

A(x) = Σiaix
i = x15·2n−5

+x14·2n−2
+x12·2n−5

+x11·2n−5
+x10·2n−5

+x8·2n−5
+x3·2n−5

+x2·2n−5
+1

1−x2n .

In GF (2)[x], it is clear 1−x2n
= (1−x)2n

and gcd(1−x, x15·2n−5
+x14·2n−2

+
x12·2n−5

+ x11·2n−5
+ x10·2n−5

+ x8·2n−5
+ x3·2n−5

+ x2·2n−5
+ 1) = 1 and thus

LC2(a) = 2n.

In GF (3)[x], 1− x2n
= −(x3·2n−3

+ x2n−2
+ 1)(x2n−4

+ 2x2n−5 + 2)(x2n−4
+

x2n−5
+ 2)(x2n−2

+ 1)(x2n−2
+ x2n−3

+ 2) and x15·2n−5
+ x14·2n−2

+ x12·2n−5
+

x11·2n−5
+x10·2n−5

+x8·2n−5
+x3·2n−5

+x2·2n−5
+1 = (x3·2n−3

+x2n−2
+1)(x3·2n−5

+
x2·2n−5

+ 1) = −(x2n−5 − 1)(x3·2n−3
+ x2n−2

+ 1)(x2n−4
+ 2x2n−5 + 2). The gen-

erating function of the sequence b (as a sequence over GF (3)) is A(x) =
1−x2n−5

(1+x2n−2
)(x2n−2

+x2n−3
+2)(x2n−4

+x2n−5
+2)

. When we set x2n−5
= y, A(x) = (1 −

y)/(1+y8)(y8+y4+2)(y2+y+2) and gcd(1−y, (1+y8)(y8+y4+2)(y2+y+2)) =
1 in GF (3)[x]. Thus the GF (3) linear complexity LC3(b) = 9 · 2n−4.

Sequence c

The binary sequence c of period 2n is c = c0, c1, ...., c2n−1, c0... = 1 0...0︸ ︷︷ ︸
2n−3−1

1

0...0︸ ︷︷ ︸
2n−4−1

1 0...0︸ ︷︷ ︸
2n−4−1

1 0...0︸ ︷︷ ︸
2n−3−1

1 0...0︸ ︷︷ ︸
2n−4−1

1 0...0︸ ︷︷ ︸
2n−4−1

1 0...0︸ ︷︷ ︸
2n−3−1

1 0...0︸ ︷︷ ︸
2n−4−1

1 0...0︸ ︷︷ ︸
5·2n−4−1

1....

It is clear its generating function is

A(x) = Σiaix
i = x11·2n−4

+x10·2n−4
+x8·2n−4

+x7·2n−4
+x6·2n−4

+x4·2n−4
+x3·2n−4

+x2·2n−4
+1

1−x2n .

In GF (2)[x], it is clear 1−x2n
= (1−x)2n

and gcd(1−x, x11·2n−4
+x10·2n−4

+
x8·2n−4

+ x7·2n−4
+ x6·2n−4

+ x4·2n−4
+ x3·2n−4

+ x2·2n−4
+ 1) = 1 and thus

LC2(a) = 2n.

In GF (3)[x], 1− x2n
= −(x2n−1

+ 1)(x2n−3
+ x2n−4

+ 2)(x2n−3
+ 2x2n−4

+
2)(x2n−2 − 1) and x11·2n−4

+ x10·2n−4
+ x8·2n−4

+ x7·2n−4
+ x6·2n−4

+ x4·2n−4
+

x3·2n−4
+ x2·2n−4

+ 1 = (x2n−2 − 1)2(x2n−4 − 1)(x2n−3
+ 2x2n−4

+ 2). The gen-
erating function of the sequence c (as a sequence over GF (3)) is A(x) =

(1−x2n−2
)(x2n−4−1)

(1+x2n−1 )(x2n−3+x2n−4+2)
. When we set x2n−4

= y, A(x) = (1− y)(y4− 1)/(1 +

y8)(y2 + y +2) and gcd((1− y)(y4− 1), (1+ y8)(y2 + y +2)) = 1 in GF (3)[x].
Thus the GF (3) linear complexity LC3(c) = 5 · 2n−3.
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From the above elementary examples we can see that it is easy to get
the binary sequences with the property that their GF (3) linear complexities
are lower than their GF (2) linear complexities. However it seems difficult
to make the GF (3) linear complexities ”very low”. In the following section
we give some lower bounds on the GF (p) linear complexities for the binary
sequences with periods 2n and pn.

II. Lower bounds on the GF (p) linear complexities of binary se-
quences with periods 2n and pn

In this section we prove the following result.

Theorem 1. i). Suppose p is an odd prime such that p ≡ 3 mod 4. Let
u be the largest positive integer such that 2u|p + 1. If a is a binary sequence
which is strictly of period 2n with n ≥ u+1 , then its GF (p) linear complexity
LCp(a) ≥ 2n−u.

ii). Suppose p is an odd prime such that p ≡ 3 mod 4. Let u be the largest
positive integer such that 2u|p + 1. If a is a binary sequence of period 2n (
n ≥ u + 1) with its GF (2) linear complexity LC2(a) ≥ 2n − 2n−2 + 1, then
we have that its GF (p) linear complexity LCp(a) ≥ 2n−u + 2n−u−1.

iii). Suppose that p is an odd prime. If a is a binary sequence which is
strictly of period pn, then its GF (p) linear complexity LCp(a) ≥ (p−1)pn−1+
1.

Proof. If a = a0, a1, ..., a2n−1, a0, ... is a binary sequence (strictly) of pe-
riod 2n, then the polynomial f(x) = a0 + a1x + ... + aix

i + ... + a2n−1x
2n−1

cannot be divided by x2n−1
+1 in GF (p)[x] for any prime p. In fact if f(x) =

(x2n−1
+ 1)g(x) in GF (p)[x] for g(x) ∈ GF (p)[x]. Then deg(g(x)) ≤ 2n−1− 1

and f(x) = g(x) + x2n−1
g(x). Here we note that every monomial in the 1st

part g(x) has its degree less than 2n−1 and every monomial in the 2nd part
x2n−1

g(x) has its degree greater than or equal to 2n−1. Therefore we know a
is of period 2n−1. This is a contradiction.

From the main result in [6], for the odd primes p such that p ≡ 3 mod
4, we have the factorization x2n−1

+ 1 to 2u irreducible factors of the form
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x2n−u − 2hx2n−u−1 − 1 in GF (p)[x] (we refer to [6] for the explicit values of
h’s). Therefore f(x) cannot be divided by at least one polynomial (of degree
2n−u) among these 2u irreducible factors. The conclusion of i) is proved.

If a = a0, a1, ..., a2n−1, a0, ... is a binary sequence (strictly) of period 2n

with its GF (2) linear complexity LC2(a) ≥ 2n − 2n−2 + 1, then the poly-
nomial f(x) = a0 + a1x + ... + aix

i + ... + a2n−1x
2n−1 cannot be divided by

x2n−2
+ 1 in GF (p)[x]. Otherwise we have that f(x) = (x2n−2

+ 1)g(x) in
GF (p)[x] for g(x) ∈ GF (p)[x]. It is clear that deg(g(x)) ≤ 3 · 2n−2 − 1.
Let g(x) = g1(x) + x2n−2

g2(x) + x2n−1
g3(x) where gi(x) ∈ GF (p)[x] with

deg(gi(x)) ≤ 2n−2 − 1. we have that f(x) = g1(x) + (g1(x) + g2(x))x2n−2
+

(g2(x) + g3(x))x2n−1
+ g3(x)x3·2n−2

. Because the coefficients of f(x) are 0 or
1 in GF (3), the coefficients of g1(x) and g3(x) are 0 or 1 in GF (3). There-
fore the coefficients of g2(x) has to be 0 or 1 or p − 1 in GF (p). It is clear
that the positions at which g2(x) have coefficients p− 1 have to be included
in the positions at which both g1(x) and g3(x) have coefficients 1. Suppose
g2(x) = g′2(x) + (p− 1)g′′2(x) where g′2(x) and g′′2(x) have their coefficients 0
or 1. then we can write g1(x) = g′1(x) + g′′2(x) and g3(x) = g′3(x) + g′′2(x).
Here we should note that g′2(x) and g′′2(x) have no common nonzero positions,
g′1(x) and g′′2(x) have no common nonzero positions, g′3(x) and g′′2(x) have no
common nonzero positions,

Thus we have f(x) = [g′1(x) + g′′2(x)] + [g′1(x) + g′2(x)]x2n−2
+ [g′2(x) +

g′3(x)]x2n−1
+ [g′3(x) + g′′2(x)]x3·2n−2

in GF (p)[x]. It is clear that g′1(x) and
g′2(x) have no common nonzero positions, g′3(x) and g′2(x) have no common
nonzero positions.

In this way we have f(x) = ([g′1(x) + g′′2(x)] + [g′2(x) + g′′2(x)]x2n−2
+

[g′3(x) + g′′2(x)]x3·2n−2
)(x2n−2

+ 1) is valid in GF (2)[x]. This is a contra-
diction to the condition that LC2(a) ≥ 2n − 2n−2 + 1. We know that
f(x) cannot be divided by x2n−2

+ 1 in GF (p)[x]. We have 1 − x2n
=

(1 − x)(1 + x)(1 + x2)...(1 + x2n−2
)(1 + x2n−1

) in GF (p)[x]. From the main
result in [6] we know that 1 + x2n−2

(resp. 1 + x2n−1
) can be factorized to u

irreducible factors of degree 2n−−u−1(resp. 2n−u) in GF (p)[x]. Similarly as
in the proof of i), we have LCp(a) ≥ 2n−u + 2n−u−1. The conclusion of ii) is
proved.
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If a = a0, a1, ..., apn−1, a0, ... is a binary sequence (strictly) of period pn.
Let Ai = (aipn−1 , ..., a(i+1)pn−1−1) for i = 0, 1, ..., p − 1. From the generalized
Games-Chan algorithm (see [3,4]) we know that LCp(a) ≥ (p− 1)pn−1 + 1 if
A0+A1+...+Ap−1 6= 0 in GF (p)pn−1

. However we note that every coordinate
in Ai is 0 or 1 in GF (p). Thus if A0 + ... + Ap−1 = 0 in GF (p)pn−1

then we
have A0 = A1 = ... = Ap−1. This is the contradiction to the condition that a
is strictly of period pn. The conclusion iii) is proved.

From Theorem 1 i) we know that each de Bruijn sequence a with period
2n has its GF (p) linear complexity LCp(a) ≥ 2n−u if p ≡ 3 mod 4, especially
LC3(a) ≥ 2n−2.

III. A construction based on generalized Game-Chan algorithm
and Xiao-Wei-Lam-Imamura algorithm and a lower bound

In this section we give a construction of binary sequences with the prop-
erty that their GF (p) linear complexities are about p−1

p
of their GF (2) linear

complexities for some odd primes p′s. From this construction many such
binary sequences can be given. This construction is derived from the Xiao-
Wei-Lam-Imamua algorithm in [5] and the generalized Games-Chan algo-
rithm (see [3] or [4]). We also prove a lower bound on the number of the
binary sequences with their GF (p) linear complexities about 1

p+1
of their

GF (2) linear complexities.

Let p be an odd prime with the property that 2 is a primitive root
mod p2, that is, 2 is a generator of the multiplicative group of all residue
classes (mod p2) coprime to p. There are may such odd primes, for ex-
ample p = 3, 5, 11, 13, 19, 29, .... (see [5]). For a binary sequences a =
a0, a1, ..., apn−1, a0, ... with period pn (p satisfying the above condition), an
fast algorithm for determining its GF (2) linear complexity LC2(a) was given
in [5]. Set Ai = (a(i−1)pn−1 , ...aipn−1−1), where i = 0, 1, ..., p − 1. From the
algorithm in [5], if A0 = A1 = ... = Ap−1 is not valid (in GF (2)), then
LC2(a) = (p− 1)pn−1 + LC2(b) where b is a binary sequence of period pn−1

with its first pn−1 bits A0 +A1 + ...+Ap−1. On the other hand, from the gen-
eralized Games-Chan algorithm (see [3] or [4]), if A0+A1+...+Ap−1 6= 0 over
the field GF (p), then the GF (p) complexity LCp(a) = (p−1)pn−1 +LCp(b

′),
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where b′ is a sequence of period pn−1 over GF (p) with its first pn−1 elements
A0 + A1 + ... + Ap−1 (Here the operations are in GF (p)).

Our construction is as follows. Let Q1 be a binary sequence of period
pn−1 with its GF (2) linear complexity LC2(Q1) = pn−1, and Q2 be a nonzero
binary sequence of period pt (t ≤ n − 1) with its GF (p) linear complexity
LCp(Q1) very small. We need to impose the following condition on Q1 and
Q2.

Condition: The set of positions of 1 in Q1 and the set of positions of 1
in Q2 do not intersect.

The binary sequence a of period pn is constructed as follows. Let A0 =
Q1, A1 = A2 = ... = Ap−1 = Q1 + Q2 (Here we just take the first pn−1 bits
of Q1 and Q2). From the above condition it is clear that A0, A1, ..., Ap−1 are
binary sequence. Then a is the binary sequence of period pn with its first pn

bits (A0, A1, ..., Ap−1). It is clear that A0 = A1 is not valid (in GF (2)), thus
LC2(a) = (p − 1)pn−1 + LC2(Q1) = pn from Xiao-Wei-Lam-Imamura algo-
rithm, since b = A0 +A1 + ..+Ap−1 = A0 +(p−1)A1 = A0 = Q1 over GF (2).
On the other hand b′ = A0 + A1 + ... + Ap−1 = pQ1 + (p− 1)Q2 = −Q2 over
GF (p), thus LCp(a) = (p − 1)pn−1 + LCp(Q2) from the generalized Games-
Chan algorithm. Because LCp(Q2) is small, LCp(a) is about p−1

p
of LC2(a).

We can see that there are many such binary sequences satisfying our condi-
tion and thus many binary sequence with the above property can be given.

Example 1. The period pn−1 sequence Q1 = s0, ..., spn−1−1, s0, ... =
0...0︸ ︷︷ ︸

h

1 0...0︸ ︷︷ ︸
pn−1−h−1

0..., where h ≤ pn−1 is a positive integer such that h 6= 0(mod

p). The period p sequence Q2 = t0, ..., tp−1, t0... = 1 0...0︸ ︷︷ ︸
p−1

1.... we can check

that Q1 and Q2 satisfy the condition and LC2(Q1) = pn−1 and LCp(Q2) = p.
Thus LC2(a) = pn and LCp(a) = (p− 1)pn−1 + p.

Example 2. Let p = 3. The period 3n−1 binary sequence Q1 =
0...0︸ ︷︷ ︸

h

1 0...0︸ ︷︷ ︸
3n−1−h−1

0..., where h 6= 0, 3n−2, 2 ·3n−2. The period 3n−1 period binary
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sequence Q2 = 1 0...0︸ ︷︷ ︸
3n−2−1

1 0...0︸ ︷︷ ︸
3n−2−1

1 0...0︸ ︷︷ ︸
3n−2−1

1.... It is clear that LC2(Q1) = 3n−1

and LC3(Q2) = 3n−2. We can check that the binary sequences Q1 and Q2

satisfy the condition. Thus LC2(a) = 3n and LC3(a) = 7 · 3n−2.

From this construction we can have a lower bound on the number of bi-
nary sequences (strictly) of period pn with high GF (2) linear complexities
and low GF (p) linear complexities.

Theorem 2. Suppose p is an odd prime such that 2 is a generator of the
multiplicative group of all residue classes (module p2) coprime to p2. Then
there are at least 2(p−1)2pn−3

binary sequences a’s (strictly) of period pn with
their GF (2) linear complexities LC2(a) ≥ pn − pn−2 and GF (p) linear com-
plexities LCp(a) = pn − pn−1 + p.

Proof. We take Q2 as in Example 1, and Q1 to be the binary se-
quences s0, s1, ..., spn−1−1, s0, s1, ..., where si = 0 if i can be divided by p

or i ≥ (p− 1)pn−2. It is clear that there are exactly 2(p−1)2pn−3
such Q1’s.

On the other hand we know that 1−xpn−1
= (1−xpn−2

)(1+xpn−2
+x2pn−2

+
...+x(p−1)pn−2

) in GF (2)[x], and the factor 1+xpn−2
+x2pn−3

+...+x(p−1)pn−2
is

an irreducible polynomial in GF (2)[x] if 2 is a generator of the multiplicative
group of all residue classes (module p2) coprime to p(see [5]). Therefore the
GF (2) linear complexity of Q1, LC2(Q1) ≥ (p−1)pn−2, since at the positions
after (p− 1)pn−2 si is zero. From the above computation for the correspond-
ing sequence a we have LCp(a) = (p− 1)pn−1 + LCp(Q2) = (p− 1)pn−1 + p
and LC2(a) = (p−1)pn−1 +LC2(Q1) ≥ (p−1)pn−1 +(p−1)pn−2 = pn−pn−2.
The conclusion is proved.

IV. Conclusion

We have give some results on the lower bounds of GF (p) linear complex-
ities of binary sequences of period 2n and pn and give some simple construc-
tions of binary sequences with high GF (2) linear complexities and low GF (p)
linear complexities. A lower bound on the number of binary sequences with
high GF (2) linear complexities and low GF (p) linear complexities is also
proved. From the view of the practical use, we think it would be interest-
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ing to study the GF (p) linear complexities of the particular binary sequence
generators proposed for practical use in cryptography.
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