
Constant-Time Code: The Pessimist Case

Thomas Pornin

NCCGroup, thomas.pornin@nccgroup.com

6March, 2025

Abstract. This note discusses the problem of writing cryptographic implementa-
tions in software, free of timing-based side-channels, and many ways in which that
endeavour can fail in practice. It is a pessimist view: it highlights why such failures are
expected to becomemore common, and how constant-time coding is, or will soon be-
come, infeasible in all generality.

1 Introduction
Timing attacks are a class of attacks on cryptographic implementations in which the attacker
infers information on secret values (especially private keys) from timing measurements. We
consider here the case of software implementations, running over a large range of mostly
general-purpose CPUs, from small microcontrollers to the largest multi-core server proces-
sors. Timing attacks were initially described in the case of RSA and DSS, leveraging the total
computation time of a private key operation[20]. Later variants exploit various side-channels,
in particular caches[24]: timing measurements can differentiate between a hit and a miss
when accessing memory through a cache, which depends on the cache state, which itself is
a product of the previous memory access pattern. Cache timing attacks reveal information
on secret-dependent addresses used for memory accesses. Conditional branches with secret
conditions are also a prime target, both for the effect on the instruction caches, and the effect
on overall execution time.

Timing attacks are only one sub-case of side-channels attacks, but they are often con-
sidered specially, because they can be exercised remotely[5,6], in contrast to most other side-
channels that require the attacker to be physically located in the vicinity of the target. For
instance, timing attacks may be attempted between two virtual machines co-located in a data
centre (possibly running on the samephysical host), using only the inherent abilities of servers
at measuring elapsed time (with, in particular, cycle counters present in most CPUs), while
the attacker is comfortably operating from a remote place on another continent.

Constant-time code is software specially designed to be immune to timing attacks by not
having such side-channels. Specifically, we define it as software which is such that no secret
information can be inferred, even statistically, from timing measurements. It is a technically
incorrect expression, since it does not mean that the code executes in a constant amount of
time; but it is traditional and there is no better name in widespread usage for now1.

1One may encounter the adjective isochronous, which sure looks fancier; but its Greek roots just
mean “constant-time”, which implies that this term is exactly as incorrect as the expression it purports
to replace. If we want more exact terminology, we need to conjure up some awkward neologism, e.g.
achronognostic (“there is no knowledge in time”).

There are known techniques[3,17] for writing cryptographic software in ways that aim
at following strict constant-time discipline; they focus on avoidingmemory accesses at secret-
dependent addresses, conditional branches with secret conditions, and some operations such
as integer division which typically have an operand-dependent execution time. The hope is
that such techniques are sufficient to obtain constant-time behaviour on a wide variety of
hardware platforms, from small microcontrollers to large, high-end multi-core CPUs. The
purpose of this note is, in a nutshell, to crush that hope. These techniques are becoming
ineffective for reasons which will be developed in the next sections, but can be summarized
as follows:

1. Compilers are applying optimization techniques that are heuristically good for perfor-
mance on general software, but happen to leak information through timing-based side-
channels when used on secret data. Since general-purpose CPUs and compilers are ap-
plied to a wide variety of tasks, compilers have no reason to stop doing such optimiza-
tions.

2. Constant-time coding techniques mostly aim at fooling the compiler, to prevent it from
applying these optimizations. Since compilers keep getting smarter, theses techniques
lose their efficiency.

3. Just-in-time (JIT) compilers have access to runtime data; they can, and will, use such
information to perform extra optimizations that static compilers cannot do, and further
destroy the developer’s attempt at achieving constant-time code.

4. JIT compilation is becoming pervasive and is now employed in various contexts, in par-
ticular inside CPUs. Such compilers can do the same optimizations as “external” JIT
compilers, but are not publicly documented, and the output of their “machine” code
translation cannot be inspected to detect deviations from constant-time execution.

5. Modern hardware and software stacks use a very layered structure, with each layer striv-
ing to hide its internal functioning details from upper layers. The socio-economic con-
text which allowed such hardware to exist inherently relies on such abstraction (under
the name of “industrial secrecy”). An effective constant-time coding process would re-
quire a model of computation with strong guarantees on timing-related characteristics,
that would be maintained through all these layers, down to the semiconductors that im-
plement the logic gates. This industry-wide vertical cooperation is unlikely to happen.

2 Compiler Optimizations
It is now customary, for cryptographic libraries, to employ constant-time coding techniques
so that information about secret data, in particular cryptographic keys, does not leak through
timing-based side-channels. These techniques focus in particular on the handling of Boolean
values: secret Boolean conditions, derived from (for instance) key bits, impact which code
must execute and what data elements must be read from RAM. A classic case would be a
square-and-multiply algorithm for implementing the modular exponentiation at the core of
a Diffie-Hellman operation:

– Wewant to compute gx mod p, for some integer g, modulus p, and secret exponent x.
– Weprocess bits of x one by one, in high-to-low order; wemaintain a variable r (initialized

at 1), and, at each step, we replace r with either r2 mod p (if the corresponding bit of x is
0) or gr2 mod p (if the bit of x is 1).

2

In order to avoid leaking information on the exponent bits, we must systematically compute
both r2 and gr2, and then select the correct value in a constant-time way, in particular with a
memory access pattern that doesnotdependon the valueof the secret bit.An implementation
of that conditional selection may use a function similar to the following (here implemented
in C):

#include <stddef.h>
#include <stdint.h>

void
condmove(uint64_t *restrict a, const uint64_t *restrict b,

size_t len, uint32_t x)
{

uint64_t mask1 = -(uint64_t)(((x | -x) >> 31) ^ 1);
uint64_t mask2 = ~mask1;
for (size_t i = 0; i < len; i ++) {

a[i] = (mask1 & a[i]) | (mask2 & b[i]);
}

}

This code is derived from the BearSSL library source code[25]. This example was communi-
cated to me by Moritz Schneider, who recently analyzed similar situations in several crypto-
graphic libraries[27], and found that purportedly constant-time code is outsmarted bymod-
ern compilers, and turned into non-constant-time machine code.

This condmove() function takes as parameters two arrays a and b, each containing len
words, and replaces the contents of a with the contents of b if and only if the parameter x is
non-zero. In the source code, two mask values mask1 and mask2 are first computed, so that
one is the all-ones pattern and the other is the all-zeros pattern, depending on whether the
control value x is zero or non-zero. The computation of mask1 is a classic trick: if x is non-
zero, then either x or -x (or possibly both in one case) has its highest bit set. The intent is to
produce the mask values without using a plain comparison (“x != 0”) so that the compiler
does not notice that we are really making a conditional move.

The compiler is not fooled. Back when BearSSL was originally written (around 2015),
such tricks were working. But if we try with a recent enough compiler (Clang 18.1.3, for a
64-bit x86 target, “-O3” optimization level, Intel assembly syntax), we get this:

condmove: ; @condmove
.cfi_startproc
test rdx, rdx
je .LBB0_2
test ecx, ecx
je .LBB0_2
shl rdx, 3
jmp memcpy@PLT ; TAILCALL

.LBB0_2:
ret

3

It is worth detailing what happened here. The first test is on register rdx, which contains
the length of the arrays (len parameter); the compiler skips the whole process if the length
is zero (this is fine, the length of the arrays is not secret). The second test is on ecx, which
contains the x parameter: the compiler saw through the complicated expression, and under-
stood that it really is an equality comparison with zero, which can be done with a simple
test opcode, followed by a conditional branch. The compiler alsoworked out that the loop
was either a datamove or a no-operation, depending on the result of the test on x, so that one
branch amounted to nothing at all, while the other could be donewith the standard function
memcpy()2.

This is not a compiler defect.What this example shows is the compiler doing its job, and
doing it well. Finding that kind of optimization is exactly what the compiler is designed to
do, and what is generally expected from it. This, in fact, could be the ultimate cause of the
problem which is explained in this note: general-purpose computers are, by definition, used
formany purposes, most of which not being cryptographic tasks; both the hardware, and the
software tooling, are optimized for heuristically fulfilling most tasks as well as possible. Pre-
venting timing-based side-channels is in direct opposition to these optimization goals, since
heuristic data-dependent shortcuts are a primary source of performance improvement.

This example shows the inherent tension in constant-time coding, as usually practiced:we
want the compiler to understand the code enough toproduce an efficient translationof it into
assembly, but we also want the compiler to not understand the code enough, lest it produces
a really efficient translation of it into assembly. The developer is fighting the compiler. As
compilers get better over time, this is a losing battle. In the example above, one could make a
more complicated expression for themasks, thatwill for now defeat the compiler; for instance,
Clang 18.1.3 does not currently work out that the mask values are a Boolean in disguise, if we
use this code:

x |= x >> 16;
x |= x >> 8;
x |= x >> 4;
x |= x >> 2;
int32_t y = x & 3;
y *= y;
y = (y & 3) - (y >> 2);
y *= y;
y = (y & 3) - (y >> 2);
uint64_t mask2 = -(uint64_t)y;
uint64_t mask1 = ~mask2;

One can check that indeed the values of mask1 and mask2 are computed properly (this con-
voluted code leverages the fact that for any integer z, then z4 = 1 mod 5 if z ≠ 0 mod 5).
However, this sequence is somewhat expensive, both in code size and computational cost,
and itmoreover relies on the compiler not noticing that x & 3 has a limited range of possible

2Part of that analysis leverages the fact that the two arrays do not overlap each other, which the
compiler knows thanks to our use of the restrict keyword. If we remove that keyword, then the
generated codemust account for potential overlap between the two arrays, but still has amemory access
pattern that depends on whether xwas zero or not.

4

values (0 to 3) and making an exhaustive evaluation of what mask values could be obtained
for each. If the compiler did make such an exhaustive evaluation, then it could work out that
three of the possible values lead to y being equal to 1, and the last one sets y to 0, and the
previous optimizations would apply again. Presumably, as computers get more powerful and
compilers correspondingly more aggressive in their optimizations, future versions of Clang
will again destroy our attempts at constant-timeness.

Themain conclusion here is that trying to achieve constant-time processing through soft-
ware constructions that hide the true nature of performed operations from the compiler is
a fool’s errand and doomed to fail. We might try to infer that the solution is to bypass the
compiler completely, and write assembly code directly; however, this also will ultimately fail,
as will be detailed in the next sections.

3 CPU Structure History
In this section, we propose a simplified, synthetic description of how the structure of CPUs,
as used in general-purpose computers, has evolved over the last five decades. Many details are
omitted; the point of this description is to highlight how far modern hardware has departed
from the abstractmodel of executing one instruction at a time, and showhow such evolution
seamlessly blends into more extensive arbitrary, just-in-time compilation inside the CPU it-
self.

While the description below uses several types of historical and recent CPUs as examples,
most of the concepts can be found in action in the well-known line of Intel x86 CPUs. For
a detailed analysis of how instructions are executed in recent x86 CPUs, one may refer to the
excellent optimization guide by Agner Fog[12].

Abstract Model. The initial abstract model is that the CPU is given individual instruc-
tions in an encoded format (“machine code”). The CPU maintains a pointer to the next in-
struction to execute (often called “program counter” or “instruction pointer”). The CPU
operation is an unending loop, each iteration consisting in the following steps, executed in
due order:

1. Fetch thenext instruction frommemory at the address indicatedby theprogramcounter;
the program counter value is also incremented.

2. Decode the instruction into its core operation specification and operands.
3. Perform the operations specified by the instruction. Thismay involve computations, up-

dates to internal registers, and extramemory accesses. The program counter itself may be
modified.

Once all steps have been performed to completion for an instruction, the whole cycle starts
again, fetching the next instruction, and so on. Branch and call instructions work bymodify-
ing the program counter, the new value being naturally used at the start of the next cycle to
fetch the next instruction. This model corresponds to how early computers worked, e.g. the
DEC PDP-8, in the late 1960s[10].

Pipelining. Strictly adhering to the abstract process was a necessity in these early com-
puters, since they had very few processing resources (i.e. logic gates) and most of them were

5

reused for several sub-tasks; for instance, instruction and data fetching would use the same
internal registers3. As technology improved with the invention of the microprocessor, more
transistors could be stored in a chip, and this allowed specializing sub-units, which in turn
unlocked the optimization technique of pipelining: the individual execution procedures for
successive instructions may partially overlap. Instructions still execute in their abstract order,
but the execution of the next instruction starts while the current one (and possibly some pre-
vious instructions) is still ongoing.

One early example is theMOS Technology 6500 family of CPUs[23], which powered 8-
bit home computers in the late 1970s and early 1980s, such as the Apple II and Commodore
64. This CPU tries to maximize its use of the available memory bandwidth: the bus width
is 8 bits, and the CPU can only read or write a single byte per clock cycle. For instance, the
instruction expressed in assembly language as “LDA #$2A” (which loads the constant value
0x2A into the 8-bit A register) is encoded over two bytes (A9 2A):

1. During the first clock cycle, the CPU fetches the first instruction byte (0xA9).
2. As the second cycle starts, the CPU fetches the second instruction byte (0x2A). In par-

allel, the CPU decodes the first byte. Note that the fetching of the second byte starts
before the first byte decoding has been completed, so that the CPU does not know at
that point whether the second byte is really part of this instruction, or the first byte of
the next instruction.

3. In the third cycle, the CPU knows that the instruction is LDA, with an immediate one-
byte operand which has just been fetched. The CPU immediately starts the fetching of
the next instruction byte (which is part of the next instruction). At the same time, the
CPU performs the operation, i.e. moves the value of the second instruction byte (the
immediate operand) into register A.

As this example shows, the instruction following the LDA instruction in program order starts
executing two clock cycles after the LDA instruction; one may thus say that the runtime cost
of that LDA is two clock cycles. However, its complete execution procedure really spanned
over three cycles. This rudimentary pipelining thus increased processing speed by 50%.

Later CPUs increased the number of individual steps over which the execution of an in-
struction splits. The Intel 80386, for instance, has six functional units that can operate in
parallel: bus interface, code prefetch, instruction decode, execution, segmentation, and pag-
ing. The 80386 hardware manual contains figure 1, which illustrates how instructions start
in quick succession but their processing greatly overlaps. Note how, by the time instruction
1 has finished executing (with a final memory store), instruction 2 has done most of its job
(save for a final memory write), instruction 3 is decoded, and the bytes encoding instruction
4 have already been fetched frommemory.

In modern CPUs, the complete execution process of even a simple instruction can span
over more than a dozen cycles.

Branch Prediction. Pipelining allows achieving a high execution bandwidth, close to
the memory bandwidth limit for instruction fetching. It is, however, a bit of an illusion: as

3In the PDP-5, a predecessor to the PDP-8, the program counter was not even in the CPU, but
stored in the main memory; instruction fetching then required extra memory operations to fetch and
store back the program counter value.

6

FETCH 1 FETCH 2 FETCH 3 FETCH 4
STORE

RESULT 1
FETCH 5 FETCH 6

DECODE 1 DECODE 2 DECODE 3 DECODE 4 DECODE 5

EXECUTE 1 EXECUTE 2 EXECUTE 3 EXECUTE 4

ADDR & MMU ADDR & MMU

BUS UNIT

DECODE
UNIT

EXECUTION
UNIT

MMU

ELAPSED TIME

Fig. 1: Instruction pipelining in the Intel 80386 (inspired from the 80386 hardwaremanual,
figure 2-1[14]).

the 6502 example shows, instruction execution really takes more clock cycles than the execu-
tion bandwidth suggests. The illusion breaks down in the presence of a branch instruction:
when a branch is performed, the next instruction is not located immediately after the branch
instruction in memory, but elsewhere4. Thus, the instruction bytes which have been fetched
from immediately after the branch, and were already partially decoded, must be discarded,
while none of the bytes that encode the next instruction in program order have been ob-
tained yet, let alone decoded. This condition is known as a pipeline flush and can have a high
cost, proportional to the pipeline depth, as the instruction targeted by the branch is fetched
and decoded.

Variousways to reduce the cost of pipeline flushes have been employed. In some historical
instruction sets (e.g. MIPS and SPARC), delay slots are used to, basically, foist the problem
unto the developer: the instruction that follows the branch, and which was partially decoded
and executed, is completed anyway, regardless of whether the branch is taken or not. In ef-
fect, this changes the semantics of the branch from “continue execution at that address” into
“execute the next instruction, then continue execution at that address”.

Static branch prediction is a heuristic optimization in which the CPU tries to predict
whether a conditional branch will be taken based on a simple rule. Rudimentary predic-
tion may simply expect conditional branches not to be taken, thus incurring the cost of the
pipeline flush only if the branch is indeed taken (this is how the Intel 80386 operated). A
more advanced formof static branch prediction heuristically assumes that a backward branch
is taken (since this is the classic case of loops), while a forward branch is not; this may be fur-
ther informed by explicit hints encoded in some instruction fields and provided by the de-
veloper. Such static branch prediction can reduce the cost of a pipeline flush, assuming that
the prediction is correct most of the time; it also requires some specialized circuitry in the
instruction decoder to provide early recognition and processing of branch instructions.

Dynamic branch prediction is used by modern large CPUs (in recent Intel x86 CPUs,
only dynamic branch prediction is used; hint prefixes are ignored). A specialized cache unit

4Depending on the source, branch instructions may also be called jumps. Some microprocessor
manuals use both terms with some specific semantic difference, e.g. jumps using absolute addresses
while branches are relative to the current program counter value. Here, such distinctions do notmatter
and we use the term “branch” exclusively.

7

remembers, for the most recently seen branch instructions, that the instruction is a branch,
and its kind (conditional branch, absolute branch, indirect branch to a computed address, ...)
and how it previously fared. Various and increasingly complex pattern recognition methods
are used to properly predict common cases, in particular tight loops with a fixed number of
iterations, and the call/ret sequences.

An inherent consequence of branch prediction is speculation: based upon the correctness
of the prediction, some partially executed instructions may have to be abandoned. Specu-
lated execution may include some externally visible effects that remain even if the execution
was cancelled in the formal model. In particular, speculated memory operations may have
altered the contents of caches, which will impact the timing characteristics of subsequent
accesses[21].

Register Renaming. Since pipelined operations execute in a partially overlapping way,
they may be subject to interdependencies that constrain their execution. For instance, con-
sider the two following x86 instructions (with Intel notation; the left operand receives the
result of the operation):

imul eax, ebx ; multiply eax by ebx, result in eax
add ecx, eax ; add eax to ecx, result in ecx

The integer multiplication is relatively expensive and will need several clock cycles for the
mathematical operation alone (not counting instruction fetching and decoding, and data
movement within the CPU). The second instruction performs an addition that uses the re-
sult of the first instruction as one of the operands; that addition cannot mathematically start
until the multiplication has completed. This is known as a true dependency, and at execution
time, in a pipelined (in-order) CPU, itmust imply a delay (pipeline stall) while theCPUwaits
for the multiplier unit to complete its work. A contrario, consider this sequence:

imul eax, ebx ; multiply eax by ebx, result in eax
mov ebx, [edi] ; load word at address edi, into ebx

These two instructions use the same register (ebx), which induces a false dependency: though
the two instructions share the same resource, there is nomathematical necessity that themul-
tiplication completes before the memory load may occur.

Register renaming is a technique which avoids pipeline stalls from false dependencies. In
a nutshell, theCPU containsmore internal registers than are visible to the developer at the as-
sembly level; when an instruction is decoded, internal registers are allocated for each operand,
and the in-CPUallocation tablemaintains themapping from“external” register (such aseax)
to the “internal” register that contains its value, as per a given instruction in the executed code
sequence. In the example above, ebx in the mov instruction would be mapped to a different
internal register than ebx in the imul instruction, breaking the false dependency and avoid-
ing the stall.

Register renaming is also an essential tool of speculative execution, as is needed for any
branch prediction with a deep pipeline. Suppose that the imul instruction is executed spec-
ulatively, and is later on found to be spurious, i.e. the actual execution path (in the abstract
programming model) did not include that operation, due to a previous mispredicted condi-

8

tional branch. The register renaming unit, seeing the imul instruction with two operands
(eax and ebx), really used three internal registers: one for each of the input operands, and
a distinct third register to receive the result of the multiplication. For instance, suppose that
eax and ebx are mapped to internal registers r1 and r2, respectively, when imul is encoun-
tered; the output, which formally replaces the contents of eax, is redirected to a newly allo-
cated register r3, so that it does not overwrite the contents of r1. If the instruction is later
found to have indeed been part of the instructions to execute in the abstract model5, then r1
is discarded (i.e. marked free for reallocation) and eax is now mapped to r3. On the other
hand, if the instruction must be abandoned, then r3 is discarded, and the register allocation
will keep pointing to r1 for eax.

Micro-operations. Instruction encoding is subject to various constraints. The initial de-
sign of individual instructions and their encoding is a careful trade-off between expressivity
of operations, performance of decoding by theCPU, ease of use by developers and compilers,
and encoding size. Code compacity is highly desirable (since memory bandwidth is often a
performance bottleneck) butmay complicate the instruction decoding, or prevent good code
generation by compilers.Moreover, this trade-off is relative to the technology level at the time
the instruction set is designed, but a given encodingmay have to be supported for a long time
for backward compatibility reasons, even though the available technology has changed. For a
famous example, modern x86 CPUs from 2025 still use an instruction encoding that harks
back to the Intel 8086 CPU, launched in 1978. Even though registers have grown (from 16
to 32 to 64 bits) and various new instructions have been added, the essential features of the
instruction encoding in these modern, large CPUs used in big servers and laptops, have been
in place for close to five decades.

Backward compatibility is an essential consequence of the economic forces that allow the
multi-billion dollars development process for new, faster CPUmodels. It must thus bemain-
tained, even though it has a cost in terms of a larger, more complex instruction decoding unit,
with a higher latency (hence a longer pipeline and cost of pipeline flushes). Modern CPUs
cope with it by breaking instructions intomicro-operations (µops). For instance, an instruc-
tion such as add eax,[ebx], which performs a memory read followed by an addition that
uses the read value as input operand,will be split into twoµops thatwill perform, respectively,
the memory read and the addition. These µops do not exist outside of the CPU; they are in-
visible to the developer. However, the CPU may keep them in an internal encoded format;
for instance, on Intel x86 CPUs since the Pentium IV, the innermost cache for instructions
does not contain a copy of the most recently accessed instruction bytes, but a representation
of the µops resulting from the instruction decoding; the instruction decoder, and beyond it
the level 1 code cache and outer cache layers, are used only when the requested µops were not
found in that innermost cache.

The transform of instructions into µops can also go into the other direction, i.e. merg-
ing several developer-level instructions into a single µop, e.g. to combine a comparison and
a conditional branch into a single compare-and-branch operation. Some other instructions
may be elided, resulting in no µop at all, because their effect can be ignored. For instance, re-
cent x86CPUswill elide register copies (mov eax,ebx) since they can be done implicitly by

5Instructions that have been executed speculatively and are confirmed are said to retire; the retire-
ment buffer stores such instructions whose final side effects must be propagated.

9

the register renaming unit; similarly, a xor eax,eax, which sets register eax (and the flags)
to zero, is handled by a mapping to a special always-zero internal register, and yields no µop,
making it “free”6.

Out-of-Order Execution. Some instructions may have a variable latency that depends
on a large number of external parameters; in particular, every memory read may have to go
through multiple levels of cache, and its latency can take about all values from an almost im-
mediate response (e.g. 4 clock cycles on recent x86 CPUs, for accesses to data which is in
the L1 cache) to thousands of clock cycles7. Moreover, the latencies of individual instruc-
tions can vary depending on the exact CPUmodel onwhich the code runs. For these reasons,
developers (and compilers) cannot in general find, for a given task, a unique sequence of in-
structions that will be optimal or close to optimal in all situations where the codewill run. To
help achieve better performance, modern CPUs can dynamically reorder instructions, using
a method first described by Tomasulo[29].

In a CPU that uses Tomasulo’s algorithm, the µops which are expected to execute are
stored in a generalized pipeline called the re-order buffer, whose capacity can range up to
hundreds of µops. Each instruction in the ROB has some dependencies (mainly on regis-
ter contents) and becomes eligible for execution when these dependencies are fulfilled. At
each clock cycle, the CPU will select some eligible µops for execution. When an instruction
has been executed and is confirmed (i.e. that instruction was indeed part of the sequence to
execute in the abstract programming model), then the instruction is moved out of the ROB,
into the retirement buffer, which handles definitive application of the instruction side effects.
Speculation is general and heavily relies on branch prediction, as well as assumptions such as
memory accesses succeeding and not triggering amemory protection exception. A large num-
ber of internal registers is required to support rollbacks efficiently.

Figure 2 illustrates the process of program execution in a CPU with support for out-of-
order execution. The six steps through which a (micro) instruction goes through are shown:

1. Using branch prediction, the next predicted to execute instructions are fetched, decoded,
and translated into µops with renamed registers.

2. Depending on what values each µop needs, these instructions become eligible for execu-
tion.

3. At any point, the CPU selects some eligible instructions (usually but not necessarily fol-
lowing the program formal order) and executes them.

4. Executed instructions are still speculative, and wait for confirmation.
5. When the confirmation boundary advances past an executed instruction, that instruc-

tion retires, and goes into the retirement buffer. Its side effects are applied.
6. When all side effects of a retired instruction have been applied, the instruction is removed

from the retirement buffer.

In figure 2, the confirmation boundary cannot advance until the instruction that imme-
diately follows it is executed; at this point, that instruction is predicted to execute, but cannot

6An elided instruction still occupies some resources in memory and needs to be decoded at some
point; its cost is thus minimal, but not exactly zero.

7Accesses to memory pages not present in the TLB may imply a cascade of extra memory accesses
to load the page characteristics, each of them being amenable to more cache misses, even if no CPU
exception ultimately occurs.

10

predicted branch

predicted to execute, unfulfilled dependencies

predicted to execute, eligible for execution

executing

executed (speculatively)

executed (confirmed, retiring)

executed (entirely)

RETIREMENT BUFFER

confirmation
boundary

instruction
fetch front

PROGRAM ORDER

P

E

X

S

R

D

P P P P P PE EX XS S S S S SR R RDD

Fig. 2: Re-order buffer for out-of-order execution.

do so yet because it is waiting on one of its dependencies (e.g. a data value that is fetched from
memory, as part of the side effects of one of the instructions in the retirement buffer). Instead
of being merely stuck, the CPU can execute further instructions for which the dependencies
are already fulfilled. The instruction fetch front marks the latest instructions that have been
fetched by the CPU; this front can advance as long as the re-order buffer is not full.

Branch prediction and out-of-order execution explain why compilers tend to use con-
ditional branches: with out-of-order execution, branches are mostly free, as long as they are
correctly predicted. In old, in-order CPUs, especially in the early RISC-inspired designs in
the 1980s and early 1990s, branches were considered very expensive, since branch prediction
was not very effective at that time (for lack of silicon resources to implement good pattern
detection and caching), and the cost of mispredicted branches was becoming quite large as
pipelineswhere lengthened.CPUdesignerswere preferring predication, i.e.making execution
of most instructions conditional. An extreme example was the original ARM, in which al-
most all instructions included a 4-bit condition field that indicatedwhat combinations of the
CPU flags were required for execution of an instruction. For instance, consider the following
C expression, which adds y to x only if c is non-zero (all values have type unsigned int):

x += c ? y : 0;

Compiling this code with GCC (11.3.0) for an ARMv4 target leads to the following code
(with x, y and c being in registers r0, r1 and r2, respectively):

cmp r2, #0 @ compare r2 with zero
addne r0, r0, r1 @ add r1 to r0 only if r2 was not zero ('ne')

11

We see here predication being used on the add instruction, which is skipped unless the “ne”
(not-equal) condition is true (i.e. the Z flag is cleared). However, in later versions of the in-
struction set architecture, most predication fields were removed; on ARMv7-M, GCC pro-
duces the following:

cbz r2, .L2 @ branch to .L2 if r2 is zero
add r0, r0, r1

.L2:

GCCuses a conditional branch,which avoids the dependency onr2: in anout-of-orderCPU
pipeline, and under the assumption that branch prediction is effective, the addition will be-
come eligible for execution before the value of r2 becomes available. We may note that the
ARMv7-Marchitecture still includes a (somewhat limited) predication support, and the con-
ditional addition could still have been expressed in a branchless way:

cmp r2, #0
it ne @ predication prefix: one conditional instruction
addne r0, r1 @ conditional addition of r1 to r0

GCC elected not to do that, because the conditional branch version is faster in newer CPUs.
This of course relies on the heuristic assumption that most branches are correctly predicted,
which is the case in practice; some cryptographic code is an exception here, with its usage
of (purposely!) unpredictable, uniformly selected random values. We see again that general-
purpose CPUs are not optimized solely for cryptography, but for a much larger spectrum of
tasks, in most of which branch prediction works well.

Other Optimizations. Many other optimization techniques are being developed, some
already implemented. The microprocessor industry is highly competitive; no great gains are
expected from further increases in transistor density, since current gates are already close to
theminimum size beyondwhich electrons leaking between neighbouring gates through tun-
nel effect imply too large a parasite current. There is therefore high market pressure to find
and implement newways tomake code run faster.We list here a few such tricks; this is not an
exhaustive list.

Branch prediction focuses on branches; when the branch is conditional, this is equivalent
tomaking a prediction on the Boolean value of the condition that the branch instruction uses
as input.Value prediction (not to be confusedwith predication) was proposed in the 1990s to
extend this notion to arbitrary values, especially when loaded frommemory[22]: if the CPU
detects that memory loads from a given location tend to return the same value repeatedly,
then subsequent loads can be predicted to keep returning that value, allowing instructions
that depend on that value to execute (speculatively) earlier than the completion of the load
operation. Such value prediction has not seen much use yet in CPU designs, but at least the
recentApplemodels (M3,M4,A17Pro) implement it, which allows somemicroarchitecture-
based attacks[19]. In amore generalway, value predictionmay allowall sorts of timing attacks,
since it provides a detectable behavioural change (longer execution time due to a pipeline
rollback onmisprediction)when an internal value is distinct fromwhat theCPUheuristically
expected.

12

Data-dependent prefetching consists in using the data that the CPU sees (e.g. in registers
or in cachememory) to optimistically prefetch other data elements, so as to lower the latency
cost of further memory accesses. Prefetching in the context of processing data elements in
increasing address order is common enough, but recent CPUs go further by following val-
ues that “look like” pointers; this speeds up many common constructions such as linked list
walking, structure field access, and virtual method dispatch in object-oriented languages. Of
course, anything data-dependent is a prime target for side-channel attacks, and this prefetch-
ingmechanism has been demonstrated to be exploitable in the case of the AppleM2 andM3
CPUs[7]. Recent Intel x86 CPUs also implement data-dependent prefetching[15] (though
no working exploit was published so far).

Silent stores (also called store elimination) avoid the cost of performing a memory store
when the new data bytes are identical to the byte values that they replace. In a normal write
operation, the new value is written in the corresponding cache line in L1 cache, which must
be ultimately flushed to the outer cache levels and the main memory; in multi-core systems,
other cores need to be informed of the modification so that their own caches are updated. If
the new value is not different from the previous one, then this backgroundmemory flush can
be avoided, which preserves the memory bandwidth for other operations. Some Intel CPUs
exhibit use of silent stores in the case of writing zeros over zeros[9].

Summary. In modern CPUs, as found in today’s smartphones, laptops and servers, what
the CPU actually executes is quite removed from what the developer may see at the assem-
bly level. The instruction sequence is translated into a different, internal instruction set (the
µops), operating on a different (and larger) set of internal registers, and stored in an internal
cache structure. The execution processmay run the instructions in a variable order, informed
by dynamically harvested information about the handled data and the past behaviour of the
same piece of code. These are most of the essential features of just-in-time compilation; it is
thus just a matter of quantitative expansion of resources, which will happen over time (and
in many respects has already done), before CPUs process the developer-visible machine code
through a full virtual engine that leverages all JIT compilation techniques.

4 JIT Compilation
Just-in-Time compilation is the general name for compilation techniques which are applied
during the program execution rather than in a prior step. The separation of pre-execution
and execution is somewhat arbitrary andmany variants of JIT have been employed in various
situations, since the concept first emerged in the 1960s[4]. Here, we mostly envision “full”
JIT systems featuring characteristics that were pioneered by Smalltalk implementations in
the 1980s[8], and later refined in other systems:

– Translation is performed on-demand, for parts of the program (e.g. a specific function)
at a time, only when invoked.

– Possibly, the JIT engine may support several execution mechanisms, e.g. a simple inter-
preter, and amore complex translation tomachine code only for parts of the code which
are invoked repeatedly. More than two mechanisms may be present, with increasingly
aggressive optimization techniques.

13

– When translation occurs, itmay use heuristic data gathered fromprevious invocations of
the translated part, in particular detection of constant or mostly-constant input values.

– Translation granularity does not necessarily correspond to the formal subdivision of the
program into functions. A tracing JIT compiler tries to detect repeated execution paths,
e.g. often-invoked loops, and optimizes only these paths, not necessarily full functions.

– Translation output is cached; an eviction policy is used to remove older translated code
which seems unlikely to be used again during execution (this is used in particular to cope
with CPU-intensive initialization code which is no longer used after having been per-
formed once).

JIT Compiler Types. For the purposes of the present discussion, we can consider three
types of JIT compilers.

Language-specific JIT compilers are tied to a specific programming language. A prime ex-
ample is the implementation of JavaScript within Web browsers; the JavaScript code is ob-
taineddynamically, not only throughdownloading, but also as computeddata (through a lan-
guage feature such as eval()). Several implementations of JavaScript exist; theMozilla Fire-
fox browser uses an engine called SpiderMonkey[28], which supports three translation levels.
Other languages that often integrate JIT compilation include Python, Ruby, Smalltalk...

In general, language-specific JIT compilers can leverage the specificities of the language,
in particular:

– Source-level type information, if present, may be used by the JIT compiler to better op-
timize its output.

– The JIT compiler may be tailored to better support constructs which are idiomatic to
the language, for instance a specific type of dynamic method dispatch in object-oriented
systems.

Such JIT compilers may use all the optimization techniques enjoyed by static compilers, as
well as dynamically gathered information; the latter is especially true for JavaScript, since the
language’s only formal number type is a floating-point format (IEEE 754 binary64 type), and
an important part of the JIT compiler is to identifywhich values are actually integers thatmay
use the CPU’s general-purpose registers and operations.

Virtual machines present themselves as non-physical CPUs with their own instruction
set architecture. The source code produced by the developer is compiled into instructions
for that virtual CPU; an emulator for that CPU is used to actually run the code. The emula-
tor will typically use JIT compilation techniques to enhance the performance. Awell-known
example is the JavaVirtualMachine (JVM), originally developed in themid 1990s by SunMi-
crosystems to support the specific execution model of the Java language; the JVM has been
used later on as target for other non-Java programming languages, such as Kotlin, Scala or
Clojure. The use of a virtual machine by Java was meant to ensure a high level of portability
(“write once, run anywhere”, as the original slogan went) while enforcing a strict typing and
memory-safe execution model that could be used to run potentially hostile code in a sand-
boxed way, typically as an “applet” integrated in a Web-based service.

In modern Web browsers, the JVM is rarely encountered, but a conceptually equivalent
mechanism is present under thenameWebAssembly (Wasm)[30].TheWasmvirtualmachine
offers a general-purpose 32-bit architecture, and can be used as a target for various languages,

14

including classic statically-typed compiled languages such asRust orC.Wasm is not necessar-
ily tied to Web browsers, but its features, in particular portability and sandboxing, are most
useful in a Web integration context.

Another example of a JIT-compiled virtual machine is the translation layer implemented
by Apple under the name Rosetta, to help with the transition of Apple’s Mac computers
fromaPowerPC to an Intel x86 architecture, in the 2006-2011 period. In 2020,Rosetta 2was
introduced to handle another architecture transition, from x86 (64-bit) to ARM64. In both
cases, the goal was to be able to run existing software on the newmachines, without needing
any support by the software vendors8. In both cases, the transitionwas successful9. That kind
of translation technology highlights that evenwhenwriting code for a very concrete, physical
architecture such as x86 CPUs, a JIT-powered virtual machine may still be involved.

JIT-compiled virtual machines can use most of the optimizations that are available to
language-specific JIT compilers, though they are usually slightly limited with regard to static
type information; type annotations visible in the developer-level source code are not neces-
sarily encoded into the instructions for the virtual machine10.

In-silicon JIT compilation is the same concept as the virtual machine, except moved be-
yond the “hardware boundary”. Classically, a developer writes code that gets translated in
some way to machine code, i.e. instructions for the CPU. How the CPU executes these in-
structions is in general poorly documented,mostly for intellectual property reasons. Thema-
chine code, as defined in the instruction set architecture, marks the boundary of what the de-
veloper can inspect; anything beyond is the hardware vendor’s realm. Nothing prevents a
CPU from containing a JIT compiler to help it run the instructions in an efficient way. This
concept was applied to the Transmeta processors in the early 2000s[13]: the Crusoe and later
Efficeon CPUs outwardly presented themselves as x86 CPUs, able to correctly run x86 code
(including systemcode such as the operating systemkernel), but internally translating the x86
code into instructions for a RISC-like architecture with explicit support for parallelism11.

Transmeta was not commercially successful. However, the concept remained available.
Themore recent “ProjectDenver” byNvidia developedmicroarchitectures (nicknamedDen-

8Apple computers of theMacintosh/Mac line have gone through six architectures along the years:
Motorola 68k, PowerPC (32-bit), PowerPC (64-bit), x86 (32-bit), x86 (64-bit), and nowARM64. The
32- to 64-bit transitions for PowerPC and x86 CPUs were handled by the hardware itself, since the
64-bit CPUs also supported 32-bit mode. For the m68k to PowerPC transition, software vendor sup-
port was needed, Apple providing only someOS support for “fat binaries” that included compiled code
for both architectures. In later transitions, theMac software ecosystemwas too diverse to be able to effi-
ciently pressure software vendors into recompiling and redistributing versions for the new architecture,
hence the need for a dynamic binary translation mechanism with good performance.

9JIT-powered virtual machines have been used for cross-architecture transitions in other systems,
albeit with less commercial success; examples include the ill-fated Itanium (“IA-32 EL”) and Alpha
(“FX!32”), both for running unmodified 32-bit x86 code.

10Many dynamically typed languages such as JavaScript do not have source-level type annotations
anyway.

11The internal hardware was of the VLIW kind, for “Very Long Instruction Word” (128-bit and
256-bit instructions, for Crusoe and Efficeon, respectively). Explicit parallelism is easy to support by
the hardware since all complicated decisions about what parallelism may happen are taken by the JIT
compiler, not the hardware. VLIW implies very large binaries, but this is tolerable in a JIT system since
only the most used routines are translated and cached.

15

ver 1, Denver 2, and Carmel) that outwardly implement the ARM64 (64-bit ARMv8-A) ar-
chitecture, but internally translate the instructions to undocumented µops, and additionally
use JIT compilation techniques to automatically translate and optimize the most frequently
usedARM64 routines into the internal representation. CPUs using thesemicroarchitectures
include the Nvidia Tegra K1, Tegra X2 and Tegra Xavier. Compared to a CPU using a more
traditional out-of-order pipeline, the use of JIT techniques has some advantages:

– Since translation and optimization are applied only on the most used code paths, more
aggressive optimization techniques can be used.

– Information gathered from previous executions of a given code path can be leveraged to
inform the optimizer.

– To some extent, some optimization decisions can be moved from the hardware into the
JIT software layer (e.g. register renaming), thus reducing the number of required gates
and the overall CPU power usage.

– The non-optimized baseline interpreter can also be used as a low-power CPU for back-
ground tasks, especially for mobile devices such as smartphones, for whom battery effi-
ciency is of paramount importance, and some background processingmust still happen,
at a possibly low pace, when the device is otherwise idle.

Challenges to Constant-Time Code. JIT compilers make it especially challenging to
write constant-time code for the following reasons:

– JIT compilers can do all that static compilers can, which is already enough to cause trou-
ble (see section 2), but their gathering of runtime information on data further improves
their ability to annihilate attempts at constant-timeprocessing. For instance, if an encryp-
tion routine uses the same key repeatedly, then the JIT engine may heuristically assume
that this particular key value is a constant, and use it to further optimize computations
that use it12.

– JIT compilation is based on heuristics, similar to value prediction, but with a much
higher cost of misprediction (since a wrong hypothesis on the value, type or range of
an input implies a recompilation or at least a switch back to interpretation). This can
plausibly turn into a timing-based side-channel that is much easier to detect and leverage
by attackers.

– JIT compilation, occurring at runtime, is out of reach of developers. In a traditional eco-
nomic model, the developer produces some source code which is either provided to the
customers/users (open-source model), or compiled by the developer, and the resulting
machine code is distributed. A constant-time-conscious developermay try to inspect the
output of static compilation to see whether the machine code, at least, seems constant-
time; this is not possible in the context of JIT compilation, since that happens after the
delivery of the software to the user.

In-silicon JIT compilers make the problem especially insolvable since the actual sequence
of executed µops is hidden away. There are strong market forces that lead to this situation;
namely, the development of a new large CPU design is a capital-intensive process, that can
happen only because the resulting hardware can be sold in large quantities and generate prof-
its that will cover the development costs. A cornerstone of this model is that the design is not

12Thanks to Frank Denis for scaring me with this particular scenario.

16

easily copyable by third parties (in a revealing way, such circuitry designs are called “IP”, as
in “intellectual property”). There is thus a strong push for not documenting how the CPU
internally works.

This is less true in the context of small CPU designs, e.g. for microcontrollers; such de-
signs canbe small enough tohave lowdevelopment costs (the commercially important secrecy
applies more at the integration level, where the CPU core is adjoined with some RAM and
Flash, and I/O abilities). Hobbyists regularly write and publish open-sourceCPUdesigns for
either custom instruction set architectures, or for standard ones that do not require a license
(typically RISC-V).

5 Partial Solutions
The point of this note is to show that writing constant-time code, in a general and portable
way, is not really feasible with modern hardware. However, in some specific situations, there
are known methods, or at least tricks, that can lower the risk of timing-based side-channels.
We list a few here.We do not aim atmaking an exhaustive survey; rather, wewant to highlight
howmost of these attempts at copingwith the problem revolve around avoiding, countering,
and validating the developer-visible parts of the system, i.e. the language compiler and its as-
sembly output. For lower parts, in particular the hardware (or emulation thereof, for virtual
machines), some specificbehaviourmust be assumed as part of a givenmodel, usuallywithout
any clear guarantee that any physical CPU follows that model.

IntelDOIT, ARMDIT. Recent Intel x86CPUsdooffer someguarantees of constant-time
execution, for a subset of the available instructions, subject to some conditions[16]. The sub-
set includes arithmetic and logic operations (including integermultiplications, but excluding
integer divisions); floating-point operations are not included13. The “conditional move” in-
structions such as cmovz are part of the list of constant-time instructions.

As per Intel documentation, the constant-time guarantees hold for CPUmicroarchitec-
tures earlier than Ice Lake (in the “Intel Core” line) andGracemont (in the “Atom” line). On
Ice Lake, Gracemont, and later cores, the guarantees are not provided by default, butmust be
enabled explicitly by setting the data operand independent timing (DOIT) flag, which is bit
zero in the model specific register (MSR) called IA32_UARCH_MISC_CTL. Reading or set-
ting aMSR requires a high privilege level (i.e. kernel mode, not user mode). In practice, even
without this flag, the listed “constant-time” instructions are still constant-time by themselves,
even in newer CPUs (as of early 2025); however, setting the DOIT flag will also disable some
other in-CPU optimizations that can exhibit data-dependent timing differences, e.g. data-
dependent prefetching.

In the ARM ecosystem, the ARMv8.4-A architecture defines the PSTATE.DIT register
([2], section C.5.2.4), which is very similar to the Intel IA32_UARCH_MISC_CTL register.
The Apple M-series processors support DIT, but most other ARMCPUs (as of early 2025)
do not. On the bright side, the DIT flag can be read and set by user code without any special
privileges.

13Experimentally, floating-point arithmetic operations aremostly constant-time fornon-exceptional
cases, but extra delays are induced when infinites, NaNs or denormalized values are involved[1].

17

In situations where one can ensure that the used CPU is an Intel x86 and the DOIT flag
is set, or an ARM-compatible CPU with enabled DIT, then it is again conceivable to try to
achieve constant-time operations, at least if compiler-induced issues can be avoided.

Inline Assembly. Using inline assembly is a simple trick that can be used to prevent some
unwanted data-dependent optimizations in some specific compilers, e.g. GCC andClang for
the C language. Going back to our original “condmove()” example in section 2, this trick
may look like this:

#include <stddef.h>
#include <stdint.h>

void
condmove(uint64_t *restrict a, const uint64_t *restrict b,

size_t len, uint32_t x)
{

x = (x | -x) >> 16;
__asm__ ("" : "+r" (x) : :); // inline assembly to fool the compiler
uint64_t mask1 = -(uint64_t)((x >> 15) ^ 1);
uint64_t mask2 = ~mask1;
for (size_t i = 0; i < len; i ++) {

a[i] = (mask1 & a[i]) | (mask2 & b[i]);
}

}

Inline assembly is a language extension which allows the inclusion of some explicit as-
sembly code in a program. In the syntax used byGCC (and later implemented byClang), the
assembly code is provided as a literal string used as parameter to the __asm__ construction.
For historical reasons, GCC and Clang do not understand the contents of that string14; they
dump itmostly unmodified in the assembly code they generate,with only textual replacement
for plugging input and output operands.

In this case, one operand is specified (x), that the compiler is instructed tomap to a regis-
ter, and will be used for both input and output ("+r"). The compiler replaces the sequence
“%0”, where it appears in the assembly code, with the name of the register that it has chosen
for that input/output operand; here, the assembly code is empty, so there is no actual replace-
ment. The net effect is that the inline assembly yields no instruction at all, but the compiler
cannot assume anything on the value of x after that assembly chunk. Prior to that assembly
code, the compiler knows that only the low 16 bits of x can be non-zero (since this is the out-
put of a right shift by 16 bits), but afterwards x could have any value (from the point of view
of the compiler), hence “x >> 15” is not necessarily a disguised Boolean value (as far as the
compiler knows). In effect, this prevents the previously observed optimizations. Note that

14GCC started as a quest to replace the closed-source,OS vendor-provided “Unix compiler”; for eas-
ier integration, it had to generate code in a textual assembly representation, as expected by the vendor-
provided assembler, which limited the compiler’s options. Understanding the contents of inline assem-
bly chunks would have required the compiler to support the vendor syntax for assembly, which could
have led to legal difficulties.

18

since the assembly chunk is empty, it is also portable: no architecture-specific part is involved.
For 64-bit x86, Clang’s output for the computation of mask1 and mask2 is the following
(Intel syntax):

mov eax, ecx
neg eax
or eax, ecx
shr eax, 16
#APP
#NO_APP
shr eax, 15
xor eax, 1
mov rcx, rax
neg rcx
dec rax

The inline assembly code (the empty string) goes between APP and NO_APP. mask1 is com-
puted in rcx, and mask2 in rax.We see here a nifty optimization from the compiler: mask2
is nominally a bitwise complement of mask1, but is instead computed by subtracting 1 (with
the dec rax instruction) from the value before the negation that yielded mask1 (this works
because in these machines using two’s complement, negation is the same thing as a bitwise
complement followed by adding 1).

Use of inline assembly to prevent compiler optimizations is a fragile technique; not only
does it work only for the developer-level compiler (it cannot cover the case of an in-silicon
JIT compiler or a virtual machine), but it also relies on the compiler not trying to understand
inline assembly. This is not true of all compilers; for instance, the SUNWspro compiler (on
Sun SPARC systems) supported inline assembly as “inline templates” and integrated them in
its code generation pipeline, thus re-optimizing the assembly code in all the ways that the C
compiler could do with C code. Conversely,Microsoft’s Visual C compiler does not support
inline assembly at all for x86 in 64-bit mode.

More Compiler Fighting. Classic constant-time coding techniques can be described as
trying to fight or fool compilers, to undo their optimization efforts. Maybe the solution is to
fight harder? Many methods and tools to do so have been proposed so far; a list of such tools
is available on:

https://crocs-muni.github.io/ct-tools/

with no fewer than 55 listed tools (at of early 2025). Most tools are about verifying whether
a given piece of code is constant-time, but some modify code generation to (try to) enforce
constant-time behaviour.

All such tools rely on a set of assumptions about what instructions and conditions are
constant-time in the hardware. For instance, they may assume that the target is a recent Intel
x86 or ARMwith DOIT/DIT enabled; in that case, the enemy is the developer-visible com-
piler, and once “constant-time” assembly has been generated, the job is done. Some other
works try to handle optimizing hardware, based on a model of what shortcuts and tricks the
CPU will use, and what conditions are sufficient to prevent the unwanted optimization to

19

https://crocs-muni.github.io/ct-tools/

happen (e.g. the recent [11] can work around a CPU optimizing away multiplications by 0
or 1, but does not try to avoid other kinds of multiplication shortcuts, which nonetheless
exist in some CPUs15). The main conceptual problem of such assumptions is that the exact
behaviour of the hardware is rarely, if ever, documented; surveys rely on scanning existing re-
search papers and patents to get an idea of what could be implemented in newer CPUs[26],
but it is mostly impossible to ascertain what is implemented in a specific processor, let alone
what will be implemented in newer versions in the future. Instruction set architectures can
only specify, at best, some expected timing characteristics, and do so only grudgingly (even
Intel DOIT and ARMDIT list the constant-time behaviour as optional, not enabled by de-
fault, and likely to be slower than the default setting). In the presence of a virtual machine or
an in-silicon JIT compiler, all these constant-time guarantees disappear.

Another common characteristic of constant-time analysis tools is that theymust proceed
from a notion of secret data: it must be specified, somewhere, that a given data element (e.g.
a cryptographic key) is secret, and operations involving it must not leak information through
timing-based side-channels. Most data in a program is not secret; e.g. most loops have a non-
secret number of iterations, and the tool should not highlight the loop counter as being po-
tentially leaked through the conditional branch that terminates each iteration. Moreover, se-
cret data can become non-secret; for instance, when symmetric encryption is applied, this is
because the plaintext and the key are secret, but the ciphertext is not (this is the whole point
of encryption, really). A tool that follows secret data through an instruction graph must be
instructed that, at some specific points, secrecy has been “cured” and non-secret data is ob-
tained. Tagging secret and non-secret data is normally done with developer-provided anno-
tations, that extend the language; this often requires modifying the compiler itself, and thus
adds an additional hurdle: if the tool is a patch on the compiler, then itmust be either adopted
by the compilermaintainers, ormaintained separately as new compiler versions are produced.
Separate maintenance is a significant long-term time investment that academic authors typi-
cally donot have the resources to provide, especially since compiler development is fast-paced;
as for upstream adoption, compiler authors have so far shown little appetence for it.

6 Conclusion
In this note, we have tried to explain and illustrate the problem of writing constant-time
code. The pessimistic conclusion is that ensuring constant-time behaviour through coding
practices does not in general work, because compilers keep getting smarter, and new compil-
ers keep popping up in many places and especially deep inside the hardware, where we can-
not even see them and control what they do. Moreover, a pervasive lack of documentation
throughout the whole computing stack makes it hard to even know the current situation
with some degree of precision; for the in-silicon parts, this obscurity is part of the economic
model that allows modern, complex and expensive CPUs to exist at all. Thus, the situation is
not good and unlikely to do anything else than worsening in the future.

Constant-time coding can still be achieved in some situations where the target hardware is
narrowly defined. For instance, when writing code specifically for a microcontroller running

15PowerPC 7xx and 74xx, aka the G3 and G4 lines, computed multiplications faster when one
operand was short, with thresholds on 8, 16 and 24-bit sizes; more recently, the ARMCortex-A53 and
A55 support 64-bit multiplications but return earlier when one of the operands fits on 32 bits.

20

with an ARMCortex-M4 core, and using explicit assembly routines (to avoid any compiler-
induced issue), then it is possible to achieve constant-time processing, mostly because that
CPU core has a relatively simple execution model (only some limited pipelining) and does
not have much data-dependent timing behaviour beyond the obvious effect of conditional
branches. Memory accesses should still be performed only at non-secret addresses, because
interactions with DMA-able peripherals may reveal information on such addresses. Another
example is when using extensive constant-time analysis in conjunctionwith aCPU that offers
explicit guarantees at the hardware level (e.g. IntelDOIT). In the introductionof our analysis,
we stated that vertical cooperation for guaranteeing constant-time behaviour was unlikely;
Intel DOIT and ARMDIT are the exception, and such endeavours should be encouraged.

Cryptographic libraries should still aim for constant-time coding: while it is not feasible to
obtain constant-time behaviour generically, i.e. with plain source code that will be constant-
time on most platforms with most compilers, following constant-time coding practices still
has benefits:

– Constant-time coding highlights the secret data elements and the operations which are
most likely to induce information leakage through timing-based side-channels. This will
help with application of constant-time analysis tools in situations where the target soft-
ware and hardware stack is known.

– In many usage contexts, attackers are limited in their measurements to some granularity,
and might be unable to detect a timing difference of a dozen cycles or so. By adhering to
constant-time practices, in particular avoidance of branching based on secret conditions,
a library might avoid some of the most egregious information leaks, and the remaining
side-channels could prove unexploitable by attackers.

Generic cryptographic libraries should thus aim for at least “best effort” constant-time cod-
ing, even though side-channel leaks cannot be considered eradicated independently of the
actual hardware target.

Cryptographic protocols can improve the situation by, for instance, focusing on short-term
secrets. An example is key exchangewithin aTLS-like protocol: if a server uses only ephemeral
use-once key pairs for the key encapsulation, and a key pair is never reused for another hand-
shake, then side-channel leaks about that key are less of a concern. Most side-channel attacks
yield only a small amount of information from eachmeasurement, andmust be repeated and
statistically analyzed in order to lead to a successful breach; ephemeral keys can prevent many
attacks in practice. Of course, not all cryptographic keys can be made ephemeral (in a TLS-
like protocol, a server will typically use a non-ephemeral signature key pair in addition to the
ephemeral key encapsulation key pair), but reducing the range of potential targets can only
help.

The problem is not only cryptographic: the question of constant-time coding arises from
the processing of secret data. We started this note by asserting that timing attacks are a class
of attacks on cryptographic implementations, but this is not entirely true. Cryptographers
tend to focus on cryptographic keys, which, by design, concentrate the secrecy in a cryp-
tographic scheme (as per Kerckhoffs’ principles[18]). However, information leaks logically
apply to any processing done on any secret data. If a system encrypts some plaintext, it is be-
cause that plaintext is confidential, and thus everything that is donewith that plaintext should
aim for constant-time processing. The problem is merely more acute for cryptographic algo-
rithms, which often happen closer to the input of external data, and thus more amenable to

21

repeated experiments andmeasurements by attackers.We should nonetheless remember that
the problem is larger than cryptography. A really comprehensive framework for confidential
constant-time computing is still lacking; what this note underscores is that such a framework
must encompass the entire software andhardware stack andpunch through layers of jealously
preserved obscurity by the involved actors.

Acknowledgments
We thank Paul Bottinelli and Gérald Doussot, who reviewed this paper.

References
1. M. Andrysco, A. Nötzli, F. Brown, R. Jhala and D. Stefan, Towards Verified, Constant-time

Floating Point Operations, ACM SIGSACConference on Computer and Communications
Security - CCS ’18, pp. 1369-1382, 2018.

2. Arm Limited, Arm Architecture ReferenceManual, ARMDDI 0487, 2024.
3. J.-P. Aumasson (ed.), Cryptocoding,

https://github.com/veorq/cryptocoding
4. J. Aycock, A Brief History of Just-In-Time, ACMComputing Surveys (CSUR), vol. 32, issue 2,

pp. 97-113, 2003.
5. D. Brumley and D. Boneh,Remote Timing Attacks Are Practical, 12th USENIX Security Sym-

posium (USENIX Security 03), 2003,
https://www.usenix.org/conference/12th-usenix-security-symposium/
remote-timing-attacks-are-practical

6. D. Brumley and N. Tuveri,Remote Timing Attacks Are Still Practical, Computer Security - ES-
ORICS 2011, Lecture Notes in Computer Science, vol. 6879, pp. 355-371, 2011.

7. , B. Chen, Y. Wang, P. Shome, C. Fletcher, D. Kohlbrenner, R. Paccagnella and D. Genkin,
GoFetch: Breaking Constant-Time Cryptographic Implementations Using DataMemory-
Dependent Prefetchers, 33rd USENIX Conference on Security Symposium - SEC ’24, pp. 1117-
1134, 2024,
https://gofetch.fail/

8. P. Deutsch and A. Schiffman, Efficient Implementation of the Smalltalk-80 System, 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages - POPL ’84,
pp. 297-302, 1984.

9. T. Downs, Ice Lake Store Elimination, 2020,
https://travisdowns.github.io/blog/2020/05/18/icelake-zero-opt.html

10. Digital Equipment Corporation, Small computer handbook, 1970,
https://bitsavers.org/pdf/dec/pdp8/handbooks/SmallComputerHandbook_
1970.pdf

11. M. Flanders, R. Sharma, A. Michael, D. Grossman and D. Kohlbrenner, Avoiding Instruction-
Centric Microarchitectural Timing Channels Via Binary-Code Transformations, 29th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems - ASPLOS ’24, pp. 120-136, 2024.

12. A. Fog, The microarchitecture of Intel, AMD, and VIA CPUs, 2024,
https://www.agner.org/optimize/microarchitecture.pdf

13. L. Geppert and T. Perry, Transmeta’s magic show, IEEE Spectrum, vol. 37, issue 5, pp. 26-33,
2000.

22

https://github.com/veorq/cryptocoding
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://gofetch.fail/
https://travisdowns.github.io/blog/2020/05/18/icelake-zero-opt.html
https://bitsavers.org/pdf/dec/pdp8/handbooks/SmallComputerHandbook_1970.pdf
https://bitsavers.org/pdf/dec/pdp8/handbooks/SmallComputerHandbook_1970.pdf
https://www.agner.org/optimize/microarchitecture.pdf

14. Intel Corporation, 80386 – Hardware ReferenceManual, 1986,
https://www.dosdays.co.uk/media/intel/1986_80386_Hardware_Reference_
Manual.pdf

15. Intel Corporation,Data Dependent Prefetcher,
https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/technical-documentation/data-dependent-
prefetcher.html

16. Intel Corporation,Data Operand Independent Timing Instruction Set Architecture (ISA) Guid-
ance,
https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/best-practices/data-operand-independent-
timing-isa-guidance.html

17. Intel Corporation,Guidelines forMitigating Timing Side Channels Against Cryptographic Im-
plementations,
https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/secure-coding/mitigate-timing-side-channel-
crypto-implementation.html

18. A. Kerckhoffs, La cryptographie militaire, Journal des Sciences Militaires, vol. 9, pp. 5-38 (Jan.
1883) and pp. 161-191 (Feb. 1883).

19. J. Kim, J. Chuang, D. Genkin and Y. Yarom, FLOP: Breaking the AppleM3 CPU via False Load
Output Predictions, to appear at USENIX Security 2025,
https://predictors.fail/files/FLOP.pdf

20. P. Kocher, Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems,
Advances in Cryptology - CRYPTO’ 96, Lecture Notes in Computer Science, vol. 1109, pp. 104-
113, 1996.

21. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz and Y. Yarom, Spectre Attacks: Exploiting Speculative Execution, 2019
IEEE Symposium on Security and Privacy (SP), pp. 1-19, 2019.

22. M. Lipasti, C. Wilkerson and J. P. Shen,Value locality and load value prediction, ACM SIG-
PLANNotices, vol. 31, issue 9, pp. 138-147, 1996.

23. MOS Technology, MCS 6500Microcomputer Family – Hardware Manual, 1976,
https://web.archive.org/web/20221106105459if_/http://archive.6502.org/
books/mcs6500_family_hardware_manual.pdf

24. D. Osvik, A. Shamir and E. Tromer, Cache Attacks and Countermeasures: The Case of AES, Top-
ics in Cryptology - CT-RSA 2006, Lecture Notes in Computer Science, vol. 3860, pp. 1-20,
2006.

25. T. Pornin, BearSSL: a smaller SSL/TLS library,
https://www.bearssl.org/

26. JR. Sanchez Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison and D. Kohlbrenner,Open-
ing Pandora’s Box: A Systematic Study of NewWaysMicroarchitecture Can Leak Private Data,
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),
pp. 347-360, 2021.

27. M. Schneider, D. Lain, I. Puddu, N. Dutly and S. Capkun, Breaking Bad: How Compilers Break
Constant-Time Implementations, arXiv:2410.13489, 2024,
https://doi.org/10.3929/ethz-b-000700923

28. SpiderMonkey,
https://spidermonkey.dev/

29. R. Tomasulo, An Efficient Algorithm for ExploitingMultiple Arithmetic Units, IBM Journal of
Research and Development, vol. 11, issue 1, pp. 25-33, 1967.

30. WorldWideWeb Consortium (W3C),WebAssembly Core Specification,
https://www.w3.org/TR/wasm-core-2/

23

https://www.dosdays.co.uk/media/intel/1986_80386_Hardware_Reference_Manual.pdf
https://www.dosdays.co.uk/media/intel/1986_80386_Hardware_Reference_Manual.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://predictors.fail/files/FLOP.pdf
https://web.archive.org/web/20221106105459if_/http://archive.6502.org/books/mcs6500_family_hardware_manual.pdf
https://web.archive.org/web/20221106105459if_/http://archive.6502.org/books/mcs6500_family_hardware_manual.pdf
https://www.bearssl.org/
https://doi.org/10.3929/ethz-b-000700923
https://spidermonkey.dev/
https://www.w3.org/TR/wasm-core-2/

	1 Introduction
	2 Compiler Optimizations
	3 CPU Structure History
	4 JIT Compilation
	5 Partial Solutions
	6 Conclusion

