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Abstract. eIDAS 2.0 (electronic IDentification, Authentication and trust
Services) is a very ambitious regulation aimed at equipping European cit-
izens with a personal digital identity wallet (EU Digital Identity Wallet)
on a mobile phone that not only needs to achieve a high level of security,
but also needs to be available as soon as possible for a large number of
citizens and respect their privacy (as per GDPR - General Data Protec-
tion Regulation).
In this paper, we introduce the foundations of a digital identity wallet
solution that could help move closer to this objective by leveraging the
proven anonymous credentials system BBS (Eurocrypt 2023), also known
as BBS+, but modifying it to avoid the limitations that have hindered
its widespread adoption, especially in certified infrastructures requiring
trusted hardware implementation.
In particular, the solution we propose, which we call BBS#, does not rely,
contrary to BBS/BBS +, on bilinear maps and pairing-friendly curves
(which are not supported by existing hardware) and only depends on the
hardware implementation of well-known digital signature schemes such
as ECDSA (ISO/IEC 14888-3) or ECSDSA (also known as ECSchnorr,
ISO/IEC 14888-3) using classical elliptic curves. More precisely, BBS#
can be rolled out without requiring any change in existing hardware or
the algorithms that hardware supports.
BBS#, which is proven secure in the random oracle model, retains the
well-known security property (unforgeability of the credentials under
the (gap) q-SDH assumption) and anonymity properties (multi-show
full unlinkability and statistical anonymity of presentation proofs) of
BBS/BBS+.
By implementing BBS# on several smartphones using different secure
execution environments, we show that it is possible to achieve eIDAS
2.0 transactions which are not only efficient (around 70 ms on Android
StrongBox), secure and certifiable at the highest level but also provide
strong (optimal) privacy protection for all European ID Wallet users.

1 Introduction

The so-called eIDAS 2.0 European regulation adopted May 20th, 2024, is a very
ambitious one, aiming at changing the digital (and physical) life of European
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citizens and corporations alike by providing them a personal digital identity
wallet on a mobile phone to perform transactions on their behalf, not only for
eGov services, but also for any daily transaction, including very critical ones,
like payments. In order to achieve these ambitious goals, these wallets and the
associated architectural framework need to simultaneously ensure security (of the
digital credentials issued to users) and privacy (of the usage of these credentials)
but also reach (the ability to work for as many users and as many technical
environments as possible) and a proper user experience (UX). Given the impacts
of the technical choices that will be made on hundreds of millions of individuals,
intense discussions continue on the best solutions to deploy to comply with these
requirements. Although the security aspect has gathered most of the focus of
initial talks by designated experts, privacy and data protection is only recently
emerging as a major aspect that still needs to be properly tackled, the goal
obviously being to add privacy without relinquishing on any of the other aspects.

To solve the privacy issues raised by the EU Digital Identity Wallet (EUDI
Wallet), renowned cryptographers have proposed the use of anonymous creden-
tials1. Introduced by David Chaum [14], anonymous credentials systems allow
users to obtain a credential from an issuer and then, later, prove possession
of this credential, in an unlinkable way, without revealing any additional infor-
mation. This primitive has attracted a lot of interest as it complies with data
minimization principles that consist in preventing the disclosure of irrelevant
and unnecessary information. Typically, an anonymous credentials system is ex-
pected to enable users to reveal a subset of the attributes associated with their
credentials while keeping the remaining ones hidden (selective disclosure)2. For
example, they can prove that they have a driving license, so that they can access
sites reserved for adults, without having to reveal their identity or date of birth.

This handset of cryptographers specifically recommended to use the BBS/BBS+
[34] family of anonymous credentials, which are efficient, mathematically proven
secure, and are currently the object of a standardization effort [25].

However, the European Commission did not consider this solution3 mainly
because BBS/BBS+ uses bilinear maps and pairing-friendly curves (which are
not supported by trusted phone hardware) but also because BBS/BBS+ does not
use SOG-IS4 sanctioned protocols for the implementation of the holder binding
feature. This feature states that only the legitimate holder of a credential shall be
able to perform transactions with that credential. In practice, this is achieved by
binding that credential to a private key stored in a trusted hardware (or Secure
Element) of the credential holder’s mobile device and making presentation of
such a credential impossible without that private key.
1 https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-

framework/discussions/211#discussioncomment-9882388
2 Current solutions such as ISO mDL (ISO/IEC 18013-5) provide selective disclosure

but all credentials presentations remain traceable by colluding issuers and verifiers.
Therefore, they do not adequately protect users’ privacy.

3 https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-
framework/discussions/211#discussioncomment-9882388

4 https://www.sogis.eu/
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1.1 Related Work on Pairing-Free Anonymous Credentials

One of the most prevalent pairing-free anonymous credentials systems is Mi-
crosoft’s U-Prove [29] which is based on a blind signature scheme due to Brands
[9]. It is quite efficient, as it works in prime-order groups, and supports the se-
lective disclosure of attributes. Unfortunately, U-Prove does not provide multi-
show unlinkability (multiple presentations of the same credential are linkable).
Besides, Benhamouda et al. [7] have shown that U-Prove issuance protocol is
vulnerable to a parallel attack (ROS attack). Specifically, a user simultaneously
running a large number (l) of blind issuance sessions with the issuer would be
able, after these l sessions, to forge an additional U-Prove credential for the same
set of attributes (and thus fraudulently obtain l+1 different U-Prove credentials
instead of just l). Very recently, Orrù et al. [28] provided a variant of the U-Prove
issuance protocol that is secure in a concurrent setting.

Baldimsti and Lysyanskaya have proposed a slightly less efficient pairing-
free anonymous attribute-based credentials system [2]. However, similarly to
U-Prove, this system is one-show (i.e. credential presentations are linkable if a
credential is used more than once).

IBM’s Identity Mixer, commonly known as Idemix [27], is built on the Camenisch-
Lysyanskaya (CL) signature scheme [10]. Unlike the above cited credentials sys-
tems, Idemix provides multi-show unlinkability but at the cost of a less efficient
proof of possession. Indeed, the used CL signatures are based on the Strong RSA
assumption [3]. This implies large RSA parameters making Idemix unsuitable
for current (constrained) Secure Elements.

Chase et al. [13] have opted for the use of symmetric key primitives, instead
of digital signatures, to achieve better performance. More precisely, they used
algebraic Message Authentication Codes (MACs), which relies on group opera-
tions rather than block ciphers or hash functions, as the main building block of
their credentials systems. Their two proposals, denoted MACGGM and MACDDH,
assume that the credential issuer and the verifier share a secret key. In such a
setting, the anonymous credentials system is referred to as Keyed-Verification
Anonymous Credentials (KVAC). The main drawback of their pairing-free KVAC
systems is that they are tailored to specific settings in which the issuer also acts
as verifier, as in the case of e-government or public transportation. They are not
suited to the more general setting, envisioned for the EUDI Wallet, in which the
issuer and the verifier are two distinct entities that do not necessarily share a
secret key.

In [4], Barki et al. proposed a more efficient KVAC based on a different
algebraic MAC called MACBB. They also shown how to turn their KVAC system
into an efficient publicly verifiable anonymous credentials system. Unfortunately,
they have to rely on pairings to transform their KVAC into a publicly verifiable
anonymous credentials system.

1.2 Motivation

In this paper, our objective is to design an efficient anonymous credential (AC)
system that meets the requirements put forth in the eIDAS 2.0 regulation. This
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means that our AC system should be pairing-free, and the holder binding feature
should be implementable on certified hardware (typically Secure Elements or
Hardware Security Modules) using SOG-IS certified digital signature algorithms
(ECDSA or ECSDSA/ECSchnorr).

To this end, we first introduce a new algebraic MAC scheme which is the
secret key and pairing-free variant of BBS [34] which we naturally call MACBBS.5
Next, we use it to construct a practical pairing-free KVAC, which is proven secure
under classical assumptions.

Next, we show how to turn it into an efficient pairing-free and publicly veri-
fiable anonymous credentials system. To achieve this, we use a recent technique
(Oblivious Issuance of Proofs) developed by Orrù et al. [28].

Finally, we show how to distribute the holder’s computations, during the ver-
ifiable presentation of their credentials to a verifier, between a mobile application
and the Secure Element embedded in their mobile phone. We call the resulting
anonymous credential system BBS#.

To demonstrate its efficiency and suitability for the EUDI Wallet, we imple-
mented BBS# on trusted mobile hardware. We found that eIDAS 2.0 transac-
tions can be performed in less than 100 ms when using Android StrongBox SE
on the user’s smartphone.

1.3 Organization

This paper is structured as follows. Section 2 introduces our main notation and
the necessary building blocks. In particular, we introduce our algebraic MAC
scheme called MACBBS. In Section 3, we describe our pairing-free KVAC based
on MACBBS and prove its security in the random oracle model. Next, in Section 4
we explain how our KVAC can be turned into a traditional (pairing-free) public-
key anonymous credential system. In Section 5, we explain how to distribute
the computations on the user’s side between a SE and a wallet application on
their mobile phone. Finally, Section 6 presents the efficiency and complexity
evaluations, along with the implementation benchmarks of BBS#.6

2 Preliminaries

2.1 Notation

We introduce some notation used throughout this document. To state that x
is chosen uniformly at random from the set S, we use one of the two follow-
ing notations x

R←S or x∈RS. In addition, −→m will denote the vector or list

5 Orrù recently proposed independently the same algebraic MAC scheme in eprint
2024/1552.

6 Obviously, BBS# also works in a pairing-based setting, with pairing-friendly curves.
In addition, BBS# is compatible with different data formats, such as ISO mDL
(ISO/IEC 18013-5).
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(m1,m2, . . . ,mn), also written as {mi}ni=1. λ will denote the security param-
eter and 1λ will represent the security parameter in unary form. All algorithms
are probabilistic, unless otherwise indicated. By y ← A(x1, x2, . . . , xn), we de-
note the action of running A on inputs (x1, x2, . . . , xn) and assigning the output
to y. We write y ← AO(x1, x2, . . . , xn) to indicate that A is an algorithm, with
oracle access to some algorithm or set of algorithms O, that takes as inputs
(x1, x2, . . . , xn), and assigns the output to y.

We use the term "Experiment" in the context of security definitions and
proofs. An experiment will be denoted Exp. An experiment Exp in which an
adversary A interacts with a challenger C to break the security property prop of
a scheme Schem is denoted by Expprop

A (1λ).

2.2 Zero-Knowledge Proofs (ZKP)

A Zero-Knowledge Proof of Knowledge (ZKPK) [22] is an interactive protocol
between a prover P and a verifier V, where the prover attempts to convince the
verifier of the knowledge of some secrets verifying a given statement, without
revealing any information about the said secrets. A ZKPK should satisfy three
properties, namely (i) completeness (i.e. a valid prover should be able to convince
an honest verifier with overwhelming probability), (ii) soundness (i.e. a malicious
prover should be rejected with overwhelming probability), (ii) zero-knowledge
(i.e. the proof reveals no information about the secret(s)). In our constructions,
we use as building blocks non-interactive zero-knowledge proofs of knowledge (or
signatures of knowledge, SoK for short), obtained with a heuristic transformation
such as Fiat-Shamir [18]. We use the Camenisch-Stadler notation [12], where,
for example, π := SoK{α, β : y = gα ∧ z = gβ}[m] denotes a signature of
knowledge of secrets α, β, verifying the statement on the right side of the colon.
The signature of knowledge itself is generated on the message m. If the message
is empty, we use the following notation to denote this signature of knowledge:
π := PoK{α, β : y = gα∧z = gβ}.

In the random oracle model (ROM) [6], one can use the forking lemma [30]
to extract the secrets from such a signature of knowledge if correct care is taken
that the prover can indeed be efficiently rewound. Moreover, in the ROM one
can simulate such signatures of knowledge for unknown secrets [30].

2.3 Oblivious Issuance of Proofs (OIP)

For our (pairing-free) anonymous credentials scheme, we will use a specific
ZKPK, namely a proof of equality of discrete logarithms [15], denoted πDLEQ,
that can be requested anonymously and issued obliviously [28], i.e., in such a
way that it cannot be linked back to the interaction that produced it: πDLEQ :=
PoK{α : B = Aα∧h = gα}, where α is the prover’s secret, g and h are two public
generators of a cyclic group G and A and B are two generators of G satisfying
B = Aα but which are unknown (blinded) to the prover.
More precisely, the proof will be issued in such a way that the prover will not
be able to link (A,B, πDLEQ) to its respective issuance (obliviousness) and the
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verifier will not be able after the issuance of l such proofs, even in a concurrent
manner, to forge, on its own, a new valid proof (one-more unforgeability).

The resulting proof is transferable and can be verified non-interactively by
anyone.

2.4 Signature Schemes with Key Blinding

To protect their privacy, users in our anonymous credential scheme will make use
of specific signature schemes that support key blinding a.k.a., key randomization
[19]. Signature schemes with this property have the advantage that one can
randomize or blind the original key pair (sk, pk) to a new random key-pair (sk′,
pk′) and sign a message m with the seemingly unrelated key (sk′). Of course, in
our context, the user will have to prove (in ZK) that pk′ is a randomized version
of a public key pk that has been certified by a given issuer. The main goal of
this randomization is to ensure that a verifier will not be able to trace a user
from the signatures the latter issued. In other words, the former should not be
able to distinguish between two signatures using two fresh keys obtained from
the randomization of the same long-term key sk and two signatures using two
fresh keys but obtained from the randomization of two distinct long-term keys
sk and sk∗.

Obviously, the signatures generated by a user should be unforgeable and
this should even hold when the adversary is allowed to learn message / signa-
ture pairs made with respect to randomized public keys that they have chosen
(unforgeability).

We propose two concrete signature schemes with key blinding (see Section 5):
ECSDSA (a.k.a. ECSchnorr) [24] with additive blinding and ECDSA [24] with
multiplicative blinding.

2.5 Computational Hardness Assumptions

The security of our MAC scheme and KVAC system relies on a set of computa-
tional hardness assumptions. In what follows, G denotes a cyclic group of prime
order p, where p is a λ-bit prime and λ a security parameter.

Discrete Logarithm (DL) Assumption. The Discrete Logarithm assumption holds
in G if it is computationally hard, given a generator g ∈ G and an element y ∈ G,
to compute the integer x ∈ Zp such that y = gx. The advantage w.r.t. an adver-
sary A in breaking this assumption will be denoted AdvDL

G,A(1
λ).

Decisional Diffie-Hellman (DDH) Assumption. The Decisional Diffie-Hellman
assumption holds in G if it is hard, given a generator g∈RG, two elements
ga, gb∈RG and a candidate X ∈ G to decide whether X = gab or not. This
is equivalent to decide, given g, h, ga, hb, whether a = b mod p or not. The
advantage w.r.t. an adversary A in breaking this assumption will be denoted
AdvddhG,A(1

λ).
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gap Discrete Logarithm (gap DL) Assumption. The gap Discrete Logarithm
assumption holds in G if DL is hard even in the presence of a DDH oracle
for the DL challenge (i.e. y = gx), that is an oracle which given a quadruple
(g, h, gx, hy) answers whether x = y mod p or not. The advantage w.r.t. an
adversary A in breaking this assumption will be denoted Advgap dl

G,A (1λ).

q-Strong Diffie-Hellman (q-SDH) Assumption. The q-Strong Diffie-Hellman as-
sumption holds in G if it is hard, given a generator g∈RG and (gx, gx

2

, . . . ,

gx
q

) ∈RGq as input, to output a pair (c, g
1

x+c ) ∈ Z∗
p ×G. The advantage w.r.t.

an adversary A in breaking this assumption will be denoted Advq−sdh
G,A (1λ).

This assumption is believed to be hard even if the adversary is given access
to a DDH oracle for the underlying DL challenge (i.e. y = gx).

gap q-Strong Diffie-Hellman (gap q-SDH) Assumption. The gap q-Strong Diffie-
Hellman assumption holds in G if q-SDH is hard even in the presence of a
DDH oracle for the DL challenge (the integer x ∈ Zp). The advantage w.r.t. an
adversary A in breaking this assumption will be denoted Advgap q−sdh

G,A (1λ).

q-Discrete Logarithm (q-DL) Assumption. The q-Discrete Logarithm assumption
holds in G if it is hard to recover x uniformly distributed over Zp, given as input
(gx, gx

2

, . . . , gx
q

) ∈RGq. The advantage w.r.t. an adversary A in breaking this
assumption will be denoted Advq−dl

G,A (1λ).

Algebraic Group model (AGM). In the algebraic group model [21], it is assumed
that adversaries know the representation of any group element they return. This
means that, after having received a list of group elements X1, X2, . . . , Xn, when-
ever the adversary returns a group element X, it must also return a list of
coefficients α1, α2, . . . , αn such that X =

∏
i X

αi
i . We call such adversaries alge-

braic.
The q-SDH assumption trivially implies the slightly more standard q-DL

assumption. The converse is not known to be true in general, but it is true for
algebraic adversaries [5].

2.6 Message Authentication Codes (MACs)

A Message Authentication Code (MAC) for a block of n messages is an authenti-
cation tag computed using a secret key that is shared between the issuer and the
verifier. More formally, a MAC scheme consists of the following four algorithms:

– Setup(1λ, n): On input a security parameter λ and an integer n, this algo-
rithm creates the public parameters pp of a MAC scheme generating authen-
tication tags on sets of n messages {mi}ni=1.

– KeyGen(pp): On input the public parameters pp, this algorithm generates
the secret key sk that is shared between the issuer and the verifier.
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– MAC(pp, sk, {mi}ni=1): On input the public parameters pp, a secret key sk
and n messages {mi}ni=1, this algorithm outputs a MAC, also known as a
tag, and denoted by τ , on the set of n messages {mi}ni=1.

– Verify(pp, sk, {mi}ni=1, τ): On input the public parameters pp, the secret key
sk, a set of n messages {mi}ni=1 and a tag τ , this algorithm outputs either 1
(valid) or 0 (invalid).

UF-CMVA Security. Usually, a probabilistic MAC scheme is considered secure
if it is unforgeable under chosen message and verification attack (UF-CMVA).
In other words, the adversary A can query two oracles: OMAC and OVerify.
OMAC provides her with a valid MAC on any set of n messages −→m = {mi}

n
i=1

of her choice whereas OVerify enables her to check the validity of any pair (−→m, τ).
Such an adversary should not be able to compute a pair (−→m′, τ ′) where τ ′ is a
valid MAC on the set of n messages −→m′ that has not already been queried to
the OMAC oracle.

A yet stronger security notion for probabilistic MACs, denoted sUF-CMVA,
exists. In such a variant, the adversary wins even if −→m′ has already been queried
to the OMAC oracle, as long as the oracle did not produce the pair (−→m′, τ ′).
Fig. 1 details the sUF-CMVA experiment ExpsUF−CMVA

A (1λ) between a chal-
lenger C and an adversary A. The adversary’s success probability, denoted by
AdvsUF−CMVA

A (1λ) is defined as Pr[ExpsUF−CMVA
A (1λ) = 1].

ExpsUF−CMVA
A (1λ)

1. pp← Setup(1λ, n);
2. sk ← KeyGen(pp);
3. (−→m′, τ ′) ← AO(pp), where O = (OMAC, OVerify);
4. if (−→m′ , τ ′) was obtained following a call to the OMAC oracle, then return 0.
5. Return Verify(pp, sk,−→m′, τ)

Fig. 1: sUF-CMVA security

2.7 An Algebraic MAC Scheme Based on BBS

Our pairing-free KVAC is based on a variant of Barki et al.’s scheme [4] called
MACBB. Our variant, which we call MACBBS, produces shorter authentication
tags than MACBB and can be seen as the secret key (MAC) variant of BBS [34].
MACBBS works as follows:

– Setup( 1λ, n): creates the system public parameters
pp = (G, p, g̃,g0, g1, g2, . . . , gn) where G is a cyclic group of prime order p,
a λ-bit prime, and g̃,g0, g1, g2, . . . , gn are random generators of G.



Making BBS Anonymous Credentials eIDAS 2.0 Compliant 9

– KeyGen(pp): selects a random value x∈RZp as the issuer’s secret key and
optionally computes the corresponding public key PKI = g̃x.

– MAC(pp, x, {mi}ni=1): takes as input a set of n messages −→m = {mi}ni=1 and
computes A = (g0g

m1
1 gm2

2 . . . gmn
n )

1
x+e , where e∈RZp. The MAC on −→m con-

sists of the pair (A, e) .

– Verify(pp, x, {mi}ni=1, A, e): checks the validity of the authentication tag
τ = (A, e) with respect to the set of n messages {mi}ni=1. The authentication
tag τ = (A, e) is valid on {mi}ni=1 only if (g0gm1

1 gm2
2 . . . gmn

n )
1

x+e = A.

Theorem 1. (Adapted from [34] Theorem 2) In the Algebraic Group Model
MACBBS is sUF-CMVA secure under the gap DL and gap q-DL assumptions.
More precisely, for every algebraic sUF-CMVA adversary A issuing at most q
requests to OMAC, there exist adversaries B1 and B2 such that

AdvsUF−CMVA
A (1λ) ≤ Advgap q−dl

G,B1

(
1λ

)
+Advgap dl

G,B2

(
1λ

)
+

1

p

The adversaries B1 and B2 have running times comparable to A.

Remark 1. The proof of this theorem follows along the lines of Theorem 2 of
[34]. The major difference is that the cited theorem holds in the AGM with a
pairing. The pairing allows to simulate a DDH oracle for the DL challenge x
(the issuer’s secret key). In our context, we have no pairings, but a DDH oracle
provided by our gap-DL and gap-q-DL challengers. We can therefore easily check
that Theorem 2 of [34] also holds in our (pairing-free) context.
MACBBS can also be proven secure in the standard model, under the gap q-SDH
assumption (along the lines of Theorem 1 of [34]). However, the corresponding
proof is not tight, as it incurs a multiplicative loss equal to the number of OMAC
queries.

Remark 2. A particular feature of MACBBS is that anyone can verify the validity
of a given MAC by himself (i.e. without neither knowing the private key x nor
querying the OVerify oracle). In fact, a MAC on −→m = {mi}

n
i=1 consists of a

pair (A, e) such that A = (g0g
m1
1 gm2

2 . . . gmn
n )

1
x+e . This implies that Ax+e =

g0g
m1
1 gm2

2 . . . gmn
n and hence B = g0g

m1
1 gm2

2 . . . gmn
n A−e = Ax. Therefore, if the

issuer of the MAC (A, e) also provides the following ZKPK
πDLEQ := PoK{α : B = Aα ∧ PKI = g̃α}, then anyone will be able to check if
the MAC is valid.

Remark 3. Our pairing-free (public-key) anonymous credential scheme (section
4) heavily relies on the fact that the above discrete logarithm equality proof
πDLEQ can be requested anonymously and issued obliviously on a randomized
version (Al, Bl) of the pair (A,B) ([28]).
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3 A Keyed-Verification Anonymous Credentials System
Based on MACBBS

Anonymous credential is a broad notion that usually covers any system that
allows an Identity Provider (also called an Issuer) to issue a credential (we will
sometimes call them Verifiable Credentials or VC for short) on user’s attributes
such that (1) the users can later prove that their attributes are certified and
(2) the elements revealed by the users when they show (we will sometimes also
say present and call this procedure a Verifiable Presentation or VP for short)
their credential to a verifier (or service provider) cannot be linked to a specific
issuance (unless the revealed attributes allow to do so). To better protect their
privacy, a user should be able to reveal to a verifier (also called a Relying Party,
RP for short) only the attributes strictly necessary for the requested service.
This property is known as selective disclosure of attributes.

Traditional anonymous credentials schemes rely on public-key primitives
(namely, digital signatures), with the issuer and verifier being two distinct en-
tities. KVACs proposed by Chase et al. [13] are the symmetric counterpart
of anonymous credentials schemes, using symmetric key primitives (algebraic
MACs) and are tailored to settings where the issuer of credentials is also the
verifier or more generally where the issuer and the verifier share the private
issuance key.

In this section, we first define Keyed-Verification Anonymous Credentials
(KVAC) systems as well as their requirements (but only for the specific use
case of selective disclosure which is the main privacy use case envisioned in
eIDAS 2.0). Next, we detail our new KVAC system that is built upon MACBBS.
Our KVAC significantly differs from the one of Barki et al.’s [4] in that all
the cryptographic algorithms and cryptographic computations performed on the
user’s side with our KVAC are supported by current certified secure elements
embedded on existing mobile phones.

3.1 Syntax

In this section, we follow the syntax of (multi-show) anonymous credentials sys-
tems from [31]. However, we adapt it to our specific (keyed verification) setting.

A KVAC is defined through the following algorithms which involve three
entities: a user U (also called a holder), an issuer I and a verifier V (who shares
a secret key with I).

– Setup(1λ, n): This algorithm takes as input a security parameter λ and a
bound n on the number of attributes to certify and outputs the public pa-
rameters of the system pp.

– IssKeyGen(pp): This algorithm takes as input the system public parameters
pp and outputs an issuer’s secret key skI and optionally a corresponding
public key pkI .

– UserKeygen(pp): This algorithm takes as input the system public parameters
pp and returns a user’s key pair (sk, pk).
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– (Obtain(sk, pkI , {mi}ni=1), Issue(pk, skI , {mi}ni=1): To obtain an anonymous
credential on a set of attributes {mi}ni=1, the user, running Obtain, interacts
with the issuer, running Issue. The former algorithm additionally requires
the user’s secret key sk and optionally the issuer’s public key pkI , whereas
the latter requires pk and skI . If the protocol does not abort, the user gets
a credential σ.

– (Show(pkI , sk, {mi}ni=1,D, σ), Verify(skI , {mi}i∈D): These algorithms are
run by a user and a verifier (which is also the Issuer in our setting), respec-
tively, who interact during execution. Show enables the user to prove that a
subset {mi}i∈D of his attributes, with D ⊂ [1, n], has been certified. It takes
as input the credential σ, the optional issuer’s public key pkI , the whole set
of attributes {mi}ni=1 along with the intended subset D. The Verify algo-
rithm only takes as input skI and the subset {mi}i∈D and returns either 1
(accept) or 0 (reject).

3.2 Security Model

The security model that we consider here is the one from [31] that we adapt to
our specific setting where the issuer and the verifier share the issuance private
key skI .

Besides correctness, (keyed verification) anonymous credentials systems must
fulfill two additional security requirements: unforgeability (it is not possible to
successfully show a credential that was not previously obtained during an execu-
tion of the interactive protocol (Obtain, Issue)) and anonymity (no information
about the user is disclosed beyond the attributes that the user agreed to reveal
during the execution of Show).
We define these two requirements through the experiments described in Fig. 2
which use the following oracles along with two sets: HU, the set containing the
identities of honest users, and CU, the set containing the identities of corrupt
users. Following [31], we additionally define the set Att that stores {j, {mi}ni=1}
each time a credential is generated for user j on {mi}ni=1 by the oracles OObtIss
and OIssue below. We say that {j, {mi}i∈D} ⊂ Att if ∃{j, {m′

i}ni=1} ∈ Att with
m′

i = mi for all i ∈ D.

– OHU(j): on input an identity j, this oracle returns ⊥ if j ∈ HU ∪ CU. Else
it generates a key pair (skj , pkj) ← UserKeygen(pp) and returns pkj . The
identity j is then added to HU.

– OCU(j, pkj): on input an identity j and optionally a public key pkj , this
oracle registers a new corrupted user with public key pkj if j /∈ HU and
returns skj and all associated credentials otherwise. In the latter case, j is
removed from HU. In all cases, j is added to CU.

– OObtIss(j, {mi}ni=1): on input an identity j ∈ HU and a set of attributes
{mi}ni=1, this oracle runs (Obtain(skj , pkI , {mi}ni=1), Issue(pkj , skI ,
{mi}ni=1) and stores the resulting output. The elements {j, {mi}ni=1} are then
added to Att. If j /∈ HU, the oracle returns ⊥.
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– OObtain(j, {mi}ni=1): on input an identity j ∈ HU and a set of attributes
{mi}ni=1, this oracle runs Obtain(skj , pkI , {mi}ni=1) and stores the resulting
output. If j /∈ HU, the oracle returns ⊥. This oracle is used by an adversary
impersonating the issuer to issue a credential to an honest user.

– OIssue(j, {mi}ni=1): on input an identity j ∈ CU and a set of attributes
{mi}ni=1, this oracle runs Issue(pkj , skI , {mi}ni=1) and stores the resulting
output. The elements {j, {mi}ni=1} are then added to Att. If j /∈ CU, the
oracle returns ⊥. This oracle is used by an adversary playing the role of a
malicious user to obtain a credential from an honest issuer.

– OShow(k,D): Let σ(k) be the credential issued on
{
m

(k)
i

}n

i=1
for a user

jk during the k-th query to OObtain or OObtIss. If jk /∈ HU, this oracle
returns ⊥. Else, this oracle runs Show(pkI , skjk ,

{
m

(k)
i

}n

i=1
,D, σ(k)), with

the adversary playing a malicious verifier.
– OV erify({mi}i∈D,D): on input a set D ⊂ [1, n] and a set of attributes
{mi}i∈D, this oracle runs V erify(skI , {mi}i∈D) with the adversary playing
the role of a malicious user.

Unforgeability
Expuf

A (1λ, n)

1. pp← Setup(1λ, n);
2. (skI , pkI)← IssKeyGen(pp);
3. {mi}i∈D ← AOHU,OCU,OObtIss,OIssue,OShow,OV erify(pkI);
4. b← (A( ), V erify(skI , {mi}i∈D) ;
5. If {j, {mi}i∈D} ⊂ Att with j ∈ CU or if b = 0, return 0;
6. Return 1;

Anonymity
Expano

A (1λ, n)

1. pp← Setup(1λ, n);
2. (skI , pkI)← IssKeyGen(pp);
3. b

R←{0, 1};
4. (j0, j1, {mi}i∈D)← AOHU,OCU,OObtain,OShow (skI);
5. If {jb′ , {mi}i∈D} ̸⊂ Att for b′ ∈ {0, 1}, return 0;

6. (Show(pkI , skjb ,
{
m

(jb)
i

}n

i=1
,D, σ(jb)), A( ));

7. b∗ ← AOHU, OCU, OObtain,OShow (skI) ;
8. If OCU has been queried on jb′ for b′ ∈ {0, 1}, return 0;
9. Return (b∗ = b);

Fig. 2: Security requirements for KVAC
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Correctness. A showing of a credential σ with respect to a set {mi}i∈D always
verify if σ was honestly issued on {mi}ni=1, with D ⊂ [1, n] .

Unforgeability. A KVAC is unforgeable if the adversary’s success probability,
denoted by AdvufA (1λ, n) and defined as∣∣∣Pr[ExpufA (1λ, n) = 1]

∣∣∣
is negligible for any polynomial time adversary A.

Anonymity. A KVAC is anonymous if the adversary’s success probability, de-
noted by AdvanoA (1λ, n) and defined as∣∣Pr[ExpanoA

(
1λ, n

)
− 1

2 ]
∣∣

is negligible for any polynomial time adversary A.
Following [31] and [16], our definition assumes that the issuer’s key pair

(skI , pkI) (where pkI is optional in a KVAC) is honestly generated and then
sent to the adversary in contrast to [20], for example, which lets the adversary
generate its own key pair. However, to satisfy the definition in [20], IssKeyGen
could output, in addition to the public key pkI , a non-interactive zero-knowledge
proof of knowledge of the secret key corresponding to pkI .

3.3 Our Construction

Based on the designed MACBBS scheme, we construct a KVAC system involving
a user U (also called a holder), an issuer I and a verifier V (who holds the issuer’s
secret key skI). We would however like to emphasize that this KVAC system
is just a stepping stone to the publicly verifiable anonymous credentials system
BBS#.

3.4 Intuition of our Construction

In our approach, the issuer creates a MACBBS authentication tag σ on the user’s
public pk (of a signature scheme supporting key blinding / randomization) and
on their attributes {mi}ni=1. The tag σ represents the user’s credential and au-
thenticates both the user’s attributes and their public key pk. During a Verifiable
Presentation of their attributes (or a subset of them) to the verifier, the user will
first randomize their public key pk (either additively if ECSDSA is used on the
user’s secure cryptographic device or multiplicatively in the case of ECDSA) as
well as their verifiable credential σ. We denote by pkBlind and σBlind respectively,
these randomized versions. The user will then first generate a SoK πHolderBinding

(πHB for short) of the private key associated to pkBlind on a nonce generated
by the verifier (to guarantee the freshness of the VP) and then a ZKP πV alidity

proving knowledge of : (a) two random factors (r, r′), (b) a credential σ and (c)
a public pk such that (1) σBlind is a randomized version of σ under the random
factor r, (2) pkBlind is a randomized version of pk under the random factor r′,
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and (3) σ is a valid MACBBS authentication tag on the (disclosed) attributes
requested by the verifier. The proof πHolderBinding is, as its name indicates, a
proof that the VP comes from the user who truly holds the credential σ (un-
derlying σBlind), which certifies the attributes disclosed to the verifier (holder
binding).

– Setup(1λ, n): On input a security parameter λ and a bound n on the number
of attributes to certify, this algorithm generates the public parameters
pp = (G, p, g, g̃,g0, g1, g2, . . . , gn, H, F ), where G is a cyclic group of prime
order p, a λ-bit prime, and
g, g̃,g0, g1, g2, . . . , gn, H, F are random generators of G. For i ∈ {1, . . . , n} , gi
is associated with a specific type of attributes (e.g. age, gender, etc.). This
will help to differentiate attributes and avoid any ambiguity. Note that, from
now on, all computations involving exponents are computed modulo p (i.e.
mod p).

– IssKeyGen(pp): On input the system public parameters pp, this algorithm
selects a random value skI∈RZp and computes the corresponding public key
pkI = g̃skI and optionally a ZKPK πI := PoK{α : pkI = g̃α} proving
knowledge of the private key skI .

– UserKeygen(pp): To generate a key pair (sk, pk) for a user, this algorithm
selects a random value sk∈RZp and computes the corresponding public key
pk = gsk. In practice, the key pair (sk, pk) will be managed by the user’s
cryptographic device (also called WSCD for Wallet Secure Cryptographic
Device in the eIDAS 2.0 terminology).

– (Obtain(sk, pkI , {mi}ni=1), Issue(pk, skI , {mi}ni=1): To obtain an anonymous
credential on a set of attributes {mi}ni=1, the user first sends their public key
pk along with a signature of knowledge of sk on a challenge ch, chosen by the
Issuer, to guarantee the freshness of this SoK: πU = SoK{α : pk = gα}[ch].
If this SoK, which can be generated using for example the Schnorr’s protocol
[32], is correct, then the issuer randomly picks e∈RZp, computes
Cm = g0pk

∏n
i=1 g

mi
i and A = ( Cm)

1
skI+e . The issuer may also build a

ZKPK πDLEQ := PoK{α : B = Aα ∧ pkI = g̃α} where B = CmA−e = AskI .
Then the issuer returns the pair (A, e) along with the proof πDLEQ to the
user. If the proof is valid, the user sets their anonymous credential σ as
σ = (A, e).

– (Show(pkI , sk, {mi}ni=1,D, σ), V erify(skI , {mi}i∈D): To anonymously prove
that they hold a credential on {mi}i∈D, the user engages in an interactive
protocol with the verifier V.
• Show(pkI , sk, {mi}ni=1,D, σ). The user will first randomize their public

key (so that neither the issuer nor the verifier can trace them from this
key). To do this, they will randomly pick an integer r in Zp and com-
pute using this value: pkBlind = gsk+r and πHB := SoK{α: pkBlind =
gα}[nonce], where nonce∈R{0, 1}µ , is a random value sent by the verifier
(to guarantee the freshness of the VP). They will then "randomize" their
MACBBS authentication tag σ, to also prevent the issuer and the verifier
from tracing them from this element, and "adapt" it to be on pkBlind
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and the {mi}ni=1. To do this, they will choose integers r1, r2 ∈R Z∗
p and

compute:
1. A = Ar1×r2 ,
2. D = Cm

r2

3. B = A
−e

Dr1 = A
skI

4. r3 = r−1
2 mod p

5. πvalidity = SoK{α, β, γ, δ, {θi}i/∈D : B = A
α
Dβ

∧ g0pkBlind

∏
i∈D gmi

i = Dγ
∏

i/∈D gθii gδ}[nonce]

We have the following two equalities, hence the ZKP
πvalidity: B = A

−e
D

r1
and g0pkBlind

∏
i∈D gmi

i = Dr3
∏

i/∈D g−mi
i gr.

6. The user transmits V P = ({mi}i∈D, pkBlind, πHB , A,B,D, πvalidity)
to the verifier.

• Verify(skI , {mi}i∈D). Upon receipt of V P = ({mi}i∈D, pkBlind, πHB ,
A,B,D, πvalidity) , V first checks than πHB is a valid SoK on nonce,
and then verifies that πvalidity is valid. If so, V uses skI to check whether
B = A

skI . V is convinced that U really holds a valid credential on the
disclosed attributes {mi}i∈D if, and only if, all these checks succeed.
We prove this fact in Appendix C. In other words, we prove that V P =
({mi}i∈D, pkBlind, πHB , A,B,D, πvalidity) constitutes a proof of knowl-
edge of a blinding factor r, a private key sk and of a valid credential,
σ = (A, e) , on the subset {mi}i∈D and on a public key pk = pkBlindg

−r.

3.5 Security Analysis

The unforgeability of our KVAC system directly relies on the one of MACBBS

and on the DL assumption. Anonymity holds statistically/unconditionally, which
means that anonymity is preserved even against possible future quantum adver-
saries. This is formally stated by the following theorem.

Theorem 2. Our KVAC system is unforgeable in the ROM if MACBBS is sUF-
CMVA secure and if the DL assumption holds in G.
Our KVAC system is anonymous if πDLEQ is a sound proof system and if πHB

and πvalidity are zero-knowledge proof systems.

Proof of Unforgeability. Let A be an adversary against the unforgeability of
our KVAC. During the experiment, A returns a set of attributes {mi}i∈D and
then proves possession of a credential on this set. To be valid, the forged creden-
tial should not have been issued to a corrupt user. However, honest users could
possess a credential on such attributes, which leads us to consider two different
cases in our proof. Let sk be the underlying secret key whose knowledge is proved
by the adversary when it shows the credential on {mi}i∈D, we distinguish two
types of adversaries:
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– Type 1: ∃j ∈ HU such that sk = skj
– Type 2: ∀j ∈ HU, sk ̸= skj .

Lemma 1. Any type 1 adversary A succeeding with probability ϵ can be con-
verted into an adversary against the DL assumption in G succeeding with prob-
ability ϵ

q , where q is a bound on the number of users.

Proof. Let (g, gs) be a DL challenge. Our reduction R generates the public
parameters pp = (G, p, g, g̃, g0, g1, g2, . . . , gn, H, F ) and the issuer’s key pair and
returns pkI to A. Since we consider a type 1 adversary, we know that there is an
index j such that A will try to impersonate the j-th honest user. Our reduction
R then makes a guess on j ∈ [1,q] and proceeds as follows.

– OHU: Let i be the index query to this oracle. If i ̸= j, then R proceeds as
usual. Else it returns pkj = gs.

– OCU: If R receives a corruption query on an honest user i, it returns ski if
i ̸= j and aborts otherwise.

– OObtIss : R knows the issuer’s secret key skI and so perfectly simulates the
issuer’s side of this protocol. It can also play the role of any honest user i if
i ̸= j. Else it simulates the proof of knowledge of skj .

– OIssue: R knows the issuer’s secret key skI and so can perfectly answer to
any query.

– OShow: If the queried credential belongs to i ̸= j, then R can perform the
Show protocol defined above. Else, it chooses a random value r and simulates
the proof πHB of knowledge of the private key skj + r and runs the other
steps of the protocol.

– OV erify: Since R knows the issuer’s secret key skI , it can answer to any
query of A.

One can note that the experiment is perfectly simulated if the guess on j is
correct, which occurs with probability 1

q . In such a case, a successful adversary
A proves knowledge of skj = s when it shows its forged credential. R can then
run the extractors of the proofs of knowledge πHB and πvalidity to recover s,
that it returns as a valid solution to the DL problem. The probability of success
of R is then ϵ

q .

Lemma 2. Any type 2 adversary A can be converted into an adversary against
the sUF-CMVA security of MACBBS succeeding with the same probability.

Proof. Our reduction R runs the sUF-CMVA security experiment for MACBBS

for the parameters (λ, n) with its challenger C and receives from C the corre-
sponding public parameters pp = (G, p, g̃,g0, g1, g2, . . . , gn, gn+1). The un-
derlying private signing key will be denoted skI in the sequel. R generates two
additional random generators H and F and defines g as gn+1. The reduction R
then returns pp = (G, p, g, g̃,g0, g1, g2, . . . , gn, H, F ) to A. R can then answer
oracle queries as follows.
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– OHU: R proceeds as usual and stores the corresponding secret key.
– OCU: Here again R proceeds as usual.
– OObtIss : Let j ∈ HU and {mi}ni=1 be the input of this oracle. The reduction

recovers the secret skj that it has generated for the user j and then submits
(skj ,m1,m2, . . . ,mn ) to its MACBBS challenger C. It then receives a tag (A,

e) on (skj ,m1,m2, . . . ,mn ), where A = (g0g
skj

∏n
i=1 g

mi
i )

1
skI+e , and stores

the resulting credential (A, e).
– OIssue: Let j ∈ CU and {mi}ni=1 be the input of this oracle. R extracts

skj from the proof of knowledge πU generated by A and then proceeds as
previously to obtain a tag (A, e) on (skj ,m1,m2, . . . ,mn ). R then simulates
the corresponding proof πDLEQ and returns the tag (A, e) to A.

– OShow: Let σ(k) be the credential issued on
{
m

(k)
i

}n

i=1
for an honest user

jk. Let jk be the input of this oracle. As R knows the secret key of this
honest user, it can perfectly simulate this oracle.

– OV erify: R first checks the validity of πHB and πvalidity and if they are
valid extracts from these proofs, a tag σ =(A′, e′), a private key sk′ and
a set of messages {m′

i}ni=1 (see Appendix C). It then queries the OVerify
oracle, provided by its MACBBS challenger C to check whether σ =(A′, e′)
is a valid MACBBS on {sk′, {m′

i}ni=1}. R then returns the result of all these
checks to A.

R can handle any oracle query and never aborts. Therefore, at the end of the
game, A is able, with some probability ϵ, to prove possession of a credential on
{mi}i∈D. R extracts from the SoK πHB and πvalidity contained in the Show
protocol the underlying private key sk′, a set of messages {m′

i}ni=1, and the
credential σ =(A′, e′) on {sk′, {m′

i}ni=1} (see Appendix C).
Since we here consider a type 2 adversary, sk′ must be different from skj , for

any honest user j. Moreover, to be considered as an attack against unforgeability,
no credential owned by corrupt users can be valid on this set of messages (see
step 5 of ExpufA (1λ, n)). This means that, for any credential on {skj , {mi}ni=1}
with j ∈ CU, we either have skj ̸= sk′, or ∃l ∈ [1, n] such that ml ̸= m′

l. In both
cases, this means that σ =(A′, e′) is a valid forgery on {sk′, {m′

i}ni=1} against
MACBBS.

Proof of Anonymity. Anonymity holds statistically.

Lemma 3. Our KVAC system provides statistical anonymity. More precisely,
for any adversary A we have

AdvanoA (1λ, n)≤1

2
+
nObtainqH1

p2
+
nShowqH3

2µp2
+

nShowqH4

2µp5
+
2(qH2+1)

p
+
4

p
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where µ is the bit length of nonce, nObtain is the total number of OObtain
queries, nShow is the total number of OShow queries, and qHi

, the number of Hi

queries in the ROM.

Proof. Recall that in this experiment the issuer’s key pair (skI , pkI), where pkI
is optional in our KVAC, is honestly generated and then sent to the adversary
A. We use Shoup’s game hopping technique [33], where proofs are organized as
sequences of games, for this proof.
Game 0. This is exactly the anonymity game described in Fig. 2.
Game 1. This is the same game as Game 0 except that we remove the com-
putation of πU inside OObtain requests and make R simulates it, using the
zero-knowledge of the proof πU (which is described in Appendix B). More pre-
cisely, R picks c and ρ and then deduce com′ and the input to H1. R aborts if
this query is not fresh. Except with probability qH1

p2 , this query is fresh, and we
can program H1. Hence, we get:

AdvanoA
(
1λ, n

)
≤AdvG1

A
(
1λ, n

)
+

nObtainqH1

p2

.
Game 2. This is the same game as Game 1 except that we remove the com-

putation of πHB inside OShow requests and make R simulates it, using the
zero-knowledge of the proof πHB (which is described in Appendix B). More pre-
cisely, R picks c and ρ and then deduce com′ and the input to H3. R aborts if
this query is not fresh. Except with probability qH3

2µp2 , this query is fresh, and we
can program H3. Hence, we get:

AdvG1

A
(
1λ, n

)
≤AdvG2

A
(
1λ, n

)
+

nShowqH3

2µp2

.
Game 3. This is the same game as Game 2 except that we remove the com-

putation of πV alidity inside OShow requests and make R simulates it, using the
zero-knowledge of the proof πvalidity (which is described in Appendix B). More
precisely, R picks c, ρ1, ρ2, ρ3, resp and {respi}i/∈D then deduce com′

1, com
′
2

and the input to H4. R aborts if this query is not fresh. Except with probability
qH4

2µp4 , this query is fresh, and we can program H4. Hence, we get:

AdvG2

A
(
1λ, n

)
≤AdvG3

A
(
1λ, n

)
+

nShowqH4

2µp5

.
Game 4. This is the same game as Game 3 except that we abort if for

one of the credential (Ajb , ejb), b ∈ {0, 1} , obtained during the execution of
OObtain(jb, {mi}ni=1), we have AskI

jb
̸= Bjb where Bjb = CmA−e and Cm =

g0pkjb
∏n

i=1 g
mi
i . Here we use the secret key skI which comes from the honest

key generation of skI for this check. The difference between the two games Game
3 and Game 4 is bounded by the soundness of πDLEQ (described in Appendix
B); i.e. the probability that A can issue a credential (A, e) on a public key pk
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and attributes {mi}ni=1 such that the verification of πDLEQ passes but AskI ̸= B
where B = CmA−e and Cm = g0pk

∏n
i=1 g

mi
i . To bound this probability, we

look at every query H2 to the game. Each query defines (A, B, com1, com2)
and the value of c =H2(pp, A, B, g̃, pkI, com1, com2) is uniformly distributed.
If AskI ̸= B, to pass the verification A should choose c and ρ randomly and
computes com2 = AρB−c and expects that the random oracle will output c
on the query (pp, A, B, g̃, pkI , com1, com2). The probability to succeed is 1

p .
If A did not query the random oracle on (pp, A, B, g̃, pkI , com1, com2) , the
probability that the verification passes for any πDLEQ is also 1

p . Hence, the

soundness advantage is bounded by 2(qH2+1)

p . We deduce that:

AdvG3

A
(
1λ, n

)
≤AdvG4

A
(
1λ, n

)
+

2(qH2+1)

p

Game 5. This is the same game as Game 4 except that we choose two random
values (sk∗, e∗) in Zp and using the secret key skI (which comes from the honest
key generation of skI), we compute a valid credential (A∗, e∗) on {sk∗, {mi}ni=1},
that we will use as the challenge pair of this game. We abort this game if a
component of the pair (sk∗, e∗) is equal to its corresponding one in the challenge
pairs (skjb , ejb), b ∈ {0, 1} . Then we execute a Show with A, using this random
credential σ∗= (A∗, e∗) instead of the one of the user jb. We show in Appendix
D that R perfectly simulates this game using this random credential (A∗, e∗).
It is therefore clear that the output of (Show(pkI , sk

∗, {m∗
i }

n
i=1,D, σ∗), A( ))

reveals no information about b. Therefore, we get AdvG5

A
(
1λ, n

)
= 1

2 , and we
have:

AdvG4

A
(
1λ, n

)
≤AdvG5

A
(
1λ, n

)
+

4

p

4 From KVAC to Pairing-Free Anonymous Credentials

The main drawback of KVAC systems is that they are tailored to specific settings
in which the issuer also acts as a verifier, as in the case of e-government or public
transportation. They are not suited to the more general setting in which the
issuer and the verifier are two distinct entities.

In this section, we explain how to turn our (pairing-free) KVAC system into
a (pairing-free) public key anonymous credential system. Thereby, a user will
be able to prove possession of a credential to any entity (i.e., without the latter
necessarily knowing the issuer’s private key).

In BBS/BBS+ based anonymous credentials schemes, pairings are used by
the verifier to check whether the following equality B = A

skI holds or not, where
skI is the issuer’s private key (see V erify(skI , {mi}i∈D), in section 3.3).

We propose below three options to let any verifier perform this check without
using pairings.
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4.1 Option 1.

The first option is to let the verifier ask the issuer to check whether this equality,
B = A

skI , holds or not. As A and B have been randomized by the user (they
consist of the randomization of his credential values A and B), the Issuer cannot
trace back the user from these values. Obviously, the issuer should prove to the
verifier whether this equality holds or not. This can be done, for example, by
using the classical Chaum-Pedersen ZKP of discrete logarithms equality πDLEQ

[15] when the equality holds or by using, for example, the proof of the inequality
of discrete logarithms of Camenisch and Shoup otherwise [11].
A similar approach has been adopted in the card payment sector to enable a
point-of-sale terminal to check the validity of a smart card transaction7 online
with the issuer (the cardholder’s bank).

4.2 Option 2.

The second option is to let the user anonymously request from the issuer, during
the Show protocol, a blind proof (a.k.a. an Oblivious Proof [28]), πDLEQ, showing
that B = A

skI that will be sent, along the VP, to the Verifier. By blind, we
mean that the issuer, although contributing to the generation of this proof (as
only they know skI), will be unable, given such a proof, to determine for which
user it was intended. This proof can be verified by anyone using solely the issuer’s
public key.
This approach (option 2) is similar to the one used in the context of centralized /
federated identity management systems (IMS). In fact, in a federated IMS when
a user wants to authenticate at a RP (or prove that they hold the attributes
requested by that RP), the user is redirected to their IDP (issuer) in order to
obtain a token (signed by the issuer), which the user can present to the RP as a
proof that they have authenticated to the issuer (or that they hold the requested
attributes). However, we would like to point out that, unlike federated IMS, with
Option 2, neither the issuer nor the RP (even if they collude) will be able to
track or link the user’s activity. Indeed, since the user anonymously requests the
blind proof πDLEQ, a time-correlation attack will not work.

4.3 Option 3.

The user generates several pairs (Ai = Ali , Bi = Bli) and anonymously requests
from the issuer, in advance, blind proofs πDLEQ showing that Bi = AskI

i and
stores these blind proofs for future use (and only uses them in the rare cases
where both the user and the verifier are offline).

The blind proof πDLEQ can be obtained using the Chaum-Pedersen seminal
blind signature protocol [15], which is standardized in the ISO/IEC standard

7 which roughly consists of a MAC computed by the card on the payment data ele-
ments such as the transaction amount and transaction date
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18370-2 ([17], mechanism 4) and which represents the core cryptographic mech-
anism used in the anonymous credential scheme U-Prove. This blind signature
protocol can be seen, in fact, as an Oblivious Issuance of proof (OIP for short),
for the proof πDLEQ.

Unfortunately, Benhamouda et al [7] have shown that this OIP is vulnerable
to a parallel attack (ROS attack). Specifically, a user simultaneously running a
large number (l) of Chaum-Pedersen blind signatures sessions with the issuer
would be able, after these l sessions, to forge an additional valid signature/proof
(and thus fraudulently obtain l + 1 DL equality proofs instead of just l).

We therefore consider for Option 2 and Option 3, the Oblivious Issuance
Proof proposed by Orrù et al. [28], which is one more unforgeable even in the
concurrent setting. This OIP which we have adapted to our context and which
we denote Blind πDLEQ is described in Appendix B.
Orrù et al. proved that Blind πDLEQ is one-more unforgeable (meaning that an
adversary cannot forge blind πDLEQ proofs even in the concurrent setting) under
the q + 1-DL assumption in the AGM and ROM models (Theorem 3 of [28]).
They also show that Blind πDLEQ is perfectly oblivious provided that B = A

x

(Theorem 5 of [28]). The case B̄ ̸= Āx could occur if, during issuance, a mali-
cious issuer is successful in forging a false ZKP πDLEQ that Ax = B (whereas
the equality does not hold). The success of this attack is bounded by the sound-
ness of πDLEQ. By perfectly oblivious, we mean that an adversary, even with
unlimited computational power, will not be able to link back (A,B, πDLEQ) to
the corresponding issuing session.

This approach (option 3) is similar to that described in ISO mDL, where a
user can obtain several verifiable credentials at once (in batch)8 to prevent col-
luding RPs from tracing them. However, our option 3 provides full unlinkability,
unlike the ISO mDL batch credential issuance approach.

In practice, Option 1 will be the preferred one, whereas Option 3 will be used
in the rare cases where both the user and the verifier are offline. Option 2 could
be used when the verifier is offline, but not the user (who would be online).

5 Distributed Computations on the User’s Side

In practice, Secure Elements (SE) are relatively closed devices. Although most
of them support common digital signature algorithms such as ECDSA, develop-
ers do not have the ability to implement new cryptographic functionalities for
security reasons. Therefore, it is difficult to use these SEs for purposes other
than what they were originally designed for (for example, to generate ECDSA
signatures). As a result, an SE cannot "randomize" its own public and private
keys because it has not been programmed to perform such operations. It cannot
carry out these basic operations, even though they may seem straightforward:
such as generating a random value r and computing skBlind = sk + r mod p,
its randomized private key. Similarly, an SE cannot generate the SoK πHB , that

8 A different credential must be used for each new VP.
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is, a signature of knowledge of the discrete logarithm of pkBlind in the base g
(that is, of the private key sk + r mod p).

In the following, we explain how the Secure Element (SE) of the user’s mobile
device and the associated mobile wallet application (referred to as M-Wallet)
can jointly randomize the public key pkBlind and compute the SoK πHB . It is
important to note that in practice only the secure hardware (SE) knows the
private key sk corresponding to the user’s public key pk.

We propose two variants of BBS#: in the first one, we assume that the digital
signature algorithm supported by the SE is ECSchnorr [24], while in the second
one, we assume that it is ECDSA [24].

5.1 Joint Computation of PKBlind and πHB with ECSchnorr

We assume that the SE supports the classical ECSchnorr digital signature algo-
rithm 9, also known as ECSDSA in ISO/IEC 14888-3 standard. We will use an
additive blinding of the SE private key sk.

It should be noted that in this standard, the so-called "weak" version of the
Fiat-Shamir heuristic is implemented; however, in certain contexts, this version
is vulnerable to an attack introduced by Bernhard et al. [8]. Although this attack
does not apply in our context, we will nevertheless indicate how to use the so-
called Strong version of the Fiat-Shamir heuristic (Strong FS) with ECSDSA (as
specified in ISO/IEC 14888-3 standard). The attack by Bernhard et al. [8] does
not apply to non-interactive proofs using the Strong version of the Fiat-Shamir
heuristic.

The joint computation of the

SoKπHB = SoK{α : pkBlind = gα}[nonce, pkBlind]

could be performed in the following way (see Fig. 3):

1. The M-Wallet chooses a random value r and computes pkBlind = grpk =
gsk+r and transmits it to the SE along with the nonce sent by the verifier.

2. The SE will first compute a signature of knowledge (denoted π) of the dis-
crete logarithm of pk in the base g (that is, its private key sk): π = SoK{α :
pk = gα}[nonce, pkBlind]. The algorithm called ECSDSA will be used to
compute this signature. This signature of knowledge is computed as follows
using the ECSDSA algorithm. The SE generates a random value ω and com-
putes T = gω, c = H(T, nonce, pkBlind) and ρ = ω + csk mod p where H
denotes a cryptographic hash function (e.g., SHA-256). The SoK π consists of
the pair (c, ρ): π = (c, ρ). It is valid if c′ = H

(
gρ×pk−c, nonce, pkBlind

)
= c

and invalid otherwise.
3. The SE transmits the SoK to the M-Wallet
4. The M-Wallet computes ρBlind = ρ+c×r = ω+c×sk+c×r = ω+c×(sk+r)

mod p.
9 We would like to emphasize that the interactive version of ECSchnorr, which would

greatly ease the holder binding feature, is currently not deployed on SE’s.
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The SoK πHB = (c, ρBlind) is a valid ECSDSA signature on (nonce, pkBlind)
with respect to the public key pkBlind.

Fig. 3: Joint computation of pkBlind and πHB with ECSchnorr

5.2 Security of ECSchnorr Splitting

The security of the above distributed computation is well studied. In [19], Fleis-
chhacker et al. proved that ECSDSA with additive blinding is unforgeable under
re-randomized keys in the ROM if the DL problem in G is hard ([19], Theorem
1).

5.3 Joint Computation of pkBlind and πHB with ECDSA

This time, we will assume that the SE supports the classic digital signature
algorithm ECDSA [FIPS186-4, ISO/IEC 14888 3]. We will use this time a mul-
tiplicative blinding of the SE private key sk.

The joint computation of the ECDSA signature (πHB) on the message
(nonce, pkBlind) using the private key skBlind = sk × r mod p, could be per-
formed in the following way (see Fig. 4) :

1. The M-Wallet chooses a random value r and computes pkBlind = pkr =
gsk×r and M = r−1×H(nonce, pkBlind) mod p and transmits M to the SE
after authenticating itself with the latter.

2. The SE chooses a random value k ∈ Z∗
p and calculates gk = (i, j)10. Let

x = i mod p.
10 Here, we are abusively using multiplication (instead of addition) to denote the group

operation in G. The element gk is therefore considered (abusively) as a point on the
underlying elliptic curve.
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3. If x = 0 then go back to step 2.
4. The SE calculates ρ = k−1(M + sk × x) mod p.
5. If ρ = 0 go back to step 2. Otherwise, the SE transmits σ0 = (x, ρ) to the

M-Wallet.
6. The M-Wallet computes

ρBlind = r × ρ = k−1(H(nonce, pkBlind) + skBlind × x) mod p

The signature πHB = (x, ρBlind) is a valid ECDSA signature on
(nonce, pkBlind) with respect to the public key pkBlind.

Fig. 4: Joint computation of pkBlind and πHB with ECDSA

As with ECSchnorr, the V P consists of:

V P = ({mi}i∈D, pkBlind, πHB , A,B,D, πvalidity).

Only the SoK πvalidity differs when ECDSA is used on the user’s side. In the
ECDSA case, the proof πvalidity would be the following :

πvalidity = PoK{α, β, γ, δ, {τi}i/∈D : B = A
−α

D
β
∧F = PKBlind

δD
γ ∏

i/∈D g−τ i
i

mod p}

where, F = g0
∏

i∈D gmi
i . We have the following two equalities, hence the validity

proof πvalidity: B = A
−e

D
r1

and F = PKBlind
r̃Dr3

∏
i/∈D g−mi

i where,
r̃ = −r−1 mod p et r3 = r−1

2 mod p.

5.4 Security of ECDSA Splitting

The particularity of our splitting technique described in Fig. 4 is that it makes
use of raw ECDSA on the WSCD / SE side (i.e., the signing queries are on H(m)
instead on plain m) instead of the classical ECDSA (where the signing queries
are on plain m).
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Raw ECDSA is, however, supported by a majority of WSCDs: the iOS/Secure
Enclave, Android-/HBK+Strongbox, TPMs, PKCS11 based HSMs for example,
all support this functionality.

Another specificity of our splitting technique is that we include pkBlind in
the message to be signed by the WSCD (unlike SECDSA [35]). Without pkBlind,
our splitting technique would be vulnerable to a simple related-key attack (see
for example [26] section 4.2)11.

The security of our splitting mechanism, which is proven in the following,
relies on the security of raw ECDSA12 (one-more unforgeability).

By one-more unforgeability, we mean that an attacker after having requested
l raw ECDSA signatures on l chosen hash values H1, H2,· · · , Hl, will not be able
to generate an additional signature on a hash value H that was not requested.

Proof (sketch). Suppose that an attacker A can break the security of our
splitting technique for ECDSA. The attacker makes l raw ECDSA signing queries
to the WSCD (with public key pk) on values M1,M2,· · · ,Ml, and generates
l+1 valid forgeries, i.e., l+1 tuples (mi, pki, ri, σi) where σi is a valid ECDSA
signature on (mi, pki) with respect to the public key pki.

By valid forgeries, we mean a forge that can be used later by A to produce
valid V P ’s that will be accepted by any verifier. As a valid V P is a proof of
knowledge of a valid credential (see Appendix C)13, this means that A knows
a public key pk, that has been certified by an issuer, and for which pki is a
randomized version: pki = pkri .

We distinguish two types of adversary:

1. Type 1: ∃ i, j in [1, l+1] such that
r−1
i H(mi, pkri) = r−1

j H (mj , pkrj ) .

2. Type 2: r−1
i H(mi, pkri) ̸= r−1

j H(mj , pkrj ), ∀ i, j in [1, l+1].

If H is modeled as a random oracle, the advantage of any type 1 adversary A
of finding such ‘collisions’ is less than lqH

p , where qH is a bound on the number
of queries to H made by A.

Any type 2 adversary A can be converted into an adversary against the one-
more unforgeability of raw ECDSA. Indeed, if σi = (xi, ρ

i
Blind) is a valid signa-

ture on (mi, pki) with private key risk, then it follows that σi
0 = (xi, r−1

i ρ
i

Blind)

is a raw ECDSA signature on Mi = r−1
i H(mi, pkri) with private key sk.

11 Which unfortunately applies to SECDSA [35].
12 Groth and Shoup have shown that raw ECDSA signatures are one-more unforgeable

in the elliptic curve generic group model [23].
13 Although the proof in Appendix C applies when ECSchnorr is used on the WSCD

side, it also applies when ECDSA is used on the WSCD side under the reasonable
assumption that an ECDSA signature is a proof of knowledge of the underlying
private signing key. This assumption is tacitly assumed in practice in the context of
Self-Sovereign Identity (SSI).
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As we have supposed that all the M ′
is are distinct for type 2 adversaries,

then A would have break the one-more unforgeability of raw ECDSA.
Our splitting technique is therefore secure under the assumption that raw

ECDSA signatures are unforgeable.

6 Performance

In this section, we present the overall performance of BBS#. We provide a
detailed benchmark of our scheme across various devices, demonstrating its effi-
ciency and suitability for the EUDI Wallet. Additionally, we conduct a compar-
ative analysis in Appendix A in which we compare the efficiency of BBS# with
ISO−mDL/SD− JWT (using the ECDSA signature scheme) and PQ−ABC
[1], a recent post-quantum anonymous credential scheme that appeared at ACM
CCS 2024. Our comparison focuses on key size and computation time for creden-
tial issuance and presentation. Furthermore, we provide a comparative analysis
of the security and privacy offered by each scheme, including their resistance to
quantum attacks (see Appendix A).

6.1 BBS# Benchmarks

In this section, we present the timings obtained from our C++ implementation
of the BBS# protocol, as detailed in Table 1. These measures were taken on
three different smartphones: an iPhone and two Android phones:

– iPhone X with a 2.39GHz Hexa-core processor, running iOS 16. The phone
provides a “Secure Enclave” for cryptographic operations.

– Samsung A52S (SM-A528B) with a 2.4GHz Octa-core processor, running
Android 14. The Keystore of this Android smartphone is TEE based.

– Samsung S24 Ultra (SM-S928B) with a 3.4GHz Octa-core processor, run-
ning Android 15. The Keystore of this Android smartphone is based on a
“StrongBox”, which offers hardware security comparable to a smartcard.

The NONEwithECDSA (a.k.a. raw ECDSA) signature generation is done by
the mobile secure execution environment (SE) of the smartphone, namely the
Keystore on Android and Secure Enclave on iOS. This means that the private key
is managed and protected by that SE and may require biometric authentication
for each use.

After randomization of the signature, the resulting
SHA256withECDSA signature was verified using the standard cryptographic
API provided by Android and iOS environments.

The operations specific to BBS# are done by our own C++ library, which
uses MCL (https://github.com/herumi/mcl) for arithmetic operations over the
elliptic curve. While MCL is “a portable and fast pairing-based cryptography
library”, it also supports the NIST curves. In our case, it was configured to use
the NIST secp256r1 curve. As we have tested the whole BBS# protocol with
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the use of Keystore/Secure Enclave on smartphones, we can confirm that it is
indeed compatible.

For the measurements detailed in Table 1, we assume that the issuer will
certify 10 attributes of the user and that the user will choose to reveal only one
of them to a verifier. This attribute may be a tag "18" set to 1 (indicating that
the user is over "18"), which, for example, the user may reveal to provide a proof
of majority.

Each measure over the cryptographic library is the average over 1000 ex-
ecutions, except for the NONEwithECDSA signature generation (by the Key-
store/Secure Enclave), which is the average over 100 executions. We did not use
any parallelization of the operations.

For these tests, we ran the complete protocol on the smartphone. In a real
wallet application, only the operations marked as (wallet) are supposed to run
on it.

We have identified different steps of the validity proof generation protocol be-
tween the issuer and user/wallet with numbers (step1, step2, step3, and step4).14
During this protocol, the wallet must generate some random values that will also
be used to randomize the credentials. This corresponds to the line "randomize
credentials step1 (wallet)" in Table 1.

These benchmarks confirm that BBS# is very fast on these smartphones.
In conclusion, the most costly operation is the NONEwithECDSA signature

done by the SE of the smartphone, particularly when done by a StrongBox, but
it remains fast enough not to be noticeable by a user.

7 Conclusion

The EU Digital Identity Wallet (EUDI Wallet), introduced by the eIDAS 2.0
regulation, is a digital identity solution for securely presenting personal identifi-
cation data (PID) and verifiable credentials (a.k.a., Qualified Electronic Attes-
tations of Attributes, QEAAs for short, in the eIDAS 2.0 terminology). eIDAS
2.0 mandates selective disclosure and unlinkability for privacy protection.

Anonymous credentials, which allow holders to prove statements about their
identity in a privacy preserving way, is likely to become the key technology to
meet the stringent requirements (no pairing-based cryptography and hardware-
based holder binding) put forth in the eIDAS 2.0 regulation. Unfortunately,
current efficient anonymous credentials protocols, such as BBS/BBS +, do not
meet these requirements: they either make use of bilinear maps and pairing-
friendly curves (which are not supported by current certified secure elements)
or would require, to be rolled out, changes in these certified hardware or the
algorithms they support, to implement the holder binding feature.

In this paper, we introduced BBS#, a pairing-free variant of the anony-
mous credentials scheme BBS, which can be used with ‘classic’ (non-pairing
14 For our demonstrator, we have used Chaum-Pedersen’s seminal blind signature pro-

tocol [15], rather than the OIP described in Appendix E, for the blind proof πDLEQ.
However, the performance of these two protocols is almost identical.
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Table 1: Timings in milliseconds (ms) of the whole BBS# protocol
obtained on different smartphones

Operations Devices

PKBlind generation A52S S24 Ultra iPhone X

ECDSA public key randomization (wallet) 0.33 0.18 0.24
ECDSA prepare data to sign (wallet) 0.035 0.02 0.12

NONEwithECDSA signature generation (SE) 11.3 69 11.4
ECDSA signature randomization (wallet) 0.014 0.016 0.25

Issuance A52S S24 Ultra iPhone X

BBS+ signature over attributes (issuer) 1.3 1 1.75
Verification of issuer signature (wallet) 1.42 1.1 2.7

Blind validity proof generation (user ↔ issuer) A52S S24 Ultra iPhone X

step1 (issuer) 0.39 0.30 0.54
step2 (wallet) 0.96 0.73 1.33
step3 (issuer) <0.01 <0.01 <0.01
step4 (wallet) <0.01 <0.01 <0.01

VP generation A52S S24 Ultra iPhone X

Randomize credentials step1 (wallet) 0.59 0.46 0.77
Randomize credentials step2 (wallet) 1.17 0.85 1.6

Total generation time 1.76 1.31 2.37

VP Verification A52S S24 Ultra iPhone X

ECDSA signature 0.26 0.11 0.18
Blind validity proof 0.51 0.36 0.6

Blind credentials signature 1.02 0.73 1.4
Total verification time 1.8 1.2 2.2
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friendly) elliptic curves, and more importantly with current ‘Wallet Secure Cryp-
tographic Devices’ (WSCD): iOS/Secure Enclave, Android-/HBK+Strongbox,
TPMs, PKCS11 based HSMs.

BBS# is provably secure; it inherits the security of BBS, of Oblivious Is-
suance of Proofs and of the security of ECDSA with multiplicative key random-
ization.

Finally, our implementation results confirm the efficiency and suitability of
BBS# for the forthcoming EUDI Wallet.
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A Comparative Analysis

A.1 Efficiency

We provide a comparison of space efficiency in bytes for BBS#,
ISO−mDL/SD− JWT (using the ECDSA signature scheme on both the Holder’s
and Issuer’s sides), and PQ−ABC, as shown in Table 2. We also present a com-
parison of time efficiency, detailed in Table 3. Our estimates are based on count-
ing the number of multi-exponentiations required to perform an operation for
BBS# and ISO−mDL/SD− JWT. We use the notation EG to denote the cost
of an exponentiation/scalar multiplication in G, which is evaluated at 63µs on
an Intel(R) Core(TM) i7-8565U CPU running at 1.80GHz, 0.2ms on a Samsung
S10e over the secp256r1 curve, and 50ms on a Javacard 2.2.2 SIM card, Global
Platform 2.2 compliant, over the secp256r1 curve.

PQ−ABC is benchmarked on an Intel Core i7 12800H CPU running at
4.6 GHz. N.A. in Table 3 indicates that current WSCDs do not support the
computations involved in PQ−ABC [1].

In Table 2 and Table 3, the parameter N denotes the number of signed
attributes, and in Table 2, the parameter U denotes the number of undisclosed
attributes.

We do not consider operations in Zp since their cost is negligible compared
to the other operations.

Table 2: Space Efficiency (bytes)
Schemes Private Key Public Key Credential Presentation

(Holder, Issuer) (Holder, Issuer) Size Proof

BBS# (32, 32) (32, 32) 128 416+U x 32
ISO−mDL (32, 32) (32, 32) 64 64+N x 32
PQ−ABC (0.25 KB, 10 KB) (2.38 KB, 47.53 KB) 6.81 KB 79.58 KB
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Table 3: Time Efficiency. N = 10

Schemes Credential Present Present Verify
Issuance WSCD Wallet Presentation

BBS# NG1 (630µs) 1G1 (50ms) (N + 9)G1 (3.8ms) (N + 12)G1 (1.4ms)
ISO−mDL 1G1 (63µs) 1G1 (50ms) - 2G1 (126µs)
PQ−ABC 400ms N.A. 355ms 147ms

A.2 Functionality and Properties Comparison

In Table 4, we compare the three aforementioned protocols (BBS#, ISO−mDL
with ECDSA, and PQ−ABC) in terms of the level of security and privacy they
provide.

The NPQ Assumption refers to classical assumptions that are not quantum
resistant, such as the q-SDH assumption in the case of BBS#. NPQ security
indicates that the scheme does not offer a quantum-resistant level of security.
Unconditional or Everlasting Privacy means that the scheme provides anonymity
even against an adversary with unbounded computational power. Additionally,
the ISO−mDL is implemented with ECDSA on both the Holder’s and Issuer’s
sides

Table 4: Security and Privacy Comparison
Shemes Credential VP Unlinkability VP Unlinkability VP Unforgeability

Unforgeability Colluding RPs Colluding RP-Issuer

BBS#
NPQ

Assumption
Unconditional

Privacy
Unconditional

Privacy
NPQ

Assumption

SD-JWT
and mDL

Unknown
Assumption

(NPQ security)
No No

Unknown
Assumption

(NPQ security)

PQ−ABC PQ Assumption PQ Assumption PQ Assumption PQ Assumption

B A Zero Knowledge Proofs of Knowledge

In this Appendix, we describe the main ZKPK used in our construction, namely
πU (Fig. 5), πDLEQ (Fig. 6), πHB (Fig. 7) and πvalidity (Fig. 8). The Hi’s will
denote suitable hash functions.
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Prover(pp, sk, pk)

1. α∈RZp;
2. com = gα;
3. c = H1(pp, pk, com);
4. ρ = α+ csk mod p;
5. Return (c, ρ);

Verifier(pp, pk)

1. com′ = gρpk−c;
2. c′ = H1(pp, pk, com′);
3. Return (c′ == c);

Fig. 5: πU

Prover(pp,A,B, g̃, skI , pkI)

1. α∈RZp;
2. com1 = g̃α;
3. com2 = Aα;
4. c = H2(pp, A, B, g̃, pkI , com1, com2);
5. ρ = α+ cskI mod p;
6. Return (c, ρ);

Verifier(pp,A,B, pkI)

1. com′
1 = g̃ρpkI

−c;
2. com′

2 = AρB−c;
3. c′ = H2(pp, A, B, g̃, pkI , com

′
1, com

′
2);

4. Return (c′ == c);

Fig. 6: πDLEQ
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Prover(pp, r, sk, pkBlind)

1. α∈RZp;
2. com = gα;
3. c = H3(pp, nonce, pkBlind, com);
4. ρ = α+ c(sk + r) mod p;
5. Return (c, ρ);

Verifier(pp,A,B, pkI)

1. com′ = gρpk−c
Blind;

2. c′ = H3(pp, nonce, pkBlind, com
′);

3. Return (c′ == c);

Fig. 7: πHB

Prover(pp,A,B,D, {mi}ni=1, pkBlind, e, r1, r2, r3, r,D)

1. α, β, γ, δ, {τi}i/∈D∈RZp;
2. com1 = A

α
Dβ ;

3. com2 = Dγ ∏
i/∈D gτii gδ;

4. c = H4(pp, nonce, A, B, D, {mi}ni=1, pkBlind, com1, com2);
5. ρ1 = α− ce mod p;
6. ρ2 = β + cr1 mod p;
7. ρ3 = γ + cr3 mod p;
8. For i /∈ D;
9. respi = τi − cmi mod p;

10. resp = δ + cr mod p;
11. Return (c, ρ1, ρ2, ρ3, {respi}i/∈D, resp);

Verifier(pp,A,B,D, {mi}ni=1, pkBlind,D, {mi}i∈D)

1. com′
1 = A

ρ1Dρ2B
−c;

2. com′
2 = Dρ3

∏
i/∈D g

respi
i grespP−c where P = g0pkBlind

∏
i∈D gmi

i ;
3. c′ = H4(pp, nonce, A, B, D, {mi}ni=1, pkBlind, com

′
1, com

′
2);

4. Return (c′ == c);

Fig. 8: πvalidity
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C Proof of Knowledge of a Valid Credential

We will show that if a V P is accepted by a verifier, then this implies that the
user knows a valid V C on the attributes {mi}i∈D, as well as the private key
associated with that V C.
Proof : Let V P = ({mi}i∈D, pkBlind, πHB , A,B,D, πvalidity) be a given V P . We
recall that πHB = SoK{α : pkBlind = gα}[nonce]. Therefore, πHB is a proof
of knowledge of the discrete logarithm of PKBlind in the base g. By using the
extractor for this proof of knowledge, we can extract skBlind such that:

pkBlind = gskBlind (1)

By using the extractor for the πvalidity proof, we can extract values e, r, r1, r3,
{mi}ni=1 such that:

B = A
−e

D
r1

(2)

g0pkBlind

∏
i∈D

gmi
i = Dr3

∏
i/∈D

g−mi
i gr (3)

We also know that if the V P is accepted by the verifier, then:

B = A
skI (4)

(2) and (4) therefore implies that:

A
skI+e

= Dr1 (5)

If r1 = 0 mod p, (5) implies that skI = −e mod p and therefore our reduction
has found the private key of the issuer. This is impossible under the discrete
logarithm assumption. Therefore, we will assume that r1 ̸= 0 mod p.
From (3) and (1), we can deduce that:

Dr3 = g0g
skBlind−r

n∏
i=1

gmi
i (6)

1. If r3 = 0 mod p then g0 = gr−skBlind
∏n

i=1 g
−mi
i . We have therefore found

a representation of g0 in the base (g, {gi}ni=1). This is also impossible under
the discrete logarithm assumption. Therefore, we will assume that r3 ̸= 0
mod p.

2. If r3 ̸= 0 mod p, from the equalities (5) and (6), we obtain:(
A

r3r
−1
1

)skI+e

= g0g
skBlind−r

n∏
i=1

gmi
i (7)

Therefore, we have extracted a valid MACBBS authentication tag (A
r3r

−1
1 ,e)

on (skBlind − r,{mi}ni=1).
Under the gap DL and gap q-DL assumptions, the user therefore holds a

valid MACBBS authentication tag (i.e., a VC) on the {mi}i∈D. The {mi}i∈D

disclosed to the verifier have thus been certified by the issuer and presented by
the user to whom the corresponding V C was issued (as the user proved that he
knows the underlying key sk = skBlind − r).
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D Proof of Game 5

We show that R, in Game 5 of the anonymity proof, perfectly simulates this
game using the random credential (A∗, e∗). In other words, this means that the
output of (Show(pkI , sk

∗, {m∗
i }

n
i=1,D, σ∗), A( )) reveals no information about

b.
Let V P = ({m∗

i }i∈D, pkBlind, πHB , A,B,D, πvalidity) be the V P generated using
the credential σ∗= (A∗, e∗) instead of the one of the user jb.

Let V C ′ = (A, e) be the V C obtained by the honest user jb on the secret key
sk and the attributes (m1, m2, m3, . . . , mn). We suppose that for all i ∈ D, we
have: mi = m∗

i .
As D is an element of a cyclic group of order p and D ̸=1 (the neutral element
of this group, considered here as multiplicative), this implies that there exists
an integer r′2 ∈ Z∗

p such that D = C
r′2
m where Cm = g0pk

∏n
i=1 g

mi
i .

For the same reasons, there exists an integer r′1 ∈ Z∗
p such that A = Ar′1r

′
2 .

Let us show that B = A
−e

D
r′1

= A
skI .

By definition: AskI+e = Cm and thus AskI = CmA−e. This therefore implies
that:

A
skI

= AskIr
′
1r

′

2 = C
r
′
1r

′

2
m A−er

′
1r

′

2 = Dr
′
1A

−e
= B

Furthermore, there exists r ∈ Z∗
p such that pkBlind = gsk

∗+r∗ = gsk+r. πHB

is therefore a valid SoK produced with the private key sk∗+r∗ = sk+r mod p.
Let us also show that: g0pkBlind

∏
i∈D g

m∗
i

i = Dr′3
∏

i/∈D g−mi
i gr where r′3 =

r′
−1
2 mod p.

By definition:

Dr′3 = Cm = g0pk

n∏
i=1

gmi
i = g0pkBlind

n∏
i=1

gmi
i g−r

Therefore, we have g0pkBlind

∏
i∈D g

m∗
i

i = Dr′3
∏

i/∈D g−mi
i grsince mi = m∗

i

for all i ∈ D.
Given that the proof πvalidity is witness-indistinguishable, it reveals no infor-

mation (even to an attacker with unbounded computational power) about the
elements (α, β, γ, δ, {τi}i/∈D)) used to produce the proof πvalidity.

Therefore, an attacker, even with unbounded computational power, has no
way to determine which credential was used to generate the
V P = ({m∗

i }i∈D, pkBlind, πHB , A,B,D, πvalidity). This concludes the proof that
that the output of (Show(pkI , sk

∗, {m∗
i }

n
i=1,D, σ∗), A( )) reveals no information

about b.

E Oblivious Issuance Proof of Discrete Logarithm
Equality

In this Appendix section, we describe how to issue securely and obviously a
πDLEQ proof, even in a concurrent setting. We use the Oblivious Issuance Proof
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proposed by Orrù et al. ([28], Fig. 9), with slight adaptations to our pairing-
free anonymous credentials system. In particular, the pair (A,B) used on the
user’s side should be computed as in a Show protocol. More precisely if the pair
(A, e) represents the user’s credential on their public key pk and their attributes
{mi}ni=1, they should choose two integers r1, r2 ∈ Z∗

p and compute:

– A = Ar1×r2 ,
– D = Cm

r2 , where Cm = g0pk
∏n

i=1 g
mi
i .

– B = A
−e

Dr1 = A
skI , where skI is the issuer’s private key.

In the sequel, G and H will denote two public random generators (in pp) and H
a suitable hash function.

E.1 Verification of the Proof πDLEQ.

The verification algorithm of πDLEQ is given in Fig. 10
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User(pp,A,B, {mi}ni=1, pk,
pkI , e, r1, r2, g̃, G,H,H)

Issuer(pp, skI , pkI , g̃,
G, H, H)

v∈RZp;
A

′
=A

v

B
′
=B

v (A′,B′)−−−−−→ If B′ ̸= AskI

Abort

a
′
∈RZ∗

p

b
′
∈RZp

C
′
= Ha

′
Gb

′

(T ′
1,T

′
2, C

′
)

←−−−−−−−
t
′
∈RZp

T ′
1 = A′t

′

T ′
2 = g̃t

′

α∈RZ∗
p

β∈RZp

C = C′α−1

G−β

ε∈RZ∗
p; ρ∈RZp

T1 = T
′
1

ε−1v−1

A
′−ρε−1v−1

T2 = T
′
2

ε−1

g̃−ρε−1

c = H(A, B, T1, T2, C)

e
′
= εα−1c

e
′

−→

r′,a′,b′←−−−− r′ = t
′
+e

′
a
′
skI

Check that C
′
= Ha

′
Gb

′

and a
′
̸= 0

a = α−1a
′

b = α−1b
′
−β

Check A′r
′

= B′a
′
e
′

T
′
1

Check g̃r
′
= pkI

a
′
e
′

T
′
2

r = ε−1(r
′
−ρ)

Return (A, B, πDLEQ= (a, b, c, r))

Fig. 9: Oblivious Issuance of the Proof πDLEQ
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Verifier(pp,A,B, πDLEQ = (a, b, c, r), pkI , g̃, G,H,H)

1. C∗=HaGb;
2. T ∗

1 =A
r
B

−ca;
3. T ∗

2 =g̃rpkI
−ca;

4. c∗=H(A, B, T ∗
1 , T

∗
2 , C);

5. Return (c∗ == c)

Fig. 10: Verification of the proof πDLEQ


