
CRAFT: Characterizing and Root-Causing Fault
Injection Threats at Pre-Silicon

Arsalan Ali Malik, Harshvadan Mihir, and Aydin Aysu
Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC, 27695

{aamalik3, hmihir, aaysu}@ncsu.edu

Abstract—Fault injection attacks represent a class of threats
that can compromise embedded systems across multiple layers of
abstraction, such as system software, instruction set architecture
(ISA), microarchitecture, and physical implementation. Early
detection of these vulnerabilities and understanding their root
causes, along with their propagation from the physical layer
to the system software, is critical to secure the cyberinfras-
tructure. This work presents a comprehensive methodology for
conducting controlled fault injection attacks at the pre-silicon
level and an analysis of the underlying system for root-causing
behavior. As the driving application, we use the clock glitch
attacks in AI/ML applications for critical misclassification. Our
study aims to characterize and diagnose the impact of faults
within the RISC-V instruction set and pipeline stages, while
tracing fault propagation from the circuit level to the AI/ML
application software. This analysis resulted in discovering two
new vulnerabilities through controlled clock glitch parameters.
First, we reveal a novel method for causing instruction skips,
thereby preventing the loading of critical values from memory.
This can cause disruption and affect program continuity and
correctness. Second, we demonstrate an attack that converts legal
instructions into illegal ones, thereby diverting control flow in
a manner exploitable by attackers. Our work underscores the
complexity of fault injection attack exploits and emphasizes the
importance of preemptive security analysis.

Keywords—Fault injection attack; RISC-V; Instruction decode
failure; Clock glitch; Pre-silicon

I. INTRODUCTION

Fault injection attacks (FIAs) deliberately introduce faults
into a system to alter its behavior, exploiting, e.g., timing
characteristics of designs to induce malfunctions. An attacker
may be driven by various goals, such as (a) bypassing security
mechanisms to gain unauthorized access to sensitive resources
in PIN-based access controls [1], [2], [3]; (b) extracting secret
keys by inducing faults during cryptographic operations [4],
[5], [6]; (c) disrupting critical system functionality, causing
failures in applications ranging from industrial control systems
to IoT devices [7], [8], [9], [10], [11], [12], [13], [14];
(d) escalating privileges within embedded systems, enabling
unauthorized execution of commands or access to restricted
data [15], and (e) targeting data integrity by introducing errors
into computation/data flow, compromising the reliability and
accuracy of critical systems [16], [17], [18].

Pre-silicon analysis identifies vulnerabilities early in the
design cycle, enabling targeted security enhancements before
fabrication. Whereas, post-silicon verification ensures practical
system resilience by validating countermeasures under real-
world conditions. While prior works inject faults [19] or

mitigate them by addressing symptoms [20], little research
identifies the root causes of FIA vulnerabilities across pre-
and post-silicon stages.

A key limitation of these works is their emphasis on analyz-
ing the effects of faults, such as instruction skips or data cor-
ruption, while providing insufficient attention to investigating
the underlying causes of fault generation. Understanding why
these faults occur across multiple layers, such as instruction set
architecture (ISA), microarchitecture, and physical hardware,
remains critical to designing more effective, targeted counter-
measures and uncovering undocumented and novel exploits.

In this work, we perform a clock glitch attack on the RISC-
V soft-core processor, leveraging insights from pre-silicon
analysis to systematically guide the post-silicon attack process.
A clock glitch is a prevalent type of FIA, which alters the clock
signal to disrupt the system’s state transitions and induces
errors through timing violations [10], [19]. These attacks are
often inexpensive, require minimal equipment, and can even be
conducted remotely [21], [22]. Our key contributions include:

• RISC-V instruction characterization. We analyze and
rank eight fundamental instructions in the RISC-V ISA
based on their vulnerability at each pipeline stage.

• Identification of vulnerability cases. We identify four
distinct cases where an attacker can maliciously redirect
program flow through precise glitch configurations, al-
lowing the conversion of a legal instruction in the RISC-
V pipeline into an illegal one. These scenarios include:

– A novel approach to inducing instruction skips dur-
ing critical operations, such as loading essential
values from memory.

– Instances of silent corruption caused by the glitch,
where the RISC-V processor remains unaware of the
fault and fails to trigger an exception handler.

• Root-cause analysis and verification. Through system-
atic analysis of RISC-V RTL code and pre- and post-
silicon verification, we identified and root-caused a pre-
viously unreported vulnerability in the pipeline registers
shared among the Fetch (IF) and Decode (ID) stages.

This work advances the understanding of RISC-V soft-core
processor reliability under clock glitch attacks by inducing
instruction skips and identifying silent corruption. Our root-
cause analysis and verification pave the way for developing
stronger and lower-cost defenses to protect RISC-V systems.

ar
X

iv
:2

50
3.

03
87

7v
2

 [
cs

.C
R

]
 2

4
A

pr
 2

02
5

Fig. 1. Illustration of a 100 MHz clock and a clock with a glitch. The
top graph shows the regular clock signal with a stable period of 10 ns,
while the bottom graph illustrates a clock glitch, where the positive edge
is advanced, resulting in a shortened clock period. This disruption can lead
to timing violations and data corruption in digital circuits.

II. BACKGROUND

A. The Research Gap

Although a growing body of research has aimed to analyze
and mitigate these threats [23], [19], [21], two critical limita-
tions persist for clock glitch attacks. First, these works either
focus on pre-silicon [24], [25] or post-silicon [26], [27], [22],
[28] but rarely on both [29], [30]. It is critical to do both
because pre-silicon analysis helps simulate internal intricacies
and identify root causes, while post-silicon validation ensures
that the found vulnerabilities does exist in the finished product.
For example, post-silicon characterization [26] can identify
the effects of the faults and the attack parameters needed to
achieve these effects, but it cannot identify which paths in the
circuit are causing these faults, which are needed to build low-
overhead defenses or eliminate issues in the current design.

The closest works to our proposal conduct both pre- and
post-silicon fault characterization of RISC-V and MSP430
ISA, respectively [29], [30]. Kazemi et al. conducted pre-
silicon analysis using a C++ cycle-accurate model of processor
behavior, which limits them to certain standard libraries and
high-level functions. By contrast, our work identifies and
tracks the traversal of faults from critical circuit elements to the
application layer. FaultDetective investigates hardware-level
faults by observing their manifested effects at the software
level [30]. However, it relies on a redundant microcontroller
design in lock-step1 and requires scan registers to observe
internal states, limiting its scope and applicability.

B. Impact of Clock Glitch

A clock glitch attack involves a deliberate and temporary
disruption of the clock signal, causing a misalignment between
clock edges and corruption of the data being processed. In
such an attack, an adversary introduces a brief pulse or delay
into the clock signal, processing data earlier or later than
intended. This timing disturbance can range from benign data
misalignment to severe outcomes, such as data corruption or
system control failures [26]. Our experiments on the RISC-
V softcore processor demonstrate how attackers exploit these
vulnerabilities to disrupt operations, induce data corruption, or

1In a lock-step configuration, two or more processors (or cores) execute
the same instructions simultaneously and in parallel, cycle by cycle.

create illegal states (see § III and IV).
Two critical parameters define the nature of a clock glitch:

glitch offset and glitch width [26]. These parameters determine
how the glitch affects the system’s timing and functionality [4].

Glitch offset (Toffset) defines the point in the clock cycle
where the glitch is introduced, as shown in Fig. 1. A glitch
occurring near the rising or falling edge of the clock can
delay or advance transitions, misaligning data latching and
clock edges. Depending on the timing, this disruption may
affect different parts of the circuit, leading to data corruption
in registers or incorrect state transitions.

Glitch width (Twidth) describes the duration of the clock
disruption, as illustrated in Fig. 1. In clock glitching, reducing
the glitch width increases the intensity of the fault2. The
duration of the glitch influences how long the circuit remains
unstable or misaligned, potentially causing errors such as
intermediate values being incorrectly stored in registers. While
longer glitches increase the likelihood of unintended behavior,
not all glitch settings necessarily lead to data corruption.

C. Threat Model

We follow the conventional assumption in clock glitch
attacks [16], [31], [20], [2], [4], [26]. Specifically, we assume
that the attacker has physical access to the circuit’s clock sig-
nal, enabling the introduction of glitches with varying widths
and offsets. The attacker aims to insert these glitches during
critical operations to disrupt normal program control flow and
induce data corruption or system misbehavior. By leveraging
a phase-locked loop (PLL) [22], the attacker can dynamically
generate and modify glitch parameters, allowing for precise
manipulation of the clock signal during runtime. While we
assume in-person manipulation, a sophisticated attacker may
also tune these parameters remotely and dynamically, further
heightening the risk of such attacks.

III. FAULT INJECTION IN RISC-V PROCESSOR

Prior works predominantly evaluate cryptographic software
vulnerabilities using fault sensitivity analysis on specific appli-
cations like the final round of AES encryption, mostly through
post-silicon experiments [26], [4]. By contrast, our approach
integrates pre-silicon analysis with post-silicon validation to
reveal vulnerabilities in RISC-V processor. First, we analyze
instruction-level vulnerability across pipeline stages to identify
potential attack vectors holistically. Second, we pinpoint the
attack points of instructions via pre-silicon analysis. Lastly,
we validate the alignment of pre- and post-silicon insights.

A. Fault Injection Methodology

To evaluate the effectiveness of the clock glitch attack on the
RISC-V processor, we selected an embedded neural network
inference code as a test case [32], which we compiled to
relevant assembly code using the RISC-V toolchain.

2“Fault intensity refers to the level of physical stress exerted on the micro-
processor hardware, pushing it beyond its standard operating limits.” [26]

TABLE I
RISK ASSESSMENT TABLE (RAT) ILLUSTRATING THE TOTAL FAULTS

OBSERVED AND VULNERABILITY RANKINGS (IN PARENTHESES) ACROSS
PIPELINE STAGES, WITH 1 BEING THE LEAST VULNERABLE AND 8 BEING

THE MOST VULNERABLE INSTRUCTION.

Instruction Total Faults Observed (Rank)
IF/ID ID/EX EX/WB

c.addi 1(2) 13(5) 16(6)
auipc 0(1) 0(1) 5(3)

jal 37(5) 33(8) 17(7)
bne 6(4) 4(3) 8(5)
bge 4(3) 15(6) 3(2)

c.lwsp 4(3) 2(2) 7(4)
c.mv 0(1) 2(2) 0(1)

lw 28(6) 23(7) 20(8)

Given the broad set of instructions in the RISC-V ISA, we
focused our analysis on eight instructions that were particu-
larly relevant to the test case3, e.g., the loop-trip count check
in the softmax layer, which translates to a branch instruction
in the RISC-V ISA, reading or writing weights or biases from
memory using load and store instructions, respectively.

Inducing timing violations with clock glitches involves
strategically inserting a glitch at the precise moment. The
glitch disrupts and violates the critical timing path of the
targeted instruction, causing execution errors. To test this, we
designed experiments targeting each instruction as it passes
through individual pipeline stages. This approach aimed to
achieve three objectives: (1) identify the timing path associated
with each instruction in each pipeline stage; (2) determine the
vulnerability of each instruction at each pipeline stage; and
(3) minimize the search space for post-silicon validation by
identifying glitch parameters that resulted in critical faults.
For each instruction, we utilized 172 distinct clock glitch
configurations, varying the offset (Toffset) and width (Twidth)
of the glitch between 0.278ns and 8.89ns, with a step size
of 0.5ns4. These configurations were small enough to induce
precise timing violations and maintain efficiency in conducting
numerous fault injection experiments.

A total of 9248 experiments were conducted (172 configura-
tions × 4 pipeline stages × 8 instructions). These experiments
allowed us to determine (1) the exact timing path of each
instruction to induce a timing violation, (2) which instructions
were vulnerable and at which pipeline stages, and (3) what
the impacts of glitches on these instructions are. This analysis
reduced the initial 9248 glitch configurations to 248, resulting
in a reduction of 97.31%.
Critical fault. During our experiments, we observed eight
distinct categories of fault behavior. However, we only focused
on critical faults. In our work, we define a fault to be critical
if it manifests in one of the following ways:

• Instruction skip. The instruction is either skipped en-
tirely or its result is corrupted, e.g., for a load instruction,

3We targeted the instructions at the critical subroutines of our test applica-
tion, such as classification in the final layer (softmax layer), managing loop
exits (branch), and jump calls to subroutines.

4For a design running at 50 MHz, we chose the T offset and T width
to suit the 20ns clock period. These ranges allowed us to induce precise timing
violations while effectively capturing potential fault-inducing scenarios. The
choice of 0.5ns is also not random and is informed by post-silicon capabilities.

Fig. 2. RISC-V instruction format depicting the opcode, register fields,
function codes, and immediate values, highlighting the utilization of various
fields depending on the instruction type, e.g., R-type, I-type. Corruption in
different fields of instruction can lead to distinct behaviors.

its old value is retained, or a new corrupted value is stored
in the destination register when the instruction is retired.

• PC redirection. The PC is redirected to an incorrect
address, thereby disrupting program flow, e.g., in the case
of a jump instruction, the next PC value is computed by
summing the current PC value with an immediate offset.
A corruption in either of these values leads to faults in
subsequent PC calculations.

Non-critical fault. Clock glitches are known to freeze the
CPU, suspending it in an undefined state [33]. Recovery from
this state often requires a CPU reset. We classify such faults
as non-critical in terms of their limited application. Such faults
are beyond this study’s scope and thus not explored further.
Table I presents the selected eight instructions and the resulting
risk assessment table (RAT) categorizing critical faults. The
RAT has utility for both attackers, who can use it to identify
the vulnerable instructions in respective pipeline stages, and
for system designers aiming to secure their implementations
by addressing the vulnerabilities identified in the RAT. The
table lists the total number of critical faults observed. It also
assigns vulnerability ranks to each instruction, with a higher
rank indicating greater vulnerability to clock glitches5.

We utilized the RAT ranking to hypothesize the causes of
the faults and validated this hypothesis through our systematic
methodology, as elaborated in the next section.

B. Root-Cause of Failure

To analyze the origins of critical faults, we consulted
the RISC-V instruction set manual [34]. Fig. 2 shows the
instruction format for RISC-V ISA. The format consists of
an opcode, a destination register, source registers, and, de-
pending on the instruction type, either a sub-function (for
R-type instructions) or an immediate (imm) field (for I-type
instructions). A clock glitch that corrupts this format can have
four possible outcomes: a altering the opcode to execute an
unintended instruction, causing incorrect system behavior; b
corrupting the destination register, leading to incorrect data
storage; c corrupting source registers, causing data to be
fetched from incorrect locations; or d affecting the sub-
function or immediate fields, resulting in incorrect operation
execution or erroneous PC calculations.

To better understand this scenario, consider an example
involving the RISC-V processor. Fig. 3 illustrates the RISC-
V processor pipeline suffering from a clock glitch attack.
At every clock cycle, the PC points to the memory address
containing the next instruction to fetch. The fetched instruction

5In the RISC-V processor, pipeline registers are shared between adjacent
pipeline stages. Therefore, faults are presented as a cumulative sum for each
shared stage: IF/ID, ID/EX, and EX/WB).

Fig. 3. Visualization of the CV32e40x 4-stage pipeline processor. In the Fetch
stage, when the program counter loads the ‘and’ instruction from memory,
a clock glitch disrupts the operation, corrupting the pipeline registers shared
between the Fetch and Decode stages, resulting in the misclassification of the
legal ‘and’ instruction as an illegal instruction.

is stored in the IF/ID pipeline register6 which is shared
between the fetch (IF) and the decode (ID) stage (shown as
IF/ID in Fig. 3). Consider the scenario where the PC reaches
the value of 0xB5E, and an ‘AND’ instruction is fetched. A
precise clock glitch corrupts the instruction stored in the IF/ID
pipeline register—our technique in Section III-A has identified
this is an instruction that can be corrupted between the IF and
the ID stage without corrupting other pipeline stages.

Once an instruction reaches the decode-execute (ID/EX)
junction, if the instruction conforms to the RISC-V instruction
format rules, it proceeds to further execution; otherwise, it is
flushed from the pipeline. This flush skips the ‘illegal’ instruc-
tion, and the PC advances to the next valid instruction. The
RISC-V ISA classifies such invalid instructions as ‘illegal.’ In
this example, the clock glitch corrupted the fetched ‘AND’
instruction, causing it to be misclassified as ‘illegal’ and
subsequently skipped. As a result, no valid value is written to
the destination register associated with the ‘AND’ instruction.
The RISC-V instruction set manual specifies conditions for
flagging illegal instructions but does not prescribe explicit
corrective actions, instead recommending that instructions
must always remain valid. This lack of guidance places the
burden of implementing exception handling on the user. Our
analysis of the RISC-V source code showed that the inserted
clock glitch corrupted the IF/ID pipeline register. This register,
named if_id_pipe_o in the source code, is driven by a long
combinational path. The glitch caused a timing violation,
corrupting its contents. It holds the fetched instruction and
its control signals, passing them to the ID stage for decoding.
This register ensures the correct instruction flow and maintains
synchronization within the pipeline.

Fig. 4 illustrates the critical path we identified through pre-
silicon and source code analysis. Consider a jump (‘JAL’)
instruction that flows through this path. The ‘JAL’ instruction
computes the new target PC by summing the current PC
value of the decode stage (‘pc id’) with an immediate value
(‘imm uj type’) provided by the if_id_pipe_o register. The
if_id_pipe_o register derives its input from the ‘compressed
decoder’ module, which handles RISC-V’s compressed in-
struction set extension, converting 16-bit compressed instruc-

6In the RISC-V source code, the IF/ID pipeline register is named
if_id_pipe_o. In this work, we alternatively refer to it by the same name
to maintain consistency.

Fig. 4. The root cause of failure in the CV32e40x processor. A clock
glitch disrupts the long combinational logic path, causing the input to the
compressed decoder module to be latched prematurely (see a⃝). This leads
to misclassifying legal instructions as illegal in subsequent clock cycles.

tions into their 32-bit equivalents. A clock glitch corrupts
the input flowing into the ‘compressed decoder,’ resulting
in an incorrect format being stored in if_id_pipe_o. This
ultimately affects the ‘imm u type’ field and leads to incorrect
PC calculations, causing the processor to jump to an incorrect
address. The incorrect PC value causes the instruction to
be classified as ‘illegal’. Without an exception handler, the
processor skips the illegal instruction to resolve the error.

C. Crafting the Proposed Attack

Building on insights from § III-A and III-B, we identified
the timing parameters required to induce timing violations
from RAT and the critical paths susceptible to clock glitches
through root-cause analysis. RAT also helped us identify load
(lw) and jump (jal) as the most vulnerable instructions. There-
fore, we refined the clock glitch parameters with our prime
focus being these two instructions, resulting in our proposed
attack. By further tuning these parameters, we discovered two
additional ranges that an attacker could utilize to either skip
specific instructions or redirect the program flow without
raising an ‘illegal’ instruction flag (refer § IV for details on
the parameters). This allows sophisticated attackers to cause
significant disruptions while leaving the processor unaware of
the corruption.

Expected outcomes of the our attack are outlined below:
• Case #1: The instruction is skipped, triggering the ‘ille-

gal’ flag and the exception handler.
• Case #2: The destination register (‘rd’) is zeroed while

triggering the ‘illegal’ flag and the exception handler.
• Case #3: The destination register (‘rd’) is zeroed without

triggering the ‘illegal’ flag or the exception handler.
• Case #4: The destination register (‘rd’) is partially

corrupted without triggering the ‘illegal’ flag or the
exception handler.

In Case #1 and Case #2, the ‘illegal’ flag triggers an
exception, which redirects the program to the address of the
exception handler. If no exception handler is defined, the
program simply skips the instruction and continues execution.
By contrast, the ‘illegal’ instruction flag is not even triggered

Fig. 5. Circuit diagram of the clock glitch injection setup using three
PLL-generated clocks to tune glitch parameters. A core trigger signal and
intermediate signals vary glitch position and timing.
in Case #3 and Case #4. This is because in these cases, the
input to the ‘compressed decoder’ is latched just in time,
avoiding detection as an ‘illegal’ instruction (refer a⃝ in
Fig. 4). However, the output of the ‘compressed decoder’ still
fails to meet timing constraints (refer b⃝ in Fig. 4). Table II
summarizes the parameter ranges for testing and evaluating
the proposed attack. This failure results in the register writes
of the targeted instruction being either (a) zeroized or (b)
partially corrupted, without triggering the ‘illegal’ flag during
execution. Consequently, the processor remains unaware
of the silent fault. Such vulnerabilities pose significant risks
to critical applications, including neural networks. A well-
timed attack could silently corrupt crucial operations, such as
loading weights or biases from memory, potentially leading to
undetectable critical misclassifications.

IV. PRE-SILICON AND POST-SILICON RESULTS

Test-Platform. We used the Vivado 2020.2 and the CV32e40x
soft-core processor for the pre-silicon instrumentation. As part
of our case study, we explored the impact of clock glitch-
based fault injections on a neural network algorithm running
inferences for the MNIST dataset [32]. We ran the RISC-V
processor at 50 MHz with a timing constraint of 20ns specified
in the constraint (*.xdc) file.

We deployed the CV32e40x soft-core processor on the
Xilinx Kintex-7 XC7K160T FPGA platform for post-silicon
verification. Using the RISC-V compiler toolchain we gen-
erated the binary file of the inference code, comprising the
necessary machine instructions and associated data. A custom
controller module was developed to enable data transmission
from the host PC to the FPGA. We used the FPGA’s internal
PLL to introduce glitches to the clock signal. When the
processor core detects the target instruction, it relays a trigger
signal to the glitch circuitry, as depicted in Fig. 5. The
PLL generates three distinct clock signals: ‘CLK0’, which
serves as the reference base clock at 50 MHz, ‘CLK1’ and
‘CLK2’, which are phase-shifted versions of ‘CLK0’. We can
modulate the glitch parameters by dynamically reconfiguring
the phase difference among these clocks. The phase difference
of ‘CLK1’ relative to ‘CLK0’ and ‘CLK2’ defines Toffset and

TABLE II
EXPERIMENTAL RESULTS SHOWING VARIOUS GLITCH OFFSET AND WIDTH
CONFIGURATIONS THAT LEAD TO OUTPUT CORRUPTION. ADJUSTING THE

GLITCH WIDTH PRODUCES EFFECTS SUCH AS INSTRUCTION SKIPPING,
LOADING ALL ZEROES, OR SELECTIVE CORRUPTION OF THE MSBS.

Case
#

Toffset

(ns)
Twidth

(ns)
Tglitch

(ns)
Illegal Flag

Raised
Effect

Observed
1

0.833

≤2.967 ≤3.8 ✓ Instruction Skip
2 3.067 – 3.567 3.901 – 4.400 ✓ Data Zeroization
3 3.667 – 4.289 4.504 – 5.121 ✗ Data Zeroization
4 4.289 – 4.339 5.112 – 5.172 ✗ Partial Data Corruption

Fig. 6. (a) C-code for MNIST inference and (b) the targeted ‘load’ instruction
in the assembly by the proposed attack.

Twidth, respectively. To investigate clock glitches effect, we
integrated the internal logic analyzer (ILA) into our design to
capture, observe, and analyze core signals, such as, the PC
value, register file contents, and critical control signals [35].
The ILA monitored and sampled these signals at 300 MHz fre-
quency, the maximum reliable limit for our target hardware7.

A. Pre-Silicon Verification

We used gate-level post-synthesis netlist to orchestrate our
attack and inject faults for two reasons: (i) it is the earliest
design stage that includes the circuit’s timing information.
Analysis at this stage allows for identifying potential vulnera-
bilities and timing-related issues that could be challenging and
costly to address later in the design process, and (ii) it enables
rapid and detailed analysis with minimal overhead compared
to post-silicon evaluations. Fig. 6(a) and (b) present a snippet
of the C code and the corresponding assembly code of the
inference algorithm, respectively. The attack target is the ‘lw’
instruction with a PC value of 0x386.

We induced timing violations by injecting glitches into the
nominal clock, adjusting Toffset and Twidth to ensure that
the data does not reach the if_id_pipe_o register in time for
the next clock edge. Fig. 7(a) shows fault-free execution of
the neural network inference model (without clock glitch). A
64-bit counter increments with each rising clock edge to mark
time progression. At clock cycle 1197, the ‘lw’ instruction is
fetched with a PC value of 0x386. In a fault-free execution, the
instruction completes when the counter reaches 1201, loading
the value 0x42026ada into the register ‘x11’, as shown in red.

Fig. 7(b) shows the first-order effect of the clock glitch (red
ellipses), showing zeroization of register ‘x11’ associated with
the ‘lw’ instruction as expected in Case #2 and Case #3. It
also depicts the second-order effect (marked in yellow rectan-
gles), where the immediate value in the ‘JAL’ instruction is
corrupted, resulting in incorrect ‘pc if’ redirection. Normally,
‘JAL’ correctly redirects ‘pc if’ to offset 0x4074, as shown in
Fig. 6(b) and 7(a). Through our proposed work, however,
‘pc if’ is incorrectly redirected to 0xF3698 due to premature
latching in the ‘compressed decoder’ module, as explained in
§ III-C, causing cascading faults in the program flow.

7Beyond this frequency, the signals and values start to exhibit unreliability,
compromising accurate observations.

Fig. 7. Our proposed work targetting the RISC-V ISA in a neural network inference algorithm [32] is depicted in three scenarios: (a) without and with a
clock glitch in (b) pre- and (c) post-silicon. The first-order effect of the clock glitch attack corrupts the destination register ‘x11’ associated with the ‘lw’
instruction, loading all zeroes. The second-order effect corrupts the immediate field of the ‘JAL’ instruction, disrupting the normal program flow and causing
incorrect control flow redirection. In (c), the glitched clock signal is drawn by hand due to the limited sampling capacity of the integrated logic analyzer.

B. Post-Silicon Verification

We were able to successfully reproduce similar effects
at the post-silicon level for Case #1, Case #3, and Case
#4. Fig. 7(c) illustrates the verification results for Case #1,
where the attacked load instruction at the PC value 0x386
is skipped (highlighted in red ellipse), raising the illegal
instruction flag. The glitched clock signal is drawn by hand
due to the limited sampling capacity of the ILA. The glitched
clock experiences rapid transitions from low ↔ high within
0.833ns, significantly shorter than the ILA’s sampling period
of 3.33ns, resulting in undersampling of the glitch transitions.

For Case #2, the fault effects differ between pre-silicon and
post-silicon experiments. The ‘x11’ register loaded non-zero
values during post-silicon verification versus all zeroes in pre-
silicon. We speculate that the clock glitch that the prematurely
latched input to the ‘compressed decoder’ differs between pre-
silicon and post-silicon results. This input consisting of the
fetched instruction dictates the final value written to the ‘x11’
register as explained in § III-B. Also, the fetched PC gets
redirected to 0xFFF337A4 instead of 0xF3698, as shown in
Fig.7(b). Although the glitch effects are similar for the same
settings, we speculate that the differences in corrupted values
arise from critical path delay variations between post-synthesis
and place-and-route netlists. We confirmed the existence of
silent faults for Case #3 and Case #4 in post-silicon.

V. ACKNOWLEDGEMENTS

This work is funded in part by the Office of Naval Research
(ONR) grant N00014-23-1-2103. The views, opinions and/or
findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. Approved for
public release. Distribution is unlimited.

VI. CONCLUSION

This work uncovers critical vulnerabilities in RISC-V soft-
core processors under clock glitch-based fault injection at-
tacks, revealing vulnerabilities such as instruction skips, data
corruption, and illegal control flow execution. Our pre-silicon
fault analysis of the CV32e40x pipeline ranks instructions
based on their susceptibility at various pipeline stages. Our

findings highlight pivotal attack vectors and emphasize the
importance of pre- and post-silicon validation, stricter timing
constraints, and improved exception handling. Future research
could extend these techniques to other architectures, with an
emphasis on developing automated, dynamic countermeasures.

REFERENCES

[1] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
Intel SGX,” in IEEE Symposium on Security and Privacy, 2020.

[2] L. Claudepierre, P.-Y. Péneau, D. Hardy, and E. Rohou, “TRAITOR: a
low-cost evaluation platform for multifault injection,” in International
Symposium on Advanced Security on Software and Systems, 2021.

[3] N. Nasir, A. Ali Malik, I. Tahir, A. Masood, and N. Riaz, “Ephemeral
key-based hybrid hardware obfuscation,” in 2022 19th International
Bhurban Conference on Applied Sciences and Technology (IBCAST),
2022, pp. 646–652.

[4] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure em-
bedded software: Threats, design, and evaluation,” Journal of Hardware
and Systems Security, vol. 2, pp. 111–130, 2018.

[5] J. Qiu and A. Aysu, “SHIFT SNARE: Uncovering Secret Keys in
FALCON via Single-Trace Analysis,” Cryptology ePrint Archive, Paper
2025/146, 2025.

[6] A. A. Malik, E. Karabulut, A. Awad, and A. Aysu, “Enabling secure
and efficient sharing of accelerators in expeditionary systems,” Journal
of Hardware and Systems Security, vol. 8, no. 2, pp. 94–112, 2024.

[7] M. Gabrick, R. Nicholson, F. Winters, B. Young, and J. Patton, “FPGA
considerations for automotive applications,” Tech. Rep., 2006.

[8] I. Grout, Digital systems design with FPGAs and CPLDs. Elsevier,
2011.

[9] S. Hauck, “The roles of FPGAs in reprogrammable systems,” Proceed-
ings of the IEEE, vol. 86, no. 4, pp. 615–638, 1998.

[10] A. Gangolli, Q. H. Mahmoud, and A. Azim, “A systematic review of
fault injection attacks on IOT systems,” Electronics, vol. 11, 2022.

[11] A. A. Malik, A. Ullah, A. Zahir, A. Qamar, S. K. Khattak, and P. Re-
viriego, “Isolation design flow effectiveness evaluation methodology for
Zynq SoCs,” Electronics, vol. 9, no. 5, p. 814, 2020.

[12] A. A. Malik, E. Karabulut, and A. Aysu, “EPOCH: Enabling Preemption
Operation for Context Saving in Heterogeneous FPGA Systems,” arXiv
preprint arXiv:2501.16205, 2025.

[13] E. Karabulut, A. A. Malik, A. Awad, and A. Aysu, “THEMIS: Time,
Heterogeneity, and Energy Minded Scheduling for Fair Multi-Tenant
Use in FPGAs,” arXiv preprint arXiv:2404.00507, 2024.

[14] B. Sultana, A. Ullah, A. A. Malik, A. Zahir, P. Reviriego, F. B. Muslim,
N. Ullah, and W. Ahmad, “VR-ZYCAP: A Versatile Resource-Level
ICAP Controller for ZYNQ SOC,” Electronics, vol. 10, no. 8, p. 899,
2021.

[15] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1555–1571, 2019.

[16] T. Chamelot, D. Couroussé, and K. Heydemann, “SCI-FI: control signal,
code, and control flow integrity against fault injection attacks,” in IEEE
Design, Automation & Test in Europe Conference & Exhibition, 2022.

[17] C. Gongye and Y. Fei, “One Flip Away from Chaos: Unraveling Single
Points of Failure in Quantized DNNs,” in IEEE International Symposium
on Hardware Oriented Security and Trust. IEEE, 2024, pp. 332–342.

[18] M. Abdelkhalek, J. Qiu, M. Hernandez, A. Bozkurt, and E. Lobaton,
“Investigating the relationship between cough detection and sampling
frequency for wearable devices,” in 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). IEEE, 2021, pp. 7103–7107.

[19] A. M. Shuvo, T. Zhang, F. Farahmandi, and M. Tehranipoor, “A com-
prehensive survey on non-invasive fault injection attacks,” Cryptology
ePrint Archive, 2023.

[20] P. Nasahl and S. Mangard, “SCRAMBLE-CFI: Mitigating Fault-Induced
Control-Flow Attacks on OpenTitan,” in Proceedings of the Great Lakes
Symposium on VLSI 2023, 2023, pp. 45–50.

[21] J. Zhang and G. Qu, “Recent attacks and defenses on FPGA-based
systems,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 3, pp. 1–24, 2019.

[22] L. Antoni, R. Leveugle, and B. Fehér, “Using run-time reconfiguration
for fault injection applications,” IEEE Transactions on Instrumentation
and Measurement, vol. 52, no. 5, pp. 1468–1473, 2003.

[23] I. Verbauwhede, D. Karaklajic, and J.-M. Schmidt, “The Fault Attack
Jungle - A Classification Model to Guide You,” in 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2011, pp. 3–8.

[24] P.-Y. Péneau, L. Claudepierre, D. Hardy, and E. Rohou, “NOP-Oriented
Programming: Should we Care?” in 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 2020.

[25] J. Grycel and P. Schaumont, “Simplifi: hardware simulation of embedded
software fault attacks,” Cryptography, vol. 5, no. 2, p. 15, 2021.

[26] B. Yuce, N. F. Ghalaty, and P. Schaumont, “Improving fault attacks on
embedded software using RISC pipeline characterization,” in Workshop
on Fault Diagnosis and Tolerance in Cryptography. IEEE, 2015.

[27] Z. Kazemi et al., “On a low cost fault injection framework for security
assessment of cyber-physical systems: Clock glitch attacks,” in IEEE
4th International Verification and Security Workshop, 2019.

[28] B. Yuce, N. Ghalaty, H. Santapuri, C. Deshpande, and P. Schaumont,
“Software Fault Resistance is Futile: Effective Single-Glitch Attacks,”
in Workshop on Fault Diagnosis and Tolerance in Cryptography, 2016.

[29] Z. Kazemi, A. Norollah et al., “An in-depth vulnerability analysis of
risc-v micro-architecture against fault injection attack,” in 2021 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2021.

[30] Z. Liu, D. Shanmugam, and P. Schaumont, “FaultDetective: Explainable
to a Fault, from the Design Layout to the Software,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2024.

[31] P. Nasahl, M. Osorio, P. Vogel, M. Schaffner, T. Trippel, D. Rizzo, and
S. Mangard, “SYNFI: pre-silicon fault analysis of an open-source secure
element,” arXiv preprint arXiv:2205.04775, 2022.

[32] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded binarized
neural networks,” arXiv preprint arXiv:1709.02260, 2017.

[33] C. Spensky, A. Machiry et al., “Glitching Demystified: Analyzing
Control-flow-based Glitching Attacks and Defenses,” in 51st IEEE/IFIP
International Conference on Dependable Systems and Networks, 2021.

[34] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-
V instruction set manual, volume I: User-level ISA, v2.0,” EECS
Department, University of California, Berkeley, Tech, p. 4, 2014.

[35] UG908, Vivado Design Suite User Guide, “Programming and Debug-
ging,” San Jose, CA, USA, 2023.

	Introduction
	Background
	The Research Gap
	Impact of Clock Glitch
	Threat Model

	Fault Injection in RISC-V Processor
	Fault Injection Methodology
	Root-Cause of Failure
	Crafting the Proposed Attack

	Pre-Silicon and Post-Silicon Results
	Pre-Silicon Verification
	Post-Silicon Verification

	Acknowledgements
	Conclusion
	References

