
CCA-Secure Traceable Threshold (ID-based) Encryption and
Application

Rishiraj Bhattacharyya

University of Birmingham, UK

rishiraj.bhattacharyya@gmail.com

Jan Bormet

TU Darmstadt, Germany

jan.bormet@tu-darmstadt.de

Sebastian Faust

TU Darmstadt, Germany

sebastian.faust@tu-darmstadt.de

Pratyay Mukherjee

Supra Research, India

pratyay85@gmail.com

Hussien Othman

TU Darmstadt, Germany

hussien.othman@gmail.com

Abstract
A recent work by Boneh, Partap, and Rotem [Crypto’24] intro-

duced the concept of traceable threshold encryption, in that if 𝑡

or more parties collude to construct a decryption box, which per-

forms decryptions, then at least one party’s identity can be traced

by making a few black-box queries to the box. This has important

applications, e.g., in blockchain mempool privacy, where collusion

yields high financial gain through MEVs without any consequence

– the possibility of tracing discourages collusion. Nevertheless, their

definitions leave room for exploitation as they only achieve CPA se-

curity and do not consider inconsistency in decryption via different

participating sets.

This paper proposes stronger definitions of traceable threshold

encryption, which supports CCA-security and consistency. Our

main approach considers identity-based variants of traceable en-

cryption (which we also define). It converts that to a CCA-secure

construction, adapting two generic transformations, first using a

one-time signature and then a fingerprinting code. We put forward

two efficient instantiations of our identity-based scheme with dif-

ferent merits: our first construction is based on Boneh-Franklin IBE

[Crypto’01] and has constant size ciphertexts but quadratic size

public keys – this is proven secure based on XDH and BDDH. Our

second construction is based on Boneh-Boyen IBE [Eurocrypt’04].

It supports both constant-size ciphertexts and constant-size public

keys – this is proven secure based on a variant of the uber assump-

tion over bilinear pairings. Our concrete analysis shows that the

first construction’s ciphertext is much (~6x) smaller than the second

construction. Finally, we extend the definitions to support consis-

tency and achieve it by adjoining an efficient, non-interactive proof

of correct encryption.

1 Introduction
Threshold cryptographic divides a cryptographic procedure into

multiple subprotocols, distributing them among several (say 𝑛) par-

ticipants. This ensures that no single participant holds the entire

secret, avoiding a single point of failure. Only a subset of partic-

ipants, meeting a predefined "threshold" (say, 𝑡 ≤ 𝑛) can collabo-

ratively perform the cryptographic operation or reconstruct the

secret. Threshold cryptography traditionally guarantees security

when at most (𝑡 − 1) parties are corrupt (and possibly colluding).

Specifically, if more than 𝑡 parties are corrupted by the adversary,

then all bets are off, as the adversary gets to know the entire secret!

However, in many practical applications of threshold cryptogra-

phy if 𝑡 or more parties collude, then the colluders can exploit the

system for significant financial gain. Without a mechanism for dis-

couraging or even detecting such behavior, this possibility may

turn out to be rationally viable as well.

For example, let us consider the problem of mempool privacy.

In many blockchain ecosystems, such as Ethereum, front-running

attacks, and variants [33, 52, 53], on mempools
1
are commonplace.

Here, the validators of a blockchain leverage their advantage of

observing transactions before they are finalized. They selectively

finalize specific blocks or put transactions from the mempool in

a specific order and, depending on that, may extract substantial

financial gains (aka MEVs [29]). Existing solutions [2, 19, 25, 26, 48]

broadly incorporate threshold decryption techniques, in which

transactions in the mempool are encrypted, and the decryption keys

are distributed among the validators in a 𝑡 out of 𝑛 threshold access

structure. Transactions are decrypted only when at least 𝑡 validators

agree to decrypt, which takes place only after a certain time when

no further MEVs can be derived. However, in practice, without

additional mechanisms, there is no way to enforce < 𝑡 corruption.

In particular, if ≥ 𝑡 validators continue to extract MEVs by just

decrypting transactions earlier than scheduled, no one can even

detect that. In fact, it is clearly a rational choice for the validators

to derive MEVs via collusion.

Towards mitigating this kind of problem in the context of thresh-

old encryption, the work of Boneh, Partap, and Rotem [15] (hence-

forth, BPR24) recently put forward the notion of traceable threshold
encryption, which allows a designated party, called the tracer (who
may possess a secret tracing key) to catch at least one traitor from

the collusion of at least 𝑡 parties in the context of threshold de-

cryption. More precisely, if the colluding group (of ≥ 𝑡 parties)

constructs a decryption box that, on a given ciphertext, returns

the corresponding decrypted value, then with a few queries to

the box, the tracer can output the identity of at least one of the

colluders. Therefore, with an adequate penalty in place (for exam-

ple, via slashing), validators are much less likely to collude, as the

financial benefit of colluding over not colluding is not clear any-

more. In the same paper [15], the authors proposed two traceable

threshold encryption schemes with different merits, both based on

finger-printing codes [18].

While the constructions in BPR24 [15] are quite efficient, their

security notions only provide weaker security guarantee – they

achieve only CPA-security, while CCA-security is considered the

“gold standard” for encryptions [5]. In this work, we address this

1
Roughly, validators locally maintain a mempool that contains all transactions sent to

a blockchain that have not been finalized in a block.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

natural problem by extending the notion of traceable threshold

encryption to CCA-security. Moreover, from a practical perspective

in the context of mempool privacy, two concrete practical attacks

are not captured by BPR24: (i) Since their definition only considers

CPA security, a non-malleability attack is easy to execute, for ex-

ample, by blindly mauling an encrypted transaction to something

related. This related transaction may be decrypted earlier, thereby

violating transaction privacy. We stress that such an attack also

works when the plaintexts are signed, which is usually the case

for mempool data. This is because, even if blind mauling makes

the signature invalid, the plaintext would still get exposed. Hence,

a malicious validator can frontrun the original transaction in the

next block. Instead, CCA security would guarantee that no informa-

tion is leaked when the ciphertext is mauled. (ii) The notion does

not guarantee a consistency of decryption, which ensures that the

decryption results into the same plaintext as long as any set of 𝑡

decryptors participate, regardless of the specific members of the

set – this can be exploited, for example, by adversarially crafting

a ciphertext which results into different decryptions based on the

set of decryptors. In fact, these attacks are not only outside their

definitions but they can be easily executed on their constructions,

simply exploiting the homomorphic structures (see Appendix A for

more details). This begets not only an extension of their notions

but also new, stronger constructions secure therein.

Our Contribution. In this paper, we primarily focus on addressing

these issues comprehensively first by extending BPR24’s notion to

CCA-security and then adding consistency; finally, we propose two
new efficient constructions satisfying our notions. In particular, our

contributions are as follows:

• New Stronger Definitions. We formalize the notion of

CCA-security in the setting of traceable threshold key en-

capsulation mechanisms (TT−KEM).
2
En route, we also

define the notion of identity-based traceable KEM, which

supports a threshold key-derivation – we use this as a build-

ing block towards CCA security. Finally, we augment our

CCA-security definitions to support the crucial consistency
property. Our new definitions capture the above.

• Constructing Stronger TT−KEM Schemes.We construct

CCA-secure TT−KEM schemes generically from a CCA-

secure bipartite threshold KEM scheme (BT−KEM) – a CPA-

secure version of this primitive was defined in BPR24, we

augment that to CCA-security. Our generic transforma-

tion is an adaptation from BPR24’s techniques in the con-

text of CPA-security and also relies on the fingerprinting

codes [17]. However, as we explain later in Section 1.1,

the CPA-secure construction from BPR24 is not compatible

with the existing CPA-to-CCA transformation. So we re-

sort to a new approach via IBE. We construct CCA-secure

BT−KEM generically from identity-based BT−KEM (hence-

forth BTIB−KEM, which we define here adapting the PKE

definition from BPR24) lifting the one-time-signature based

technique due to [11]. Finally, we instantiate BTIB−KEM
with two concrete constructions:

2
Similar to BPR24 [15] we work with the notion of KEM for cleaner constructions and

presentations, all our constructions can be converted to usual encryption schemes

following the standard notion of hybrid encryption (KEM-DEM paradigm).

– (i) Our first construction is based on the Boneh-Franklin

IBE [12] and relies on XDH and BDDH assumptions

on bilinear pairing groups. Instantiating with this con-

struction, we obtain a CCA-TT−KEM, which has a

constant size ciphertext but a larger public key, which

scales quadratically with the number of parties.

– (ii) Our second construction is based on the Boneh-

Boyen IBE [7]. Instantiating with this, we obtain a

TT−KEM scheme, where both ciphertext and public

key are of constant size. However, the ciphertext is

concretely larger than the first construction. The se-

curity proof becomes much more involved and re-

lies on a variant of Uber assumptions [8, 20], which

hold in generic groups. This construction additionally

supports hierarchical IBE, and using a generic trans-

formation using fingerprinting codes, similar to the

aforementionedBT−KEM to TT−KEM transformation,

we can obtain a CCA-secure traceable threshold IBE

(TTIB−KEM) scheme – this may be of independent

interest.
3

• AchievingConsistency. Finally, we extend our CCA-secure
TT−KEM constructions to achieve the consistency prop-

erty by using an efficient non-interactive zero-knowledge

(NIZK) proof of the well-formedness of the ciphertext. How-

ever, the challenging part is to resolve the apparently con-

tradictory requirements of public verifiability of ciphertext

well-formedness and traceability, which relies on the col-

luding party’s inability to detect a malformed ciphertext.

We resolve this by including a simulation trapdoor (for

NIZK) into the tracing key which enables only the tracer to

produce “false proofs”. We also note that a similar strategy

can not be incorporated to achieve CCA-security, because

that should hold also against a malicious tracer. We discuss

this in more detail in the next section (Section 1.1).

1.1 Technical Overview
In this section, we provide an overview of our techniques. We start

with the setting, which is the same as BPR24.

The Setting. We consider an arbitrary threshold access structure

for decryption in that any 𝑡 out of 𝑛 parties together can decrypt

any ciphertext and reconstruct the whole decryption key. Among

them, any set of parties (possibly ≥ 𝑡) can collude to construct

a decryption/decoder box, called 𝐷 .4 BPR24 allows for decoders

that can be used to learn any non-trivial information about the

encrypted message (not even the full message). This is formally

modeled through the distinguishing advantage. To allow for traca-

bility, the threshold encryption scheme is equipped with a tracing

algorithm, which would find out the identity of at least one colluder

while making a limited number of black-box queries to 𝐷 , possibly

using a private tracing key. However, note that as long as the cor-

ruption is within the threshold 𝑡 , the privacy (CCA-security in our

3
We stress that, for the transformation from BTIB−KEM to CCA-BT−KEM only CPA

security of the former suffices.

4
This captures the practical scenario, in that the colluding parties may collaborate to

produce and sell a device containing everyone’s shares. The device can be purchased,

possibly in a black market, and then used by anyone to decrypt any ciphertext.

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

case) should hold even against the tracer, who owns the tracing

key. In the CCA-security game, the adversary is given the tracing

key to model this. Nonetheless, once 𝑡 or more parties collude to

construct a decryption box, no privacy can be guaranteed. Instead,

in that case, the tracer is responsible for finding a colluder by using

the decoder box as an oracle. In reality, this captures the scenario

when the tracer (e.g., law enforcement) buys a copy of the decoder

box and runs it with various inputs at their own disposal.

Overview of BPR24 [15]. Boneh and Naor [14] constructed a

public-key encryption scheme with traitor-tracing using finger-

printing codes [17]. Intuitively, fingerprinting codes enable one to

trace information about the original codewords from noisy ones –

this helps in tracing when secret keys are encoded with such codes.

The constructions of BPR24 used fingerprinting codes in a similar

fashion, with adequate changes to make it work in a threshold set-

ting. Technically, the main idea is to first construct a building block

(defined in BPR24) called bipartite threshold KEM (BT−KEM) and

then convert it to a TT−KEM using a generic transform. Informally,

in BT−KEM, a secret key consists of 2ℓ elements for some param-

eter ℓ . For each index 𝑖 ∈ [ℓ], there are two keys, a left key and a

right key. Each ciphertext also contains a left and a right part and

is associated with an index 𝑗 ∈ [ℓ]. The correctness is two-sided, in
that any collection of keys from 𝑡 parties possibly holding a mix of

left or right keys for index 𝑗 , are sufficient to decrypt any ciphertext;

security is one-sided, in that a set (possibly of size ≥ 𝑡) of parties, all
of them holding only the left key (resp. right key) for index 𝑗 can

not distinguish the corresponding right part (resp. left part) of the

ciphertext from a random value. In particular, this one side-security

enables the tracing functionality similar to [14].

Specifically, BPR24’s generic transformation from BT−KEM to

TT−KEM works as follows: The setup phase samples a fingerprint-

ing code of 𝑛 words of size ℓ . It runs the key-generation of BT−KEM
with parameter ℓ to generate 2ℓ secret keys, a pair for each index

𝑗 ∈ [ℓ]. Each party-𝑖 receives a unique secret key share which con-

sists of exactly ℓ elements chosen among the 2ℓ pairs according to

the 𝑖-th finger-printing codeword, such that a party obtains exactly

one key (either left or right) for each index 𝑖 ∈ [ℓ]. To encrypt a

message𝑚 first a random index 𝑗 ∈ [ℓ] is chosen, and then it is

encrypted with respect to the 𝑗-th index to generate the left and

right ciphertext pair (𝑐0, 𝑐1). Decryption works with any subset of

shares of left or right keys. Traceability is achieved using one-sided

security plus the tracing mechanism of the finger-printing codes:

carefully crafted combinations of invalid and valid ciphertexts are

queried to 𝐷 , and based on whether invalidity is detected or not,

the tracer can recover (partial) information about the codewords

corresponding to the colluders, thereby narrowing down the plau-

sible set of the colluders, and eventually a colluder’s identity. The

intuition is, if, e.g., all the colluders have only left shares for index 𝑗 ,

then, by the one-sided security of BT−KEM, the decoder 𝐷 cannot

distinguish valid 𝑐1 from an invalid one, and hence would return

a valid decryption. So the tracer can conclude that all colluders

correspond to 𝑗-th index being 0 and so on.

Failed Attempts for CCA. Now, the most natural way to try to

achieve CCA-security from the state of the art (namely BPR24) is

to apply existing CPA-to-CCA transformation techniques to the

BPR24’s constructions. However, the main challenge is to ensure

BTIB−KEM +

2 constructions

CCA-secure

BT−KEM

CCA-secure

TT−KEMTTIB−KEM

consistent

CCA-secure

TT−KEM

+ One-Time Sigs

+ Fing. Codes [15]+ Fing. Codes

+ disjunctive NIZK-PoK

Black-box transformation

Similarly explored in [15]

Tailored transformation

Figure 1: Overview of the techniques used in this paper.

that CCA-security, which guarantees non-malleability, does not

interfere with traceability, which does require some sort of mal-

leability, as explained above. The existing CPA-to-CCA approaches

fail to overcome precisely this issue. To illustrate let us first consider

the Fujiaski-Okamoto [34, 35] transformation: the encapsulation

mechanism encrypts a random string 𝑟 via a CPA-secure encryp-

tion (where the encryption randomness is deterministically derived

from 𝑟) to produce the ciphertext 𝑐 . Then the random message

(or key) is derived by hashing 𝑟 . That is, 𝑐 = Encrypt(𝑝𝑘, 𝑟) and
𝑘 = H(𝑟). The main argument in proving CCA security is, as the

adversary never gets to decrypt the challenge ciphertext 𝑐 , it is

unable to find the value of 𝑟 , even with the decryption of some

other 𝑐′ = Encrypt(𝑝𝑘, 𝑟 ′), and thus 𝑘 appears completely random

assuming the hash to be a random oracle. Let us now try to apply

this to the above CPA TT−KEM: encrypt the random string 𝑟 using

BT−KEM to get a ciphertext pair (𝑐0, 𝑐1) with respect to some index

𝑗 . Any of 𝑐0 or 𝑐1 can be decrypted to derive the random string

𝑟 and hence the correct key. Given a decryption oracle, one can

query a mauled ciphertext (𝑐0, 𝑐
∗
1
). Since the BT−KEM decryption

decrypts one of the ciphertexts, it may just decrypt the left one

and return 𝑟 , breaking security. The crux of the problem here is,

decryption in the BPR24 construction does not have a mechanism

to publicly verify that the pair (𝑐0, 𝑐1) is indeed a valid ciphertext.
5

An alternative is to consider the Naor-Yung [44] paradigm (or

its variants, such as Cramer-Shoup [28] using hash-proof), which

essentially addresses this public verifiability problem by attach-

ing a non-interactive zero-knowledge proof of the fact that two

ciphertexts encrypt the same message. Unfortunately, this approach

does not work because the decoder box can just detect if an invalid

ciphertext is queried, yielding ⊥. Hence, one-sided security can not

be guaranteed, and it is unclear how to make the tracing algorithm

work.
6

Our Approach to achieve CCA-security. The main technical chal-

lenge here is to ensure that CCA-security, which guarantees non-

malleability, does not interfere with traceability, which does require

some sort of malleability, as explained above. We resolve this issue

5
We note that, since the BT−KEM decryption uses one of the left or right keys, but

not both, it can not check equality after decryption.

6
One might attempt to resolve this issue by including a simulation trapdoor into the

private tracing key – this would enable the tracer to produce simulated proofs of false

statements. Nonetheless, this would not work because the CCA-adversary gets access

to the tracing key, thus is able to produce false proofs and break CCA security.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

using a different route. In particular, we first extend the notion

of BT−KEM to support identity – we call this new notion the bi-

partite threshold identity-based KEM (BTIB−KEM). Then we use a

variant of IBE-to-CCA generic transformation by Boneh et al. [11]

to construct a CCA-secure BT−KEM. Finally, adapting the generic

transformation of BPR24 to the CCA setting, we convert CCA-

secure BT−KEM to CCA secure TT−KEM using fingerprinting like

the above.

From BTIB−KEM to CCA-BT−KEM. Let us start by recalling

the idea of Boneh et al. [11] which uses a one-time signature to

generically transform an IBE to a CCA-secure PKE scheme. Let

the master key pair of the IBE scheme be (mpk,msk). Then the

encryption algorithm of the PKE works as follows: sample a fresh

signing-verification key pair (sk, vk), and use vk as the identity

to encrypt the message𝑚 to ciphertext 𝑐 . Then sign 𝑐 with sk to

compute signature 𝜎 . The final ciphertext is (vk, 𝑐, 𝜎). Decryption
works by first checking the signature, then deriving the identity

key using the master key, and decrypting 𝑐 . If the signature fails to

verify, it outputs ⊥. Intuitively, CCA-security follows because (i) if

the adversary makes decryption queries with a ciphertext which

has vk′ ≠ vk, then the ciphertext is unrelated to the challenge

ciphertext; (ii) if the adversary makes a decryption query with a

ciphertext which has vk′ = vk, the ciphertext is either invalid or can
serve as a forgery to the signature scheme. Now we apply the same

technique to BTIB−KEM in a way such that one is able to generate a

correct signature for a malformed ciphertext such that traceability

is possible. To see this, we note that in our modified one-sided

security game for CCA secure BT−KEM, the challenger generates

two ciphertexts 𝑐 (0) = (𝑐 (0)
0
, 𝑐
(0)
1
) and 𝑐 (1) = (𝑐 (1)

0
, 𝑐
(1)
1
). Then,

it challenges the adversary with a possibly malformed ciphertext

𝑐∗, such as a mix of 𝑐 (0) and 𝑐 (1) (i.e., takes one side from each

ciphertext). Here, the adversary can distinguish between the cases

when the ciphertext is valid and when it is malformed by verifying

the signature. This is fixed by modifying the one-sided security

definition, in that the two ciphertexts 𝑐 (0) and 𝑐 (1) are encrypted
to the same identity key vk (as tags) and then sign the possibly

malformed 𝑐∗ using sk. Finally, we show that ourmodified one-sided

security game does not break tracing by discussing the required

changes needed to the tracing algorithm of [15].

To conclude, we argue in Section 3.3 that the bipartite-to-traceable

transformation of [15] and this work both preserve CCA-security.

Hence, plugging any CCA-secure BT−KEM in the black-box trans-

formation in [15] results in a CCA-secure TT−KEM.

Efficient BTIB−KEM. Finally we present two instantiations of

BTIB−KEM. We achieve our first construction based on Boneh-

Franklin IBE scheme [12] – this can be thought of as an identity-

based extension of BPR24. This construction enjoys a short ci-

phertext of only 2 group elements.However, the construction re-

quires a quadratic-size public key. Our second construction enjoys

a constant-size public key. We achieve this by using Boneh-Boyen

two-level (hierarchical) IBE [7]. The construction is more involved.

However, in concrete terms, this construction has larger ciphertext

(12 group elements compared to 2 in the first), though it offers bet-

ter asymptotic parameters. In practical settings, such as mempool

privacy, typically short ciphertexts are more desired. Nevertheless,

the second construction supports a hierarchical feature. Note that

from a two-level hierarchical BTIB−KEM, we can achieve a CCA-

secure traceable IBE using the BPR24 transformation. This may be

of independent interest as identity-based encryption schemes are

useful in popular mempool privacy solutions as well [48].

A summary of our techniques and results is given in Figure 1.

1.2 Further Related Works
We only briefly discuss related works that aim at preventing collu-

sion in the threshold setting. For a more comprehensive discussion,

we refer the reader to Appendix B. To the best of our knowledge,

there are no other threshold traceable decryption constructions

besides [15]. Some other recent works study collusion resistance of

secret sharing [16, 31, 38], but it is not clear how to extend these

techniques for constructing threshold crypto schemes.

1.3 Roadmap
In Section 2 we present some preliminaries. Then, in Section 3 we

discuss the definition of CCA-secure TT−KEM and present a trans-

formation from CCA-secure BT−KEM to CCA-secure TT−KEM. In

Section 4, we introduce identity-based BT−KEM (BTIB−KEM) as

our main building block and show how to construct CCA-secure

BT−KEM from BTIB−KEM. We present two BTIB−KEM construc-

tions in Section 5. In Section 6, we discuss the efficiency of our

constructions. Finally, we discuss consistency in Section 7.

2 Preliminaries
Notation. We denote the security parameter as 𝜆 ∈ N, the key

space for KEM protocols asK(𝜆), and the identity space for identity-
based protocols as IDSpace(𝜆). All protocols have an implicit algo-

rithm pp←$ Setup(1𝜆) that, given the security parameter, outputs

public parameters pp. The public parameters are implicitly input

to all subsequent algorithms. We write 𝑥 ← 𝑦 to assign an expres-

sion 𝑦 to variable 𝑥 and 𝑥 ←$ 𝑆 to sample uniformly from the set

𝑆 . For a probabilistic algorithm 𝐴 we denote by 𝑦 ← 𝐴(𝑥 ; 𝑟) the
execution of 𝐴 with input 𝑥 and randomness 𝑟 , assigning the result

to 𝑦. In short, we usually write 𝑦 ←$ 𝐴(𝑥) to express the execution

of 𝐴 with uniform randomness. We denote the computational in-

distinguishability of two distributions 𝑋 and 𝑌 as 𝑋 ≈𝑐 𝑌 . For a
positive integer 𝑛, we denote the set {1, . . . , 𝑛} as [𝑛]. By {𝑎𝑖 }𝑖∈𝑆
we denote the indexed set {(𝑖, 𝑎𝑖) |𝑖 ∈ 𝑆}. We denote as 𝑙𝑖,𝑆 (𝑥) the
Lagrange coefficient for interpolation among a set 𝑆 at position

𝑥 with 𝑙𝑖,𝑆 (𝑥) =
∏

𝑘∈𝑆,𝑘≠𝑖
𝑥−𝑥𝑘
𝑥𝑖−𝑥𝑘 . We write 𝑙𝑖 instead when 𝑆 is

clear from context and 𝑥 = 0. We assume that all shareholders in a

(𝑡, 𝑛)-threshold cryptosystem have participant indices in [𝑛].

Cryptography Building Blocks. We rely on three cryptographic

building blocks, namely one-time signature schemes Σ = (KGen,
Sign,Verify) and non-interactive zero-knowledge proofs of knowl-

edge (NIZK-PoK) Π = (Setup, Prove,Verify). For the sake of brevity,
we refer the reader to Appendix C.1 for detailed definitions. Addi-

tionally, we use hash functions in the random oracle model.

Bilinear Pairing Ensembles. Our constructions rely on bilinear
pairing ensembles. A bilinear pairing ensemble 𝐸 = (G1, 𝑔1,G2, 𝑔2,

G𝑇 , 𝑝, 𝑒) is an ensemble of cyclic groups G1, G2 with generators

𝑔1 and 𝑔2 and G𝑇 of prime order 𝑝 along with a pairing operation

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

𝑒 : G1 × G2 → G𝑇 that satisfies bilinearity and non-degeneracy.

We rely on the Bilinear (Decisional) Diffie-Hellman (BDDH) [12]

assumption as well as the XDH assumption [4, 10], which are both

well-established and have been used in numerous works. We define

them formally in Appendix C.2.

3 CCA-secure Traceable Threshold KEM
We first define our goal of CCA-secure Traceable Threshold KEM

(TT−KEM). Then, in Section 3.2, we introduce some interesting

technical modifications to the definitions of BT−KEM primitive to

accommodate for CCA security. Finally, in Section 3.3, we show

how to transform CCA-secure BT−KEM to CCA-secure TT−KEM.

3.1 Definition: TT−KEM with CCA-security
First, we introduce traceable threshold KEM,whichwas first defined

in [15]. We make minor modifications to also define CCA-security.

Definition 3.1 (Traceable Threshold KEM). A traceable threshold

KEM (TT−KEM) protocol is a tuple of algorithms Π = (KGen,
Enc,Verify, PDec,Comb, Trace) with key space K(𝜆). It extends
the standard threshold KEM by a tracing algorithm. The differences

compared to standard threshold KEM are highlighted in gray.

• (pk, {sk𝑖 }𝑖∈[𝑛] , tk) ←$ KGen(1𝜆, 𝑛, 𝑡, 11/𝜀 (𝜆)). The KGen
algorithm receives the number of parties 𝑛 as well as the

threshold 𝑡 with 𝑛 ≥ 𝑡 > 0 as well as an additional parame-

ter 𝜀, which is essentially a lower bound on the distinguish-

ing advantage of decoders that must be traceable by this

scheme (see Definitions C.8 and C.9). KGen outputs a public
key pk, the secret key shares sk = {sk𝑖 }𝑖∈[𝑛] , and a tracing
key tk.

• (𝑘, 𝑐, 𝜏) ←$ Enc(pk). Given a public key pk, the Enc algo-
rithm returns a key 𝑘 ∈ K(𝜆), a ciphertext 𝑐 , and a tag

𝜏 .

• 1/0 ← Verify(𝑐, 𝜏). Given a ciphertext 𝑐 and a tag 𝜏 , the

Verify algorithm returns 1 if 𝜏 is valid for 𝑐 and 0 otherwise.

• 𝑑𝑖 ← PDec(sk𝑖 , 𝑐). The partial decryption algorithm re-

ceives a secret key share sk𝑖 of party 𝑖 and a ciphertext 𝑐 as
input and outputs a decryption share 𝑑𝑖 .

• 𝑘/⊥ ← Comb(𝑆, {𝑑𝑖 }𝑖∈𝑆 , 𝑐). The Comb algorithm aggre-

gates decryption shares 𝑑𝑖 from a set of at least 𝑡 parties 𝑆

and outputs the key 𝑘 encapsulated in the ciphertext 𝑐 .

• J ←$ Trace𝐷 (·) (pk, tk, 11/𝜀 (𝜆)). This algorithm receives a

public key pk, a tracing key tk, the parameter 𝜀, and black-

box access to a decoder 𝐷 . It outputs a set of traitors J ⊆
[𝑛].

We put the correctness and IND−CCA definitions in Appendix C.3,

but we note that they are the same as standard threshold KEM.

In summary, correctness states that every honestly generated ci-

phertext decrypts correctly, using shares from any set of at least 𝑡

parties. For IND−CCA security, we require that an adversary who

controls up to 𝑡 − 1 parties is unable to distinguish if a challenge ci-

phertext belongs to a valid key or a random key fromK(𝜆) instead.
This needs to hold even if the adversary has access to a partial

decryption oracle that allows him to learn partial decryptions on

any ciphertext, but the challenge ciphertext.

Traceability. As in [15] traceability guarantees that if an adver-

sary corrupts an arbitrary set of parties J ⊆ [𝑛] (the traitors)

and uses their shares to construct a decoder 𝐷 that has decryption

advantage 𝜀, then the Trace𝐷 (·) algorithm, when given black-box

access to the decoder, will output a nonempty subset J ′ ⊆ J
of traitors. It also captures unframeability that is, Trace’s output
J ′ cannot contain a non-traitor with non-negligible probability.

Since we add tags 𝜏 for CCA-security, the decoder now also receives

tags along with ciphertexts. The formal definition can be found in

Appendix C.3 (Definition C.9).

3.2 Definition: BT−KEM with CCA-security
Next, we extend the BT−KEM definition from [15] to accommodate

for CCA-security. Recall that in [15], the one-sided security notion

was introduced in order to allow traceability. Hence, the main

technical challenge is to achieve CCA-security while maintaining

one-sided security of the BT−KEM scheme.

Defining Bipartite Threshold Key Encapsulation (BT−KEM). A
natural way to define CCA security for BT−KEM is to let Enc al-
gorithm output an additional tag 𝜏 to prove the integrity of the

ciphertext. In our definition, we need to deviate from this approach

to allow for schemes that offer both one-sided security and CCA

security. More concretely, in the one-sided security game, the chal-

lenger generates two ciphertexts 𝑐 (𝑖) = (𝑐 (𝑖)
0
, 𝑐
(𝑖)
1
) for 𝑖 ∈ {0, 1}

and ensembles the challenge, either 𝑐∗ = (𝑐 (0)
0
, 𝑐
(1)
1
) when 𝑏 = 0,

or 𝑐∗ = (𝑐 (𝑑)
0
, 𝑐
(𝑑)
1
) when 𝑏 = 1 (here 𝑑 ∈ {0, 1} is chosen by the

adversary). If we would let Enc output 𝜏 , then syntactically, we

cannot receive tags for a malformed ciphertext 𝑐∗ generated when

𝑏 = 0.

To address this issue, we add algorithms to BT−KEM that al-

low us to generate tags both for valid ciphertexts during stan-

dard encryption and for malformed ciphertexts, as encountered in

the one-sided security game. Concretely, we split encryption and

tag generation into three distinct algorithms: TagKeys, Enc, and
GenTag. The TagKeys algorithm generates a key pair (sk𝑒 , vk𝑒),
where vk𝑒 serves as a verification key. Encryption proceeds as

(𝑘, (𝑐0, 𝑐1)) ←$ Enc(pk, 𝑗, vk𝑒)7. Finally, GenTag uses the secret

key sk𝑒 to produce a tag 𝜏 ←$ GenTag(𝑐, sk𝑒). Looking ahead,

when constructing TT−KEM from BT−KEM, this mechanism is

employed in two distinct ways:

(1) Tags for Normal Encryption: The three algorithms op-

erate as described above. The encryptor first uses TagKeys
to prepare a fresh key pair, then invokes Enc with vk𝑒 to

encrypt, and produces a tag within GenTag using sk𝑒 .
(2) Tags during TracingwithMalformedCiphertexts:Mal-

formed ciphertext are constructed by mixing the left and

right parts of two different ciphertexts (refer to the one-

sided security game in Figure 3). To attach a valid tag, the

tracer prepares a single key pair (sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆).
Then, it generates both 𝑐 (0) and 𝑐 (1) using two indepen-

dent Enc operations, but with the same vk𝑒 . Finally, the
tracer uses GenTag to obtain a valid tag for the resulting

7
Notice that the encryption takes vk𝑒 as input. Conceptually, given (sk𝑒 , vk𝑒) , one
can generate a valid tag using sk𝑒 for any ciphertext that was encrypted with the

corresponding vk𝑒 as additional input.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

malformed ciphertext, given that both original ciphertexts

were generated under the same vk𝑒 that corresponds to sk𝑒 .

Additionally, we add a Verify algorithm to validate ciphertext-tag

pairs prior to partial decryption. In practice, shareholders will only

release partial decryptions for ciphertexts with valid tags.

The requirement that tags, as generated in normal encryption,

verify is captured by two-sided correctness, while the latter re-

quirement that tags verify for malformed ciphertexts is implicitly

captured by our modified one-sided security (Figure 3) and two-

sided correctness. In particular, one-sided security also requires

that the additional tag does not gain the adversary any advantage

in distinguishing whether it receives a malformed ciphertext or not.

Definition 3.2 (Bipartite Threshold Key Encapsulation(BT−KEM)).
A BT−KEM scheme is a tuple of algorithms Π = (KGen, TagKeys,
Enc,GenTag,Verify, PDec,Comb) with key spaceK(𝜆). The neces-
sary modifications of BT−KEM to achieve CCA-Security are high-

lighted in gray.

• (pk, {(sk(𝑗)
𝑖,0
, sk(𝑗)

𝑖,1
)}𝑖∈[𝑛], 𝑗∈[ℓ]) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ).KGen

receives the security parameter 𝜆, the number of parties

𝑛, a threshold 𝑡 such that 0 < 𝑡 ≤ 𝑛, and the number of

positions ℓ ∈ N. It outputs a public key pk and, for every

(𝑖, 𝑗) ∈ [𝑛] × [ℓ], secret shares (sk(𝑗)
𝑖,0
, sk(𝑗)

𝑖,1
). We call sk(𝑗)

𝑖,0

a left key share and sk(𝑗)
𝑖,0

a right key share. As a shorthand,

we denote the set of all secret key shares as sk and all secret
key shares for party 𝑖 as sk𝑖 . Further, sk𝑖,0 denotes all the
left shares in sk𝑖 while sk𝑖,1 denotes all the right shares in

sk𝑖 .
• (sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆). This algorithm outputs a key

pair (sk𝑒 , vk𝑒) that is used to generate tags for ciphertexts.

• (𝑘, 𝑐 := (𝑐0, 𝑐1)) ←$ Enc(pk, 𝑗, vk𝑒). The Enc algorithm gets

the public key pk, a position 𝑗 ∈ [ℓ], and a verification key

vk𝑒 . It outputs a key 𝑘 ∈ K(𝜆) and a ciphertext 𝑐 := (𝑐0, 𝑐1).
• 𝜏 ←$ GenTag(𝑐, sk𝑒). The GenTag algorithm receives a ci-

phertext 𝑐 and a key sk𝑒 . It outputs a tag 𝜏 .
• 1/0← Verify(𝑐, 𝜏). Verify outputs 1, iff the tag is valid for

𝑐 .

• 𝑑𝑖 ← PDec(sk(𝑗)
𝑖,𝑏𝑖,𝑗

, 𝑐). The partial decryption algorithm

receives a left (𝑏𝑖, 𝑗 = 0) or right (𝑏𝑖, 𝑗 = 1) secret share of 𝑖

for a position 𝑗 ∈ [ℓ] and a ciphertext 𝑐 . It outputs a partial
decryption 𝑑𝑖 .

• 𝑘/⊥ ← Comb(𝑆, {𝑑𝑖 }𝑖∈𝑆 , 𝑐). Given decryption shares 𝑑𝑖
from a set of at least 𝑡 parties 𝑆 and a ciphertext 𝑐 , the

Comb algorithm returns the KEM key 𝑘 or ⊥ upon failure.

Definition 3.3 (Two-Sided Correctness of BT−KEM). A BT−KEM
protocol is two-sided correct if for all 𝜆, ℓ > 0, all 𝑗 ∈ [ℓ] and
𝑛 ≥ 𝑡 > 0 as well as all 𝑆 ∈ [𝑛] with |𝑆 | > 𝑡 and all bitstrings

𝑏 ∈ {0, 1}𝑛 × {0, 1}ℓ it holds that

Pr


𝑘 = 𝑘′∧

Verify(𝑐, 𝜏) = 1

:

(pk, sk) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ)
(sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆)
(𝑘, 𝑐) ←$ Enc(pk, 𝑗, vk𝑒)
𝜏 ←$ GenTag(𝑐, sk𝑒)

∀𝑖 ∈ 𝑆 : 𝑑𝑖 ← PDec(sk(𝑗)
𝑖,𝑏𝑖,𝑗

, 𝑐)
𝑘′ ← Dec(𝑆, {𝑑𝑖 }𝑖∈𝑆 , 𝑐)


= 1.

3.2.1 CCA and One-Sided Security. Next, we define the required
security games for modeling CCA-security in BT−KEM. First, we

define a CCA-security game. Then, we present a one-sided security

game. Our one-sided security game follows [15] but with slight

modifications that are needed to achieve CCA-security.

CCA-security Game. In Game−IND−CCA (Figure 2), the adver-

sary can corrupt a set of up to 𝑡 − 1 parties 𝐶 . We also give the

adversary access to a partial decryption oracle OPDec that derives
the left and right partial decryptions for ciphertexts on behalf of

honest parties
8
. The only restriction is that the adversary can not

use OPDec to obtain more than 𝑡 − 1 decryption shares on the chal-

lenge ciphertext 𝑐∗ (counting the shares the adversary can trivially

compute through corrupted parties in 𝐶). Additionally, the chal-

lenge ciphertext now also contains the tag 𝜏∗. The adversary wins

if it can successfully distinguish between a random KEM-key and

the one encapsulated in 𝑐∗.

Game−IND−CCAA (1𝜆)
ctr← 0;𝑏 ←$ {0, 1}

(ℓ, st1) ←$ A1 (1𝜆)

(pk, {sk𝑖 }𝑖∈ [𝑛]) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ)
(𝐶, st2) ←$ A2 (st1, pk)
if 𝐶 ⊈ [𝑛] ∨ |𝐶 | ≥ 𝑡 then return 0

𝑗∗ ←$ [ℓ]; 𝑘0 ←$ K(𝜆)

(sk∗𝑒 , vk∗𝑒) ←$ TagKeys(1𝜆)
(𝑘1, 𝑐

∗) ←$ Enc(pk, 𝑗∗, vk∗𝑒)
𝜏∗ ←$ GenTag(𝑐∗, sk∗𝑒)

𝑏′ ←$ AO
PDec

3
(st2, (𝑐∗, 𝜏∗), 𝑘𝑏), {sk𝑖 }𝑖∈𝐶)

return 𝑏
?

= 𝑏′

OPDec ((𝑐, 𝜏), 𝑖)
if Verify(𝑐, 𝜏) = 0 then

return ⊥
if 𝑐 = 𝑐∗ then

ctr←$ ctr + 1

if ctr ≥ 𝑡 − |𝐶 | then
return ⊥

𝑑𝑖,0 ← PDec(𝑐, sk𝑖,0)
𝑑𝑖,1 ← PDec(𝑐, sk𝑖,1)
return (𝑑𝑖,0, 𝑑𝑖,1)

Figure 2: IND−CCA security game for BT−KEM. The changes
to the IND-CPA game in [15] are highlighted in gray.

Definition 3.4 (IND−CCA Security of BT−KEM). A BT−KEM
protocol achieves IND−CCA security, if for all PPT adversaries

A := (A1,A2,A3) there exists a negligible function negl(𝜆) such
that

Pr

[
Game−IND−CCABT−KEMA (1𝜆) = 1

]
≤ 1

2

+ negl(𝜆),

where Game−IND−CCA is defined in Figure 2.

Modified One-Sided Security Game. We define one-sided security

similarly to [15], but account for the CCA-tags that are attached to

ciphertexts. The adjusted Game−OSS experiment (Figure 3) first

prepares a key pair (sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆), assembles the chal-

lenge ciphertext 𝑐∗ as in [15], and finally uses sk𝑒 to generate a tag

𝜏∗ for 𝑐∗ as 𝜏∗ ←$ GenTag(𝑐∗, sk𝑒). We give 𝜏∗ to the adversary;

thus in our security analysis, we need to show that the tag does

not help the adversary to distinguish whether it receives a valid

ciphertext (case 𝑏 = 0) or malformed ciphertext (case 𝑏 = 1). We

8
Note that in normal decryptions, the parties contribute either a left or a right share,

not both.

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

recall that the “natural” approach of generating 𝜏∗ within Enc does
not work even on a definition level: If the two encryptions to ci-

phertexts 𝑐 (0) and 𝑐 (1) generated in Game−OSS would generate

separate tags 𝜏 (0) and 𝜏 (1) , then it is unclear which tag should be

given to the adversary A2 together with the challenge ciphertext

𝑐∗. Moreover, these tags are not valid for a mixed ciphertext 𝑐∗ (i.e.,
when 𝑏 = 0).

Game−OSSA (1𝜆)
(ℓ,𝑢,𝑑, st1) ←$ A1 (1𝜆)

(pk, sk) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ)

(sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆)

(𝑘 (0) , 𝑐 (0) := (𝑐 (0)
0

, 𝑐
(0)
1
)) ←$ Enc(pk,𝑢, vk𝑒)

(𝑘 (1) , 𝑐 (1) := (𝑐 (1)
0

, 𝑐
(1)
1
)) ←$ Enc(pk,𝑢, vk𝑒)

𝑏 ←$ {0, 1}
if 𝑏 = 0 then 𝑐∗ ← (𝑐 (0)

0
, 𝑐
(1)
1
)

if 𝑏 = 1 then 𝑐∗ ← (𝑐 (𝑑)
0

, 𝑐
(𝑑)
1
)

𝜏∗ ←$ GenTag(𝑐∗, sk𝑒)

shares←
(
{ (sk(𝑗)

𝑖,0
, sk(𝑗)

𝑖,1
) }𝑖∈ [𝑛], 𝑗 ∈ [ℓ]\{𝑢}, {sk(𝑢)𝑖,𝑑

}𝑖∈ [𝑛]
)

𝑏′ ←$ A2 (st1, pk, (𝑐∗, 𝜏∗), 𝑘 (0) , shares)
return 𝑏

?

= 𝑏′

Figure 3: One-sided security game for BT−KEM. The modifi-
cations compared to [15] are highlighted in gray.

Definition 3.5 (One-sided Security of BT−KEM). A BT−KEM pro-

tocol achieves one-sided security, if for all PPT adversaries A :=

(A1,A2) there exists a negligible function negl(𝜆) such that

Pr

[
Game−OSSBT−KEMA (1𝜆) = 1

]
≤ 1

2

+ negl(𝜆),

where Game−OSS is defined in Figure 3.

3.3 Generic Construction: CCA BT−KEM to CCA
TT−KEM

In this section, we show that plugging any CCA-secure BT−KEM,

as presented in Section 3.2, in the black-box TT−KEM construction

of [15] results in a CCA-secure TT−KEM (later, in Section 4.2 we

construct a CCA-secure BT−KEM). We need to apply some minor

modifications to TT−KEM in order to account for the changes we

made to BT−KEM. Next, we will overview the transformation and

discuss our modifications.

The BT−KEM to TT−KEM Transformation [15]. The transforma-

tion samples a fingerprinting code Γ𝑛,ℓ of 𝑛 codewords of size ℓ ,

sets the tracing key tk to be the tracing key in Γ, and then receives

the secret shares from BT−KEM, where the number of positions is

set to ℓ (i.e., the size of each codeword). Each party is assigned a

codeword, and the secret shares are distributed according to the

corresponding codeword; if the 𝑗 ’th bit of the 𝑖’th codeword is

0, then party 𝑖 receives the left share at position 𝑗 , and the right

share otherwise. Hence, each party receives exactly one share for

every position 𝑗 ∈ [ℓ]. In encryption, TT−KEM.Enc samples a posi-

tion 𝑗 ←$ [ℓ] at random and invokes BT−KEM.Enc(pk, 𝑗) with the

sampled position.

In our case, we adjust how TT−KEM.Enc uses BT−KEM for en-

cryption. That is, instead of simply invoking BT−KEM.Enc(pk, 𝑗)
with a random 𝑗 ∈ [ℓ], it should first prepare a key pair (sk𝑒 , vk𝑒) ←$

TagKeys(1𝜆), then encrypt (𝑘, 𝑐) ←$ Enc(pk, 𝑗, vk𝑒) for a random
𝑗 ∈ [ℓ], and finally compute the tag 𝜏 ←$ GenTag(𝑐, sk𝑒). The
resulting encryption algorithm outputs the pair (𝑐, 𝜋). Also, we set
TT−KEM.Verify to BT−KEM.Verify so shareholders can check the

tag’s validity before releasing partial decryptions on a ciphertext.

Note the resulting TT−KEM scheme inherits its IND−CCA se-

curity directly from that of our CCA-secure BT−KEM. We next

discuss traceability.

Modifications to Tracing. We modify the Tr subroutine of the

tracing algorithm in order to generate tags for the malformed ci-

phertexts. The new Tr subroutine is shown in Figure 4. Observe

that the modified Tr subroutine generates the tag in exactly the

same manner as for the challenge ciphertext in the modified one-

sided security game (Figure 3). The Trace algorithm is otherwise

unchanged from that of [15]. Intuitively, it uses the Tr subroutine
to determine for which positions 𝑗 ∈ [ℓ] the decoder has only left

or only right keys. To do so, it queries the Tr subroutine for every
position 𝑗 with three different configurations: A completely valid

ciphertext ((𝑏𝑘 , 𝑏0, 𝑏1) = (1, 1, 1)), a valid left ciphertext and in-

valid right ciphertext ((𝑏𝑘 , 𝑏0, 𝑏1) = (0, 0, 1)), and an invalid left and

right ciphertext ((𝑏𝑘 , 𝑏0, 𝑏1) = (1, 0, 0)). In the end, the collected

information over all ℓ positions is used to determine the traitors by

invoking the trace function of the underlying fingerprinting code.

More details can be found in Appendix E.3.

Tr𝐷 (·) (pk, 𝑗, 𝑁 , (𝑏𝑘 , 𝑏0, 𝑏1))
ctr← 0

for 𝑟 = 1, . . . , 𝑁 do

(sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆)

(𝑘 (0) , 𝑐 (0) := (𝑐 (0)
0

, 𝑐
(0)
1
)) ←$ BT−KEM.Enc(pk, 𝑗, vk𝑒)

(𝑘 (1) , 𝑐 (1) := (𝑐 (1)
0

, 𝑐
(1)
1
)) ←$ BT−KEM.Enc(pk, 𝑗, vk𝑒)

𝑐∗ ← (𝑐 (𝑏0)
0

, 𝑐
(𝑏1)
1
)

𝜏∗ ←$ GenTag(𝑐∗, sk𝑒)

if 𝐷 ((𝑐∗, 𝜏∗), 𝑘 (𝑏𝑘)) = 1 then ctr← ctr + 1

return ctr

Figure 4: The adjusted Tr subroutine of Trace. Changes com-
pared to that of [15] are highlighted in gray.

Intuitively, our modifications to Tr do not break traceability

because our modified one-sided security notion guarantees that for

a secure BT−KEM, the additional tag 𝜏∗ does not help the adversary
to distinguish malformed ciphertexts from normal ciphertexts. We

refer to Appendix E.3 for a detailed overview of how the proof of

traceability in [15] needs to be adjusted for our needs.

Corollary 3.6. Let Π be a BT−KEM protocol with two-sided cor-
rectness (Definition 3.3), CCA-security (Definition 3.4), and one-sided

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

security (Definition 3.5). Applying the traceability transformation
of [15] to Π with the above changes to Enc, Verify, and Tr yields a
CCA-secure TT−KEM as defined in Section 3.1.

4 CCA BT−KEM from Identity-Based BT−KEM
In this section, we introduce our main building block of Bipartite

Threshold Identity-based KEM (BTIB−KEM). It is central to our

results, as we use it both to construct CCA-secure BT−KEM (and

CCA-secure TT−KEM as a consequence) and traceable threshold

IBE. We start with a new definition of BTIB−KEM and show how to

generically transform that to CCA-secure BT−KEM in Section 4.2.

4.1 Definition: Bipartite Threshold Identity
Based Key Encapsulation (BTIB−KEM)

Our BTIB−KEM definition is an adaptation of the bipartite thresh-

old KEM definition of [15] to the identity-based setting.

Definition 4.1 (Bipartite Threshold Identity Based Key Encapsula-
tion). A BTIB−KEM protocol is a tuple of algorithms Π = (KGen,
Enc,DIdk,CombIdk,Dec) with key space K(𝜆) and identity space

IDSpace(𝜆) such that:

• (pk, {(sk(𝑗)
𝑖,0
, sk(𝑗)

𝑖,1
)}𝑖∈[𝑛], 𝑗∈[ℓ]) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ). This

algorithm has the same syntax as BT−KEM.KGen (Defini-

tion 3.2).

• (𝑘, 𝑐 := (𝑐0, 𝑐1)) ←$ Enc(pk, 𝑗, ID). Given a public key pk,
index 𝑗 ∈ [ℓ], and an identity ID ∈ IDSpace(𝜆), Enc outputs
an encapsulation key 𝑘 ∈ K(𝜆) and an encryption of 𝑘 to

identity ID. The ciphertext 𝑐 = (𝑐0, 𝑐1), is split into a left
ciphertext 𝑐0 and right ciphertext 𝑐1.

• idk𝑖 ← DIdk({sk(𝑗)
𝑖,𝑏𝑖,𝑗
} 𝑗∈[ℓ] , ID). The identity key deriva-

tion algorithm DIdk receives 𝑖’s secret key share sk(𝑗)
𝑖,𝑏𝑖,𝑗

for every index 𝑗 ∈ [ℓ]. If 𝑏𝑖, 𝑗 = 0, then the given share

in position 𝑗 is the left share. Otherwise, it is the right

share. DIdk outputs an identity key share idk𝑖 for identity
ID. We also define a version of this algorithm that only

derives the identity-key share for position 𝑗 as idk(𝑗)
𝑖
←

DIdk𝑗 (sk(𝑗)𝑖,𝑏𝑖,𝑗
, ID, 𝑗).

• idk ← CombIdk(𝑆, {idk𝑖 }𝑖∈𝑆). The CombIdk algorithm

combines at least 𝑡 identity key shares idk𝑖 from parties

𝑖 ∈ 𝑆 where 𝑆 ∈ [𝑛] and |𝑆 | ≥ 𝑡 into a full identity key

idk. Again, we define a version of CombIdk specifically for

position 𝑗 as idk(𝑗) ← CombIdk(𝑆, {idk(𝑗)
𝑖
}𝑖∈𝑆).

• 𝑘/⊥ ← Dec(idk, 𝑐, 𝑗). Given an identity key idk, a cipher-
text 𝑐 = (𝑐0, 𝑐1), and an index 𝑗 ∈ [ℓ], Dec decrypts 𝑐 and
returns the encapsulation key 𝑘 or ⊥ in case of failure.

ABTIB−KEMmust satisfy two-sided correctness, semantic security,

and one-sided security.

Definition 4.2 (Two-Sided Correctness ofBTIB−KEM). We say that

a BTIB−KEM protocol is two-sided correct if for all 𝜆, ℓ > 0, 𝑗 ∈ [ℓ]
and 𝑛 ≥ 𝑡 > 0 as well as all 𝑆 ∈ [𝑛], where |𝑆 | ≥ 𝑡 , all bitstrings

𝑏 ∈ {0, 1}𝑛 × {0, 1}ℓ and all identities ID ∈ IDSpace(𝜆) it holds that

Pr


𝑘 = 𝑘′ :

(pk, sk) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ)
(𝑘, 𝑐) ←$ Enc(pk, 𝑗, ID)

∀𝑖 ∈ 𝑆 : idk𝑖 ← DIdk({sk(𝑗)
𝑖,𝑏𝑖,𝑗
} 𝑗∈[ℓ] , ID)

idk← CombIdk(𝑆, {idk𝑖 }𝑖∈𝑆)
𝑘′ ← Dec(idk, 𝑐, 𝑗)


= 1.

Semantic Security. For semantic security, wework in the selective

identity model [11, 22], where the adversary is required to commit

to the identity it intends to attack ahead of time.While this is a relax-

ation, we later show that selective-identity CPA-secure BTIB−KEM
is sufficient for our transformation to BT−KEM to achieve CCA-

security. Both of our BTIB−KEM constructions can be proven with-

out selective identity using standard techniques (i.e. guessing the

challenge identity in the random oracle with a tightness loss in the

number of random oracle queries 𝑞𝐻 [7]).

Game−IND−SID−CPAA (1𝜆)
ctr← 0;𝑏 ←$ {0, 1}

(ID∗, ℓ, st1) ←$ A1 (1𝜆)

(pk, sk) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ)
(𝐶, st2) ←$ A2 (st1, pk)
if 𝐶 ⊈ [𝑛] ∨ |𝐶 | ≥ 𝑡 then return 0

𝑗∗ ←$ [ℓ]; 𝑘0 ←$ K(𝜆)
(𝑘1, 𝑐) ←$ Enc(pk, 𝑗∗, ID∗)

𝑏′ ←$ AODIdk
3

(st2, (𝑐, 𝑘𝑏), {sk𝑖 }𝑖∈𝐶)
return 𝑏

?

= 𝑏′

ODIdk (ID, 𝑖)
if ID = ID∗ then

ctr←$ ctr + 1

if ctr ≥ 𝑡 − |𝐶 | then
return ⊥

idk0 ← DIdk(sk𝑖,0, ID)
idk1 ← DIdk(sk𝑖,1, ID)
return (idk0, idk1)

Figure 5: IND−SID−CPA security game for BTIB−KEM.

Definition 4.3 (Selective ID Semantic Security). A BTIB−KEM pro-

tocol achieves selective-identity semantic security (IND−SID−CPA),
if for all PPT adversaries A := (A1,A2,A3) there exists a negligi-
ble function negl(𝜆) such that

Pr

[
Game−IND−SID−CPABTIB−KEMA (1𝜆) = 1

]
≤ 1

2

+ negl(𝜆),

where Game−IND−SID−CPA is defined in Figure 5.

One-Sided Security. Following [15], we define one-sided secu-

rity for BTIB−KEM through Game−OSS−ID (Figure 6), but in the

identity-based setting. When we later use bipartite identity-based

key encapsulation as a building block for traceable threshold identity-

based KEM, we will rely on one-sided security of BTIB−KEM to

ensure that we can identify a set of traitors. Roughly speaking,

we will use one-sided security to argue that if a decoder has only

left keys (𝑑 = 0) for some index 𝑢, then it can not distinguish,

given 𝑘, (𝑐0, 𝑐1), whether 𝑐1 fits 𝑐0 and 𝑘 or not. Importantly, if

BTIB−KEM lacks this property, then a decoder could avoid being

traced at all.

Observe that the one-sided security game does not provide an

identity key derivation oracle. This is reasonable, as the adversary

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

Game−OSS−IDA (1𝜆)
(ℓ,𝑢,𝑑, ID, st1) ←$ A1 (1𝜆)

(pk, sk) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ)

(𝑘 (0) , 𝑐 (0) := (𝑐 (0)
0

, 𝑐
(0)
1
)) ←$ Enc(pk,𝑢, ID)

(𝑘 (1) , 𝑐 (1) := (𝑐 (1)
0

, 𝑐
(1)
1
)) ←$ Enc(pk,𝑢, ID)

𝑏 ←$ {0, 1}

if 𝑏 = 0 then 𝑐∗ ← (𝑐 (0)
0

, 𝑐
(1)
1
)

if 𝑏 = 1 then 𝑐∗ ← (𝑐 (𝑑)
0

, 𝑐
(𝑑)
1
)

shares←
(
{ (sk(𝑗)

𝑖,0
, sk(𝑗)

𝑖,1
) }𝑖∈ [𝑛], 𝑗 ∈ [ℓ]\{𝑢}, {sk(𝑢)𝑖,𝑑

}𝑖∈ [𝑛]
)

𝑏′ ←$ A2 (st1, pk, 𝑐∗, 𝑘 (0) , shares)

return 𝑏
?

= 𝑏′

Figure 6: One-sided security game for BTIB−KEM.

obtains sufficient information to derive any identity key and, in con-

sequence, decrypt any ciphertext using the master secret key shares

he is provided in Game−OSS−ID. One could imagine a stronger

definition of one-sided security, where, e.g., the adversary who only

obtains left keys for 𝑢 gets to see partial right-side identity-keys,
provided they are for a different identity than the challenge identity.

This oracle, however, is not required to prove our transformation

to CCA-secure BT−KEM. We leave it as an open problem to find

constructions that can provably satisfy identity-based one-sided se-

curity with an additional identity key derivation oracle. As a direct

implication, one would get even stronger traceability guarantees for

TTIB−KEM and TT−KEM. We elaborate on this in Appendix D.1.

Definition 4.4 (One-sided security of BTIB−KEM). A BTIB−KEM
protocol achieves one-sided security, if for all PPT adversariesA :=

(A1,A2) there exists a negligible function negl(𝜆) such that

Pr

[
Game−OSS−IDBTIB−KEM

A (1𝜆) = 1

]
≤ 1

2

+ negl(𝜆),

where Game−OSS−ID is defined in Figure 6.

Looking ahead, we will show how to construct our main building

block of BTIB−KEM in Section 5.

4.2 Generic Construction: BTIB−KEM to
CCA-Secure BT−KEM

In this section, we present a black-box CCA-secure BT−KEM con-

struction. The underlying schemes in this construction are a CPA-

secure BTIB−KEM and a one-time signature scheme.

Let Σ = (KGen, Sign,Verify) be a one-time signature scheme that

is EUF−OT−CMA-secure (Definition C.2) and letI be aBTIB−KEM
that fulfills semantic security (Definition 4.3) and one-sided security

(Definition 4.4).

We construct CCA-secure BT−KEM by adapting the transforma-

tion from CPA-IBE to CCA-secure encryption [11] to the bipartite

setting while ensuring that our adjusted notion of one-sided secu-

rity holds. The construction is depicted in Figure 7.

In our transformation, the encryptor samples a fresh signing key-

pair (sk𝑒 , vk𝑒) ←$ Σ.KGen(1𝜆) per encryption operation. Then

it calls (𝑘, 𝑐0, 𝑐1) ←$ I .Enc(pk, 𝑗, vk𝑒), where it encrypts to the

identity “vk𝑒 ”. The encryptor assembles 𝑐 := ((𝑘, 𝑐0, 𝑐1), vk𝑒 , 𝑗) and
finally calls GenTag to sign the entire ciphertext under sk𝑒 . The
signature𝜎 is attached as CCA-tag to 𝑐 . TheVerify algorithm verifies

𝜎 for 𝑐 under vk𝑒 , and should be called prior to partial decryption

to ensure CCA-security. During partial decryption of a ciphertext

𝑐 = ((𝑘, 𝑐0, 𝑐1), vk𝑒 , 𝑗), the partial identity-key for “vk𝑒 ” is derived
using I .DIdk. One can run Comb to combine at least 𝑡 partial

identity keys for vk𝑒 and subsequently decrypt 𝑐 . We highlight that

it is sufficient to derive the 𝑗 ’th position of the identity key during

PDec. Hence, the partial decryptions do not depend on the number

of positions ℓ .

KGen(1𝜆, 𝑛, 𝑡, ℓ)
return I.KGen(1𝜆, 𝑛, 𝑡, ℓ)

TagKeys(1𝜆)
(sk𝑒 , vk𝑒) ←$ Σ.KGen(1𝜆)
return (sk𝑒 , vk𝑒)

Enc(pk, 𝑗, vk𝑒)
ID← vk𝑒
(𝑘, 𝑐0, 𝑐1) ←$ I.Enc(pk, 𝑗, ID)
return 𝑘, 𝑐 := ((𝑐0, 𝑐1), 𝑗, vk𝑒)

GenTag(𝑐, sk𝑒)
𝜎 ←$ Σ.Sign(sk𝑒 , 𝑐)
return 𝜏 := 𝜎

Verify(𝑐, 𝜏)
Parse 𝑐 as ((𝑐0, 𝑐1), 𝑗, vk𝑒)
and 𝜏 as 𝜎

return Σ.Verify(vk𝑒 , 𝑐, 𝜎)

PDec(sk(𝑗)
𝑖,𝑏𝑖,𝑗

, 𝑐)
ID← vk𝑒

idk(𝑗)
𝑖
← I.DIdk𝑗 (sk(𝑗)𝑖,𝑏𝑖,𝑗

, ID, 𝑗)
return 𝑑𝑖 := idk(𝑗)

𝑖

Comb(𝑆, {𝑑𝑖 }𝑖∈𝑆 , 𝑐)

Parse 𝑑𝑖 := idk(𝑗)
𝑖

;𝑐 := ((𝑐0, 𝑐1), 𝑗, vk𝑒)
idk← I.CombIdk(𝑆, {idk(𝑗)

𝑖
}𝑖∈𝑆)

return I.Dec(idk, (𝑐0, 𝑐1), 𝑗)

Figure 7: Black-box CCA-secure BT−KEM from any
BTIB−KEM scheme I and signature scheme Σ.

Correctness and Security. The resulting BT−KEM clearly has two-

sided correctness, given the two-sided correctness of BTIB−KEM
and the correctness of the one-time signature scheme Σ.

For IND−CCA-security, notice that the challenge ciphertext is
encrypted to the identity “vk𝑒 ” in I. Due to the semantic security of

I, the adversary can not learn any information about the challenge

ciphertext on its own. Furthermore, the decryption oracle OPDec
does not give the adversary any advantage. Indeed, if the queried

ciphertext contains another vk𝑒 , then OPDec derives shares of a
different identity key. If it contains the same vk𝑒 then the adversary

would need to forge a signature under vk𝑒 , which is infeasible ac-

cording to the unforgeability of Σ. A detailed proof for the following

lemma is presented in Appendix E.1.

Lemma 4.5 (IND−CCA Security of BT−KEM). The BT−KEM
construction as presented in Figure 7 is IND−CCA secure if the under-
lying BTIB−KEM is IND−SID−CPA secure and the signature scheme
is EUF−OT−CMA secure.

Lemma 4.6 (One-sided Security of BT−KEM). The BT−KEM
construction as presented in Figure 7 is one-sided secure (Definition
3.5) if the underlying BTIB−KEM is one-sided secure (Definition 4.4).

The one-sided security reduces straightforwardly to one-sided

security of BTIB−KEM. The detailed proof is given in Appendix E.2

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

5 Concrete Instantiations of BTIB−KEM
Both our results for CCA-secure TT−KEM (Section 3.3) and trace-

able threshold IBE (Appendix D) rely on the existence of efficient

constructions for our main building block of bipartite threshold

identity-based KEM (BTIB−KEM). To this end, we present two con-

structions based on bilinear pairings within this section. Henceforth,

we refer to them as BTIB−KEM−1 and BTIB−KEM−2.
In both of our constructions, we combine techniques used in [15]

with an appropriate IBE scheme. In particular, the constructions

of [15] are based on the following idea. First, generate two secret

keys, 𝑦, 𝑧, for the left and right sides. In order to achieve two-sided

correctness, a correlation must exist between the two sides. This

correlation is achieved via a master secret 𝛼 . That is, the left secret

shares correspond to 𝛼𝑧, and the right secret shares correspond to

𝛼𝑦. The encapsulated key is then 𝑒 (𝑔1, 𝑔2)𝛼𝑦𝑧𝑟 , where 𝑟 is sampled

in the encryption. The one-sided security is guaranteed by the

argument that 𝛼𝑧 looks random to parties that hold shares of 𝛼𝑦,

and vice versa. In BTIB−KEM, we need to accommodate for ℓ secret

keys for every side. In our first construction, we treat each one of

the ℓ instances independently, which results in a public key of size ℓ .

We improve this in our second construction by using a 2-Layer IBE,

but at the cost of a longer ciphertext (i.e., 12 vs 2 group elements)

and more complicated construction. Interestingly, as we already

discussed, our second construction can be easily extended to multi-

layer IBE using techniques from [7], which allows us to achieve

CCA-secure traceable IBE.

In Appendix D.1, we define TTIB−KEM and show a TTIB−KEM
black-box construction from BTIB−KEM, which can be instantiated

with both BTIB−KEM−1 and BTIB−KEM−2.

5.1 BTIB−KEM−1 (Short Ciphertext)
Our first BTIB−KEM construction (BTIB−KEM−1), depicted in Fig-

ure 8, is based on Boneh-Franklin IBE [12].

Basically, we extend Boneh-Franklin IBE to achieve the require-

ments of two-sided correctness and one-sided security.

Setup and Key Generation. The BTIB−KEM−1 Setup generates

an asymmetric pairing ensemble 𝐸 as public parameters. The key

space of this construction is the target group K(𝜆) = G𝑇 while

the identity space is arbitrary. Further, we also use a cryptographic

hash functionH with output domain G2. During KGen we sample

𝛼 𝑗 , 𝑦 𝑗 and 𝑧 𝑗 for every 𝑗 ∈ [ℓ]. Intuitively, this is the equivalent
of ℓ separate Boneh-Franklin IBE instances with 𝛼 𝑗𝑦 𝑗𝑧 𝑗 as master

secret key and𝑋 𝑗 = 𝑔
𝛼 𝑗 𝑦 𝑗𝑧 𝑗
1

as public key. For every 𝑗 , we share this

master key into left and right key shares by generating 𝑡-out-of-𝑛

shares of 𝛼 𝑗 , denoted by {𝑠 (𝑗)
𝑖
}𝑖∈[𝑛] . Then, the left share party 𝑖

gets for index 𝑗 is 𝑧 𝑗 · 𝑠 (𝑗)𝑖
and the right share is 𝑦 𝑗 · 𝑠 (𝑗)𝑖

.

Encryption. For encryption and identity key derivation, we fol-

low Boneh-Franklin IBE and extend it to work with correlated keys.

For encryption to a specific 𝑗 ∈ [ℓ] and an identity ID, one generates
the KEM key as 𝑘 ← 𝑒 (𝑋𝑟

𝑗
,H(𝑗, ID)) [= 𝑒 (𝑔1,H(𝑗, ID))𝛼 𝑗 𝑦 𝑗𝑧 𝑗𝑟] for

a random 𝑟 ←$ Z𝑝 . Instead of a single ciphertext as 𝑔𝑟
1
, we sepa-

rate this into a left and right ciphertext (𝑐0, 𝑐1) ← (𝑌 𝑟𝑗 , 𝑍
𝑟
𝑗
). While

during key generation, the left shares contain 𝑧 𝑗 , here, the left ci-

phertext contains 𝑦 𝑗 . This allows us to combine those parts of the

KGen(1𝜆, 𝑛, 𝑡, ℓ)
for 𝑗 ∈ [ℓ] do
𝛼 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ←$ Z𝑝

(𝑋 𝑗 , 𝑌𝑗 , 𝑍 𝑗) ← (𝑔
𝛼 𝑗 𝑦 𝑗𝑧 𝑗
1

, 𝑔
𝑦 𝑗

1
, 𝑔

𝑧 𝑗
1
)

{𝑠 (𝑗)
𝑖
}𝑖∈ [𝑛]
←$ Shamir.Share(𝛼 𝑗 , 𝑛, 𝑡)

for 𝑖 ∈ [𝑛] do
sk(𝑗)

𝑖,0
← 𝑧 𝑗 · 𝑠 (𝑗)𝑖

sk(𝑗)
𝑖,1
← 𝑦 𝑗 · 𝑠 (𝑗)𝑖

pk← {(𝑋 𝑗 , 𝑌𝑗 , 𝑍 𝑗) } 𝑗 ∈ [ℓ]
sk← {(sk(𝑗)

𝑖,0
, sk(𝑗)

𝑖,1
) } 𝑗 ∈ [ℓ],𝑖∈ [𝑛]

return (pk, sk)

DIdk({sk(𝑗)
𝑖,𝑏𝑖,𝑗
} 𝑗∈[ℓ] , ID)

for 𝑗 ∈ [ℓ] do

idk(𝑗)
𝑖
← H(𝑗, ID)

sk(𝑗)
𝑖,𝑏𝑖,𝑗

return idk𝑖 := { (𝑏𝑖,𝑗 , idk(𝑗)𝑖
) } 𝑗 ∈ [ℓ]

Enc(pk, 𝑗, ID)
𝑟 ←$ Z𝑝

𝑘 ← 𝑒 (𝑋𝑟
𝑗 ,H(𝑗, ID))

(𝑐0, 𝑐1) ← (𝑌 𝑟
𝑗 , 𝑍

𝑟
𝑗)

return (𝑘, (𝑐0, 𝑐1))

CombIdk(𝑆, {idk𝑖 }𝑖∈𝑆)
for 𝑗 ∈ [ℓ] do
𝑆0 ← {𝑖 ∈ 𝑆 | 𝑏𝑖,𝑗 = 0}
𝑆1 ← 𝑆 \ 𝑆0

𝐿𝑗 ←
∏

𝑖∈𝑆0

idk(𝑗)
𝑖

𝑙𝑖,𝑆

𝑅 𝑗 ←
∏

𝑖∈𝑆1

idk(𝑗)
𝑖

𝑙𝑖,𝑆

return idk := { (𝐿𝑗 , 𝑅 𝑗) } 𝑗 ∈ [ℓ]

Dec(idk, 𝑐 = (𝑐0, 𝑐1), 𝑗)
𝑘 ← 𝑒 (𝑐0, 𝐿𝑗) · 𝑒 (𝑐1, 𝑅 𝑗)
return 𝑘

Figure 8: Our BTIB−KEM−1 Construction.

identity key that stem from left shares with the left part of the

ciphertext and vice versa in order to decrypt.

Identity Key Derivation. Party 𝑖 callsDIdk to derive the key share
for ID and provides a left or right key share (the side of the share

is determined by the bit 𝑏𝑖, 𝑗). The identity key share would be

H(𝑗, ID)sk
(𝑗)
𝑖,𝑏𝑖,𝑗

. That is, party 𝑖 sends to the entity with ID the

shareH(𝑗, ID)𝑧 𝑗 ·𝑠
(𝑗)
𝑖 orH(𝑗, ID)𝑦 𝑗 ·𝑠 (𝑗)𝑖 . Using CombIdk, for every

𝑗 ∈ [ℓ], one can locally aggregate 𝑡 or more identity key shares

from a set of parties 𝑆 = 𝑆0 ∪ 𝑆1 with mixed sides (left shares from

𝑆0 and right shares from 𝑆1) into an identity key (𝐿𝑗 , 𝑅 𝑗), where 𝐿𝑗
represents the aggregation over 𝑆0 and 𝑅 𝑗 the aggregation over 𝑆1.

Note that the aggregation is computed in the exponent.

Decryption. The identity key holder can decrypt a ciphertext

(𝑐0, 𝑐1) for an index 𝑗 and idenitity ID using the 𝑗 ’th component

of the identity key (𝐿𝑗 , 𝑅 𝑗), by computing 𝑒 (𝑐0, 𝐿𝑗) · 𝑒 (𝑐1, 𝑅 𝑗). Two-
sided correctness follows from the decryption equation:

𝑒 (𝑐0, 𝐿𝑗) · 𝑒 (𝑐1, 𝑅 𝑗)

= 𝑒 (𝑌 𝑟𝑗 ,H(𝑗, ID)
𝑧 𝑗

∑𝑆
0

𝑖
𝑙𝑖,𝑆 ·𝑠 (𝑗)𝑖) · 𝑒 (𝑍𝑟𝑗 ,H(𝑗, ID)

𝑦 𝑗

∑𝑆
1

𝑖
𝑙𝑖,𝑆 ·𝑠 (𝑗)𝑖)

= 𝑒 (𝑔1,H(𝑗, ID))𝑟𝑦 𝑗𝑧 𝑗
∑𝑆

𝑖 𝑙𝑖,𝑆 ·𝑠
(𝑗)
𝑖 = 𝑒 (𝑔1,H(𝑗, ID))𝑟𝑦 𝑗𝑧 𝑗𝛼 𝑗 = 𝑘

Security of BTIB−KEM−1. In addition to two-sided correctness,

we need to prove semantic security and one-sided security. Note

that the main challenge in the proof over [15] is that we must

simulate the identity key derivation oracle ODIdk for semantic

security as we work in the identity-based setting.

Lemma 5.1 (IND−SID−CPA security of BTIB−KEM−1). The
BTIB−KEM−1 construction is IND−SID−CPA secure (Definition 4.3)

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

if the BDDH assumption (Definition C.4) holds in the underlying
pairing ensemble.

Lemma 5.2 (One-sided security of BTIB−KEM−1). The
BTIB−KEM−1 construction is one-sided secure (Definition 4.4) if the
XDH assumption (Definition C.5) holds in the underlying pairing
ensemble.

The proofs are deferred to Appendix F.1 and F.2 respectively.

5.2 BTIB−KEM−2 (Constant-Size Public Key)
For simplicity, we restrict ourselves to the non-threshold case in

this presentation, but we note that it can be thresholdized using

the same techniques as in our first construction. We give a formal

construction, along with formal security proofs, in Appendix H.

Our construction is based on the Boneh-Boyen 2-layer IBE con-

struction [7]. In a 2-layer (or hierarchical) IBE [40], there are two

layers of identities (e.g., (𝐼1, 𝐼2)). With the master key, one can de-

rive the identity key for any first-layer identity 𝐼1. The first-layer

identity key can then be used to derive the identity key for any

layer-two identity that has 𝐼1 as prefix, i.e., (𝐼1, ∗), but not (𝐼 ′
1
, ∗) for

𝐼1 ≠ 𝐼 ′
1
. Hence, the layers of identities act as hierarchical domains.

Inspired by [15, 50], we use 2-layers in order to compress all

public keys for the ℓ different positions in one layer. That is, instead

of encrypting under pk𝑗 to ID, we encrypt under a global pk and
to identity (𝑗, ID). . As secret keys, we distribute the identity keys

for the positions 𝑗 ∈ [ℓ]. Hence, one can derive an identity key for

ID at position 𝑗 (that is, the identity key for (𝑗, ID)) using the 𝑗 ’th
secret key. Note that the encryptor needs to know only the master

public key pk, which is independent of position 𝑗 .

5.2.1 Boneh-Boyen IBE [7]. We recall the non-threshold Boneh-

Boyen IBE construction for two layers. For threshold version, see [9].

Setup and key generation. Choose random 𝛼,𝑏 ←$ Z𝑝 and 𝑢1, 𝑢2 ←$

G1. Define functions 𝐿1, 𝐿2 : Z𝑝 → G1 such that 𝐿1 (𝑥) = 𝑔𝛼𝑥
1
· 𝑢1

and 𝐿2 (𝑥) = 𝑔𝛼𝑥
1
·𝑢2. Publish 𝑔

𝛼
1
, 𝑔𝑏

2
, 𝑢1, and𝑢2 as public parameters.

The master secret key is 𝑔𝛼𝑏
1

.

Identity key derivation. Given an identity 𝐼1 on the first layer ,

sample 𝑟1 ←$ Z𝑝 and set idk𝐼1 = (𝑔𝛼𝑏
1
· 𝐿1 (𝐼1)𝑟1 , 𝑔

𝑟1

2
). And for

the second layer, given 𝐼𝐷 = (𝐼1, 𝐼2), sample 𝑟2 ←$ Z𝑝 and set

idkID = (idk𝐼1
1
· 𝐿2 (𝐼2)𝑟2 , idk𝐼1

2
, 𝑔

𝑟2

2
).

Encryption. To encrypt to identity (𝐼1, 𝐼2), choose a random 𝑠 ∈ Z𝑝 ,
set 𝑘 = 𝑒 (𝑔𝛼

1
, 𝑔𝑏

2
)𝑠 and 𝑐𝑡 = (𝑔𝑠

2
, 𝐿1 (𝐼1)𝑠 , 𝐿2 (𝐼2)𝑠).

Decryption. Given 𝑖𝑑𝑘 ID and 𝑐𝑡 that is encrypted under ID, compute

𝑘 as 𝑘 ← 𝑒 (idkID
1
, 𝑐𝑡1)/(𝑒 (𝑐𝑡2, idkID

2
) · 𝑒 (𝑐𝑡3, idkID

3
)).

5.2.2 OurBTIB−KEM−2Construction. In our construction, we use
two instances of 2-layer Boneh-Boyen IBE (one per side) with mod-

ifications to account for our new correctness and security notions,

as follows.

Setup and Key Generation. The Setup algorithm generates an

asymmetric pairing ensemble 𝐸. The key space is K(𝜆) = G𝑇 .

The identity space in our second construction is IDSpace = Z𝑝 ,
but can be arbitrarily extended using a hash function to Z𝑝 . We

also use a cryptographic hash functionH with output domain G1.

Similarly to our first construction, we choose random 𝛼,𝑦, 𝑧 ∈
Z𝑝 . As we consider two sides, we use an instance for the left

side in which we set the master key for position 𝑗 to be H(𝑗)𝛼𝑧
and for the right side H(𝑗)𝛼𝑦 . That is, from the notation above,

𝑔𝑏
1
is 𝑔

𝑤𝑗𝑧

1
where H(𝑗) = 𝑔

𝑤𝑗

1
. Denote the parameters used in

the first instance by 𝑢1, 𝑢2, 𝐿1, 𝐿2 and for the second instance by

𝑣1, 𝑣2, 𝑅1, 𝑅2 (i.e., representation of the functions). The public key is

set to (𝑔𝛼
1
, 𝑔

𝑦

2
, 𝑔𝑧

2
, 𝑔

𝛼𝑦𝑧

2
, 𝑢1, 𝑢2, 𝑣1, 𝑣2), which is independent of ℓ .

Secret keys. In our construction, the secret keys for each position

𝑗 ∈ [ℓ] conceptually corresponds to an identity key for identity

𝑗 . Hence, we generate the secret keys similar to how one would

generate first-layer identity keys in the Boneh-Boyen IBE from

the master secret key, except that we extend the secret key by

two elements (the second and the fourth), which are needed for

our two-sided correctness. That is, for every 𝑗 , we first sample

𝑟1,0, 𝑟1,1 ←$ Z𝑝 and set left secret key for position 𝑗 as

sk(𝑗)
0

= (H (𝑗)𝛼𝑧 · 𝐿1 (𝑗)𝑟1,0 , 𝑔
𝑦𝑟1,0

2
, 𝑔

𝑟1,0

2
, 𝑔𝛼𝑧

2
),

and the right key as sk(𝑗)
1

= (H (𝑗)𝛼𝑦 · 𝑅1 (𝑗)𝑟1,1 , 𝑔
𝑧𝑟1,1

2
, 𝑔

𝑟1,1

2
, 𝑔

𝛼𝑦

2
).

Key derivation. Again, we follow the key derivation in Boneh-

Boyen scheme, except with new elements similar to the first layer.

For a given identity ID, we sample 𝑟2,0, 𝑟2,1 ←$ Z𝑝 and set the left

identity key for position 𝑗 as

idk(𝑗)ID,0 = (sk(𝑗)
0,1
· 𝐿2 (ID)𝑟2,0 , sk(𝑗)

0,2
, 𝑔

𝑦𝑟2,0

2
, sk(𝑗)

0,3
, 𝑔

𝑟2,0

2
, sk(𝑗)

0,4
),

and idk(𝑗)ID,1 = (sk(𝑗)
1,1
· 𝑅2 (ID)𝑟2,1 , sk(𝑗)

1,2
, 𝑔

𝑧𝑟2,1

2
, sk(𝑗)

1,3
, 𝑔

𝑟2,1

2
, sk(𝑗)

1,4
) .

Encryption. To account for two-sided correctness, similar to our

first construction, we modify the ciphertext such that we replace

𝑔𝑠
2
by 𝑔

𝑦𝑠

2
in 𝑐0 and by 𝑔𝑧𝑠

2
in 𝑐1. Furthermore, in this case we need

to mask these values with random elements 𝑡0 and 𝑡1, respectively,

in order to account for one-sided security. This modification entails

additional elements in the ciphertext that are needed to cancel the

masks 𝑡0 and 𝑡1 during decryption. That is, in encryption we sample

𝑠, 𝑡0, 𝑡1 ←$ Z𝑝 , and set the key 𝑘 = 𝑒 (H (𝑗)𝑠 , 𝑔𝛼𝑦𝑧
2
). The resulting

ciphertext is 𝑐 = (𝑐0, 𝑐1), where

𝑐0 = (𝑔𝑦𝑠+𝑡0

2
, 𝐿1 (𝑗)𝑠 , 𝐿2 (ID)𝑠 , 𝐿1 (𝑗)𝑡0 , 𝐿2 (ID)𝑡0 ,H(𝑗)𝑡0),

and 𝑐1 = (𝑔𝑧𝑠+𝑡1

2
, 𝑅1 (𝑗)𝑠 , 𝑅2 (ID)𝑠 , 𝑅1 (𝑗)𝑡1 , 𝑅2 (ID)𝑡1 ,H(𝑗)𝑡1) . Note

that the last three elements on each side are necessary to cancel

the masks 𝑡0 and 𝑡1 during decryption.

Decryption. The decryption follows from a similar formula as

Boneh-Boyen, but in the bipartite setting: Let idk0, idk1 be idk(𝑗)ID,0,

idk(𝑗)ID,1, respectively. We compute 𝑘 as

𝑘 ←
𝑒 (idk𝑏,1, 𝑐𝑏,1)∏
6

𝑖=2
𝑒 (𝑐𝑏,𝑖 , idk𝑏,𝑖)

for 𝑏 ∈ {0, 1}. It can be computed by the left or right key since,

in this simplified version, the threshold is 1. In the thresholdized

version, the final key is computed as the multiplication of two

decryption outputs, similar to our first construction in Figure 8.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

Correctness and Security. The two-sided correctness immediately

follows the decryption formula when applying the same threshold-

ing technique as in the first construction.

Intuitively, the semantic security follows from the semantic secu-

rity of each one of 2-layer IBE instances. While we use ideas from

[9], due to our changes some challenges need to be resolved.

The one-sided security relies on the masks 𝑡0 and 𝑡1 that we

applied to the ciphertexts. Note that without masking, the one-

sided security is broken by, e.g., the check that 𝑒 (𝑅1 (𝑗)𝑠 , 𝑔𝑦
2
) =

𝑒 (𝑅1 (𝑗), 𝑔𝑦𝑠
2
). Intuitively, masking prevents this attack since the

adversary does not know 𝑅1 (𝑗)𝑡0
or 𝐿1 (𝑗)𝑡1

. Also, we had to in-

troduce the random oracle in the master secret keys (H(𝑗)𝛼𝑧 and
H(𝑗)𝛼𝑦) in order to simulate all secret keys but those for position

𝑗∗ on side 1 − 𝑑 in the one-sided security proof. Our proofs rely

on assumptions that can be proven secure in the Generic Group

Model. The full proofs appear in Appendix H.

6 Efficiency Analysis
We next discuss the efficiency of our constructions with respect to

the ciphertext and key size, as well as computational efficiency.

Parameter Size. The table in Figure 9 summarizes the parameter

sizes in the resulting CCA-secure TT−KEM construction that is

obtained by plugging both of our BTIB−KEM construction into

the transformation. Observe that both constructions are relatively

Param With BTIB−KEM−1 With BTIB−KEM−2

|𝑐 | 2G1 + |vk| + |𝜎 | + log(ℓ) 10G1 + 2G2+
|vk| + |𝜎 | + log(ℓ)

|pk| 3ℓG1 5G1 + 3G2

|sk𝑖 | 2ℓZ𝑝 ℓ (G1 + 3G2)
|𝑑𝑖 | 1G2 1G1 + 5G2

|𝑑 | 2G2 2(1G1 + 5G2)

Figure 9: Summary of the parameter sizes of CCA-
secure TT−KEM, when instantiating with BTIB−KEM−1 or
BTIB−KEM−2 and a signature scheme Σ as building blocks.
|vk| and |𝜎 | refer to the length of the verification key and
signature of Σ.

size-efficient in the important parameters
9
that is the ciphertext

𝑐 , the public key pk and the partial decryptions 𝑑𝑖 . Also, observe

that it is possible to combine at least 𝑡 partial decryptions {𝑑𝑖 }𝑖∈𝑆
from a set of parties 𝑆 into a single decryption key 𝑑 to save even

more space. This decryption key 𝑑 is only twice the size of any

individual 𝑑𝑖 . This works because both our constructions support

the pre-aggregation of identity key shares through CombIdk.
In the TT−KEM construction, the number of positions ℓ is de-

termined according to the codeword size in the underlying finger-

printing code. When we use the fingerprinting code due to Tardos

[49], the size of ℓ is 𝑂 (𝑛2
log

2 𝑛).
Both of our constructions are concretely computationally effi-

cient, with execution times in the order of milliseconds. An exact

overview is laid out in Appendix I.

9
We consider them most important since they are the most likely to be stored on the

blockchain when using our protocol in scenarios such as mempool privacy.

7 Consistency
In this section, we discuss the consistency property in TT−KEM.

Recall that the consistency requirement ensures that any coali-

tion of parties will get the same decryption result, even with ad-

versarially generated ciphertext and decryption shares. Our consis-

tency notion is very strong, in the sense that it even holds against

adversaries that corrupt all shareholders. On the other hand, we can
guarantee consistency only against adversaries who do not know

the tracing key tk. Intuitively, this is because we want to ensure

through a trapdoored proof that the ciphertext is well-formed while

still allowing tracing, where the tracer sends queries to the decoder

box 𝐷 with ciphertexts that have mismatching left and right parts.

10
We present a formal consistency definition in Appendix J.1.

Construction from Disjunctive NIZK-PoKs. In order to achieve

consistency for our CCA-secure TT−KEM construction from Sec-

tion 4.2, we need to add a procedure for verification of the partial

decryption shares and to attach a well-formedness proof of the ci-

phertext with a trapdoor for the tracer. For simplicity, we present the

modifications needed, when starting from the concrete BTIB−KEM
construction in Section 5.1. The ideas presented here can be gener-

alized to any BTIB−KEM construction. Since the validity of partial

decryptions can be easily verified using the BLS equation (see Ap-

pendix J.1.1 for details), we focus on the well-formedness proof.

Well-formedness of Ciphertext via a Trapdoor. In KGen, we gen-
erate a discrete-log tuple (𝑞,𝑄), where 𝑞 ←$ Z𝑝 and 𝑄 ← 𝑔

𝑞

1
. In

the transformation in Section 4.2, the trapdoor 𝑞 is included in the

tracing key while the challenge 𝑄 is included in the public key.

In Enc, the encryptor builds a NIZK proof of knowledge for the

following relation R. For a statement 𝜒 = (pk, (𝑐0, 𝑐1, 𝑗, vk𝑒)) and a

witness 𝜔 , we say that (𝜒,𝜔) ∈ 𝑅 if and only if it holds that:

(𝑐0 = 𝑌𝜔𝑗 ∧ 𝑐1 = 𝑍𝜔
𝑗) ∨ (𝑄 = 𝑔𝜔

1
) .

Hence, the encryptor needs to prove that he knows a witness

𝜔 such that (𝜒,𝜔) ∈ 𝑅, where 𝜒 is extracted from its ciphertext.

Notice that in normal encryption, the encryptor generates a valid

proof by using the randomness 𝑟 that it used to encrypt 𝑐0 and 𝑐1

as witness. In tracing, on the other hand, the tracer can generate a

valid proof by proving that it knows the trapdoor.

As discussed, this proof does not break traceability of TT−KEM.

Indeed, given a valid proof, the adversary cannot distinguish if it

was generated via normal encryption or during tracing. This holds

due to the zero-knowledge property of the proof system. Finally,

the resulting scheme satisfies the consistency notion, due to the

knowledge-soundness of the proof system as well as the verifiability

of the partial decryption shares. For more details, see Appendix J.2.

We also highlight that the proof system can be efficiently instan-

tiated using disjunctive Schnorr proofs of knowledge, which is a

standard technique [27]. The additional proof would add three G1

elements and four Z𝑝 elements to the ciphertext over the result for

BTIB−KEM−1 in Figure 9.

10
Note that according to [51], consistency with public tracing (i.e., with no tracing

key) is hard. Thus, relying on the tracing key to achieve consistency is reasonable.

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

Acknowledgements
This work is supported in part by EPSRC grant EP/Y001680/1, by
the European Research Council (ERC) under the European Union’s

Horizon 2020 and Horizon Europe research and innovation pro-

grams (grant CRYPTOLAYER-101044770), by the German Federal

Ministry of Education and Research and the Hessen State Ministry

for Higher Education, Research and the Arts, through their joint

sponsorship of the National Research Center for Applied Cyberse-

curity ATHENE, and by the German Research Foundation (DFG)

via the DFG CRC 1119 CROSSING project S7.

References
[1] M. Abdalla, A. W. Dent, J. Malone-Lee, G. Neven, D. H. Phan, and N. P. Smart.

Identity-based traitor tracing. In Public Key Cryptography - PKC 2007, 10th
International Conference on Practice and Theory in Public-Key Cryptography,
volume 4450 of Lecture Notes in Computer Science, pages 361–376. Springer, 2007.

[2] A. Agarwal, R. Fernando, and B. Pinkas. Efficiently-thresholdizable batched

identity based encryption, with applications. Cryptology ePrint Archive, Paper

2024/1575, 2024.

[3] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group

signatures without random oracles. Cryptology ePrint Archive, Paper 2005/385,

2005.

[4] L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant

storage via keyword-searchable encryption. Cryptology ePrint Archive, Paper

2005/417, 2005.

[5] B. Barak. An intensive introduction to cryptography: Chosen ciphertext security.

https://intensecrypto.org/public/lec_06_CCA.html, 2023. Accessed: 2025-01-09.

[6] A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption.

In T. Iwata and J. H. Cheon, editors, Advances in Cryptology - ASIACRYPT 2015
- 21st International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part I, volume 9452 of Lecture Notes in Computer Science, pages
470–491. Springer, 2015.

[7] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption

without random oracles. In Advances in Cryptology - EUROCRYPT 2004, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes
in Computer Science, pages 223–238. Springer, 2004.

[8] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with

constant size ciphertext. In Annual international conference on the theory and
applications of cryptographic techniques, pages 440–456. Springer, 2005.

[9] D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key threshold

encryption without random oracles. In Topics in Cryptology - CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February
13-17, 2006, Proceedings, volume 3860 of Lecture Notes in Computer Science, pages
226–243. Springer, 2006.

[10] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. K. Franklin,

editor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryp-
tologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

[11] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from

identity-based encryption. SIAM J. Comput., 36(5):1301–1328, 2007.
[12] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In

Annual international cryptology conference, pages 213–229. Springer, 2001.
[13] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.

In C. Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, pages 514–532,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[14] D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. In P. Ning,

P. F. Syverson, and S. Jha, editors, Proceedings of the 2008 ACM Conference on
Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA,
October 27-31, 2008, pages 501–510. ACM, 2008.

[15] D. Boneh, A. Partap, and L. Rotem. Accountability for misbehavior in threshold

decryption via threshold traitor tracing. InAdvances in Cryptology - CRYPTO 2024
- 44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2024, Proceedings, Part VII, volume 14926 of Lecture Notes in Computer
Science, pages 317–351. Springer, 2024.

[16] D. Boneh, A. Partap, and L. Rotem. Traceable secret sharing: Strong security and

efficient constructions. In Advances in Cryptology - CRYPTO 2024 - 44th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024,
Proceedings, Part V, volume 14924 of Lecture Notes in Computer Science, pages
221–256. Springer, 2024.

[17] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In

V. Atluri, B. Pfitzmann, and P. McDaniel, editors, ACM CCS 2004: 11th Conference

on Computer and Communications Security, pages 168–177, Washington, DC,

USA, Oct. 25–29, 2004. ACM Press.

[18] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data (extended

abstract). In D. Coppersmith, editor, Advances in Cryptology – CRYPTO’95,
volume 963 of Lecture Notes in Computer Science, pages 452–465, Santa Barbara,
CA, USA, Aug. 27–31, 1995.

[19] J. Bormet, S. Faust, H. Othman, and Z. Qu. BEAT-MEV: Epochless approach to

batched threshold encryption for MEV prevention. Cryptology ePrint Archive,

Paper 2024/1533, 2024.

[20] X. Boyen. The uber-assumption family: A unified complexity framework for

bilinear groups. In International Conference on Pairing-Based Cryptography, pages
39–56. Springer, 2008.

[21] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole

in the bucket: Public-key cryptography resilient to continual memory leakage.

In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
501–510, 2010.

[22] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.

In Advances in Cryptology—EUROCRYPT 2003: International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4–8,
2003 Proceedings 22, pages 255–271. Springer, 2003.

[23] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.

In Advances in Cryptology—EUROCRYPT 2003: International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4–8,
2003 Proceedings 22, pages 255–271. Springer, 2003.

[24] J. Chen, H. W. Lim, S. Ling, H. Wang, and H. Wee. Shorter IBE and signatures

via asymmetric pairings. In M. Abdalla and T. Lange, editors, Pairing-Based
Cryptography - Pairing 2012 - 5th International Conference, Cologne, Germany,
May 16-18, 2012, Revised Selected Papers, volume 7708 of Lecture Notes in Computer
Science, pages 122–140. Springer, 2012.

[25] A. R. Choudhuri, S. Garg, J. Piet, and G.-V. Policharla. Mempool privacy via

batched threshold encryption: Attacks and defenses. Cryptology ePrint Archive,

Paper 2024/669, 2024.

[26] A. R. Choudhuri, S. Garg, G.-V. Policharla, and M. Wang. Practical mempool

privacy via one-time setup batched threshold encryption. Cryptology ePrint

Archive, Paper 2024/1516, 2024.

[27] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In Annual International Cryptology
Conference, pages 174–187. Springer, 1994.

[28] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture
Notes in Computer Science, pages 13–25. Springer, 1998.

[29] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and

A. Juels. Flash boys 2.0: Frontrunning, transaction reordering, and consensus

instability in decentralized exchanges, 2019.

[30] Y. Dodis and N. Fazio. Public key trace and revoke scheme secure against adaptive

chosen ciphertext attack. In Public Key Cryptography - PKC 2003, 6th International
Workshop on Theory and Practice in Public Key Cryptography, Miami, FL, USA,
January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in Computer Science,
pages 100–115. Springer, 2003.

[31] S. Dziembowski, S. Faust, T. Lizurej, and M. Mielniczuk. Secret sharing with

snitching. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, CCS 2024, Salt Lake City, UT, USA, October 14-18,
2024, pages 840–853. ACM, 2024.

[32] S. Dziembowski, S. Faust, and J. Luhn. Shutter network: Private transactions

from threshold cryptography. Cryptology ePrint Archive, 2024.
[33] S. Eskandari, S. Moosavi, and J. Clark. Sok: Transparent dishonesty: front-

running attacks on blockchain. In Financial Cryptography and Data Security: FC
2019 International Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis,
February 18–22, 2019, Revised Selected Papers 23, pages 170–189. Springer, 2020.

[34] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric

encryption schemes. In Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
537–554. Springer, 1999.

[35] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric

encryption schemes. J. Cryptol., 26(1):80–101, 2013.
[36] D. Galindo and I. Hasuo. Security notions for identity based encryption. Cryp-

tology ePrint Archive, 2005.
[37] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In Y. Zheng,

editor, Advances in Cryptology - ASIACRYPT 2002, 8th International Conference on
the Theory and Application of Cryptology and Information Security, Queenstown,
New Zealand, December 1-5, 2002, Proceedings, volume 2501 of Lecture Notes in
Computer Science, pages 548–566. Springer, 2002.

[38] V. Goyal, Y. Song, and A. Srinivasan. Traceable secret sharing and applications.

In Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part

https://intensecrypto.org/public/lec_06_CCA.html

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

III, volume 12827 of Lecture Notes in Computer Science, pages 718–747. Springer,
2021.

[39] F. Guo, Y. Mu, and W. Susilo. Identity-based traitor tracing with short private

key and short ciphertext. In Computer Security - ESORICS 2012 - 17th European
Symposium on Research in Computer Security, Pisa, Italy, September 10-12, 2012.
Proceedings, volume 7459 of Lecture Notes in Computer Science, pages 609–626.
Springer, 2012.

[40] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In

Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory
and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April
28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer Science,
pages 466–481. Springer, 2002.

[41] A. Joux. A one round protocol for tripartite diffie-hellman. J. Cryptol., 17(4):263–
276, 2004.

[42] C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces.

In K. Sako and P. Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 -
19th International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part I,
volume 8269 of Lecture Notes in Computer Science, pages 1–20. Springer, 2013.

[43] S. Maitra and D. J.Wu. Traceable prfs: Full collusion resistance and active security.

In Public-Key Cryptography - PKC 2022 - 25th IACR International Conference on
Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022,
Proceedings, Part I, volume 13177 of Lecture Notes in Computer Science, pages
439–469. Springer, 2022.

[44] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attacks. In H. Ortiz, editor, Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 427–437. ACM, 1990.

[45] D. H. Phan and V. C. Trinh. Identity-based trace and revoke schemes. In Provable
Security - 5th International Conference, ProvSec 2011, Xi’an, China, October 16-
18, 2011. Proceedings, volume 6980 of Lecture Notes in Computer Science, pages
204–221. Springer, 2011.

[46] A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer, editor,

Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science,
pages 457–473. Springer, 2005.

[47] V. Shoup. Lower bounds for discrete logarithms and related problems. In

Advances in Cryptology—EUROCRYPT’97: International Conference on the Theory
and Application of Cryptographic Techniques Konstanz, Germany, May 11–15, 1997
Proceedings 16, pages 256–266. Springer, 1997.

[48] Shutter Network. Introducing Shutter – Combating Front Running andMalicious

MEV Using Threshold Cryptography. https://blog.shutter.network/introducing-

shutter-network-combating-frontrunning-and-malicious-mev-using-

threshold-cryptography/, 2021. Accessed: 2025-01-05.

[49] G. Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2):10:1–10:24,

2008.

[50] M. Zhandry. New techniques for traitor tracing: Size n
1/3

and more from

pairings. In Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,
Proceedings, Part I, volume 12170 of Lecture Notes in Computer Science, pages
652–682. Springer, 2020.

[51] M. Zhandry. White box traitor tracing. In Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part IV, volume 12828 of Lecture Notes in
Computer Science, pages 303–333. Springer, 2021.

[52] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais. On the just-in-time

discovery of profit-generating transactions in DeFi protocols. pages 919–936.

IEEE Computer Society Press, 2021.

[53] L. Zhou, K. Qin, C. Ferreira Torres, D. V. Le, and A. Gervais. High-frequency

trading on decentralized on-chain exchanges. pages 428–445. IEEE Computer

Society Press, 2021.

A CCA Attacks on BPR24 Constructions
We briefly discuss the constructions of [15], and present a CCA

attack against them. We stress again that the CCA attack is practi-

cally relevant to applications such as mempool privacy, since the

committee that decrypts transactions basically acts as a decryp-

tion oracle that returns partial decryptions. The CCA attack is on

the constructions by [15] is the standard attack on homomorphic

encryption schemes. For their second construction, the homomor-

phism is broken by hashing the result of the decryption and using

that as key. The attack, however, can still be carried out given the

partial decryptions.

First Construction. The first construction of [15] is reminiscent

of ElGamal encryption. The 𝑗𝑡ℎ public key is a triple 𝑋 𝑗 = 𝑔
𝑥 𝑗 , 𝑌𝑗 =

𝑔𝑦 𝑗 , 𝑍 𝑗 = 𝑔𝑧 𝑗 . The left and right ciphertexts are 𝑌 𝑟
𝑗
and 𝑍𝑟

𝑗
re-

spectively for a randomly sampled 𝑟 , and the key 𝑘 is 𝑋𝑟
𝑗
. The

CCA adversary, on input the challenge ciphertext (𝑌 𝑟
𝑗
, 𝑍𝑟

𝑗
), asks

for decryption of (𝐶𝑙 ,𝐶𝑟) =
((
𝑌 𝑟
𝑗

)
2

,

(
𝑍𝑟
𝑗

)
2

)
. The corresponding

key would be
ˆ𝑘 = 𝑋 2𝑟

𝑗
(can be derived from decryption shares re-

ceived from the decryption oracle). Now, the the actual key 𝑘 can

be computed by computing
ˆ𝑘1/2

.

Second Construction. In the second construction, the key is de-

rived by evaluating a hash function 𝐻2 on the result 𝑊 of the

combine-partial-decryptions. However, the adversary still learns

the partial decryptions, hence it can derive𝑊 which exhibits ho-

momorphic structure. More concretely, in their second construc-

tion, each component of the ciphertext is a pair of group elements

𝐶ℓ = (𝑢ℓ , 𝑣ℓ) ∈ G1 × G2, and 𝐶𝑟 = (𝑢𝑟 , 𝑣𝑟) ∈ G1 × G2. Moreover,

for both 𝑏 ∈ {ℓ, 𝑟 }, if 𝑑 (𝑖,𝑏) is the output of the partial decryption
for the 𝑖𝑡ℎ share of 𝐶𝑏 , then it holds that 𝑑2

(𝑖,𝑏) is the output of the

partial decryption for the 𝑖𝑡ℎ share of 𝐶2

𝑏
= (𝑢2

𝑏
, 𝑣2

𝑏
).

Thus, given the challenge ciphertext (𝐶ℓ ,𝐶𝑟) the adversary can

submit (𝐶2

ℓ
,𝐶2

𝑟) for the partial decryption. As the submitted cipher-

text is different from the challenge ciphertext, the adversary can

make the query for 𝑡 (threshold) number of shares, and get 𝑑2

𝑖
and

thus derive 𝑑𝑖 for 𝑡 many parties. The adversary combines 𝑡 many

𝑑𝑖s to compute𝑊 , and therefore derive 𝐾 = 𝐻2 (𝑊).

B More related work
There has been extensive research on traitor tracing in the broadcast

encryption setting (see, e.g., [15, 50] for a good overview). Traitor

tracing in the broadcast encryption setting is mostly motivated by

trying to catch people who illegally sell or replicate their decryption

device for, say, pay TV broadcast. In this setting [30] is the first

work to consider CCA-secure traitor tracing, using Cramer-Shoup

transformation [28]. In particular, they show a 𝑘-resilient construc-

tion with ciphertext overhead of 𝑂 (𝑘), which is less efficient than

our construction, where we achieve a constant-size ciphertext with

full-resiliency. Other works [1, 39, 45] studied traitor tracing IBE

in the broadcast encryption setting. Specifically, they extend the

traitor tracing in broadcast encryption to the identity-based setting,

such that each user gets a decryption key for some identity group.

Hence, the decoder box that is constructed by a set of users can de-

crypt only for their corresponding identity groups (as users cannot

derive new identity keys). Our model (and that of [15]) differs from

all these works, as we aim to trace colluding master-key sharehold-

ers of thresholdized committees, while traitor tracing for broadcast

encryption rather focuses on tracing end-users that construct illegal

decryption devices in the non-threshold setting.

In [43], they construct a traceable PRF and use it as building block

for constructing CCA-secure fingerprinting-based traitor tracing

in the symmetric key setting, where in this paper we consider the

public key setting. Consistency, which is another property that we

https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

study, was defined and studied for the non-threshold setting in [51].

In their paper they suggest to work in the white-box decoder model,

in which the tracer can access also the code of the decoder instead

of only black-box access.

C Additional Definitions
C.1 Cryptographic Building Blocks

Definition C.1 (One-Time Signature Schemes). A one-time signa-

ture scheme Σ is a tuple of algorithms Σ = (KGen, Sign,Verify)
such that for all messages𝑚 and all (sk, vk) ←$ KGen(1𝜆) it holds
that

Verify(vk,𝑚, Sign(sk,𝑚)) = 1.

Further, we require Σ to achieve EUF−OT−CMA-security.

Game−EUF−OT−CMAΣ
A (1

𝜆)
𝑀 ← ∅
𝑞 ← 1

(sk, vk) ←$ KGen(1𝜆)

(𝑚∗, 𝜎∗) ←$ AOSign (1𝜆, vk)
if 𝑚∗ ∈ 𝑀 then return 0

return Verify(vk,𝑚∗, 𝜎∗)

OSign (𝑚)
if 𝑞 = 0 then return ⊥
𝑞 ← 𝑞 − 1

𝑀 ← 𝑀 ∪ {𝑚}
𝜎 ←$ Sign(sk,𝑚)
return 𝜎

Figure 10: EUF−OT−CMA security game for signature
schemes.

Definition C.2 (Existential Unforgeability under Chosen Message
Attacks for One-Time Signatures (EUF−OT−CMA)). We say that a

one-time signature scheme Σ is EUF−OT−CMA-secure if for all

PPT adversariesA there exists a negligible function negl such that

Pr

[
Game−EUF−OT−CMAΣ

A (1
𝜆) = 1

]
≤ negl(𝜆),

where Game−EUF−OT−CMA is as defined in Figure 10.

Definition C.3 (Non-Interactive Zero-Knowledge Proofs of Knowl-
edge). LetR be anNP-relation and of statement-witness pairs (𝜒,𝜔).
A non-interactive zero-knowledge proof of knowledge (NIZK-PoK)

system Π for relation R is a tuple of algorithms Π = (Setup, Prove,
Verify) with the following properties:

• Correctness: For all (𝜒,𝜔) ∈ R it holds that

Verify(𝜒, Prove(𝜒,𝜔)) = 1.

• Knowledge-soundness: There exists a PPT extraction algo-

rithm Ext such that for all PPT adversariesA there exists a

negligible function negl with

Pr

[
(𝜒,𝜔) ∉ R∧

Verify(𝜒, 𝜋) = 1

:

(𝜒, 𝜋) ←$A(1𝜆)
𝜔 ←$ ExtA(·) (𝜒, 𝜋)

]
≤ negl(𝜆) .

• Zero-knowledge: There exists a PPT simulator Sim such

that for all (𝜒, 𝜔) ∈ R it holds that

(CRS, 𝜒, Prove(𝜒, 𝜔)) ≈𝑐 (CRS, 𝜒, Sim(𝜒)) .
All algorithms receive a common CRS ←$ Setup(1𝜆) as implicit

input.

C.2 Well-Established Bilinear Pairing
Assumptions

The Bilinear (Decisional) Diffie-Hellman (BDDH) assumption was

introduced in [12] and since been the bedrock of Identity-based

cryptography and its extensions, and, in general, pairing-based

cryptography ([23, 37, 41, 46] and many more).

Definition C.4 (Bilinear Decisional Diffie-Hellman). Let G be an

algorithm to generate ensembles 𝐸. We say that the bilinear deci-

sional Diffie-Hellman (BDDH) problem is hard for G, if for all PPT
adversaries B, it holds that��

Pr

[
B(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑎𝑏𝑐) = 1

]
− Pr

[
B(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑣) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆), 𝑎, 𝑏, 𝑐, 𝑣 ←$ Z𝑝 and

®𝑥 =

(
𝑔1, 𝑔

𝑎
1
, 𝑔𝑏

1
, 𝑔2, 𝑔

𝑎
2
, 𝑔𝑐

2

)
.

The XDH assumption was first discussed in [10], and formal-

ized in [4]. Since then, it has been used in numerous constructions

including Identity-Based Encryption [24], Inner-Product Encryp-

tion [6], Group Signatures [3], Leakage-Resilient Encryption [21],

and Non-Interactive Zero-knowledge proofs [42].

Definition C.5 (XDH Assumption). Let G be an algorithm to gen-

erate ensembles 𝐸. We say that the external Diffie-Hellman (XDH)

problem is hard for G, if for all PPT adversaries
ˆB it holds that��

Pr

[
B(𝐸, ®𝑥, 𝑔𝑎𝑏

1
) = 1

]
− Pr

[
B(𝐸, ®𝑥,𝑔𝑣

1
) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆), and 𝑎, 𝑏, 𝑣 ←$ Z𝑝 and

®𝑥 =

(
𝑔1, 𝑔

𝑎
1
, 𝑔𝑏

1
, 𝑔2

)
.

C.3 Traceable Threshold KEM
Definition C.6 (Correctness of TT−KEM). A TT−KEM protocol Π

is correct if for all 𝜆 ∈ N, all polynomials 𝜀 (𝜆), all 𝑛 ≥ 𝑡 > 0, all

𝑆 ⊆ [𝑛] with |𝑆 | ≥ 𝑡 it holds that

Pr


𝑘 = 𝑘′∧

Verify(𝑐, 𝜋) = 1

:

(pk, {sk𝑖 }𝑖∈[𝑛] , tk)
←$ KGen(1𝜆, 𝑛, 𝑡, 11/𝜀 (𝜆))
(𝑘, 𝑐, 𝜋) ←$ Enc(pk)
∀𝑖 ∈ 𝑆 : 𝑑𝑖 ← PDec(sk𝑖 , 𝑐)
𝑘′ ← Comb(𝑆, {𝑑𝑖 }𝑖∈𝑆 , 𝑐)


= 1.

Further, we require that the keys generated by Enc are uniformly

distributed over the key-space K(𝜆).

The most important detail about IND−CCA security of TT−KEM
is that the adversary gets access to the tracing key. This reflects the

fact that the tracer is not trusted for security. Even if the tracer is

corrupt, full CCA security holds as long as less than 𝑡 shareholders

are corrupt.

Definition C.7 (IND−CCA-security of TT−KEM). A TT−KEM
protocol 𝜋 is IND−CCA-secure if for all PPT adversaries A =

(A1,A2) there exists a negligible function negl such that

Pr

[
Game−IND−CCATT−KEMA (1𝜆) = 1

]
≤ 1

2

+ negl(𝜆),

where Game−IND−CCATT−KEMA is defined in Figure 11.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

Game−IND−CCATT−KEMA (1𝜆)
ctr← 0;𝑏 ←$ {0, 1}
(pk, {sk𝑖 }𝑖∈ [𝑛] , tk)

←$ KGen(1𝜆, 𝑛, 𝑡, 11/𝜀 (𝜆))
(𝐶, st) ←$ A(st1, pk, tk)
if 𝐶 ⊈ [𝑛] ∨ |𝐶 | ≥ 𝑡 then

return 0

𝑘0 ←$ K(𝜆)
(𝑘1, 𝑐

∗, 𝜋∗) ←$ Enc(pk)
chal← ((𝑐∗, 𝜋∗), 𝑘𝑏), {sk𝑖 }𝐶)

𝑏′ ←$ AOPDec
3

(st, chal)

return 𝑏
?

= 𝑏′

OPDec ((𝑐, 𝜋), 𝑖)
if Verify(𝑐, 𝜋) = 0 then

return ⊥
if 𝑐 = 𝑐∗ then

ctr←$ ctr + 1

if ctr ≥ 𝑡 − |𝐶 | then
return ⊥

𝑑𝑖 ← PDec(𝑐, sk𝑖,0)
return 𝑑𝑖

Figure 11: IND−CCA security game for TT−KEM and standard
threshold KEM.

Game−TraceA,𝜀 (1𝜆)
(𝑛, 𝑡, st1) ←$ A1 (1𝜆)

(pk, {sk𝑖 } [𝑛] , tk) ←$ KGen(1𝜆, 𝑛, 𝑡, 11/𝜀 (𝜆))
(J, st2) ←$ A2 (st1, pk)
if J ⊈ [𝑛] then abort

𝐷 ←$ A3 (st2, {sk𝑖 }𝑖∈𝐶)

J′ ←$ Trace𝐷 (·) (pk, tk, 11/𝜀 (𝜆))
return (pk, 𝐷, J, J′)

Figure 12: Traceability game for TT−KEM.

Definition C.8 ((𝜀, 𝛿)-Traceability of TT−KEM). Let 𝜀 (𝜆) and 𝛿 (𝜆)
be functions in the security parameter. A TT−KEM scheme is (𝜀, 𝛿)-
traceable, if for all PPT adversaries A = (A1,A2,A3) and for all

𝜆 ∈ N the following conditions hold

Pr[GoodTr] ≥ Pr[GoodDec] − 𝛿 (𝜆) and Pr[BadTr] ≤ 𝛿 (𝜆),

where (pk, 𝐷,J ,J ′) ←$ Game−TraceA,𝜀 (1𝜆) (Figure 12) and the

three events GoodTr, BadTr and GoodDec are defined as follows:

• GoodTr holds when J ′ ≠ ∅ and J ′ ⊆ J , which indicates

that at least one real traitor has been traced and no non-

traitors were framed by the tracing algorithm.

• BadTr holds when at least one non-traitor was framed by

the tracing algorithm (J ′ ≠ ∅ and J ′ ⊈ J).

• GoodDec indicates that the decoder is good for pk. More

formally, when 𝑃 (𝐷) ≥ 1/2 + 𝜀 (𝜆) where

𝑃 (𝐷) := Pr

[
𝐷 (𝑐, 𝑘𝑏) = 𝑏 :

((𝑐, 𝜏), 𝑘0) ←$ Enc(pk)
𝑘1 ←$ K𝜆, 𝑏 ←$ {0, 1}

]
.

Definition C.9 (Traceability of TT−KEM). A TT−KEM scheme is

traceable if there exists a negligible function 𝜈 such that TT−KEM
is (1/𝑝, 𝜈)-traceable for every positive polynomial 𝑝 (𝜆).

D TTIB-KEM From BTIB-KEM
In this section, we extend the TT−KEM definition to the identity-

based setting, providing the definition of traceable threshold identity-

based KEM (TTIB−KEM). We then discuss a transformation from

our main building block BTIB−KEM to TTIB−KEM.

D.1 Traceable Threshold Identity-Based KEM
We next present our definition of TTIB−KEM, which extends the

standard identity-based KEM by a tracing functionality.

We model traceability for threshold identity-based KEM schemes

by lifting the definition from [15] to the identity-based setting. Our

model accounts for decoders that can decrypt ciphertexts of a cho-

sen subset of identities (the set I∗ in Figure 13), that is determined

in the beginning of the scheme.

Definition D.1. A traceable threshold identity-based KEM scheme

(TTIB−KEM) is a tuple of protocols (KGen, Enc,DIdk,CombIdk,
Dec, Trace) with KEM key-spaceK(𝜆) and identity-space IDSpace.

• (pk, {sk𝑖 }𝑖∈[𝑛] , tk) ←$ KGen(1𝜆, 𝑛, 𝑡, 11/𝜀 (𝜆)). The KGen
algorithm receives the security parameter 1

𝜆
, the number

of parties 𝑛, the threshold 𝑡 where 𝑛 ≥ 𝑡 > 0 and the tracing

parameter 𝜀, which is a lower bound on the distinguish-

ing advantage of decoders that must be traceable by this

scheme. It outputs a public key pk, the secret key shares

sk = {sk𝑖 }𝑖∈[𝑛] , and a tracing key tk.
• (𝑘, 𝑐) ←$ Enc(pk, ID). Given a public key pk and an identity

ID ∈ IDSpace, the encryption algorithm returns a key 𝑘 ∈
K(𝜆) and a ciphertext 𝑐 .

• idk𝑖 ← DIdk(sk𝑖 , ID). The identity key derivation algo-

rithm DIdk receives the secret key share of party 𝑖 and an

identity ID. It returns a partial identity key on ID as idk𝑖 .
• idk ← CombIdk(𝑆, {idk𝑖 }𝑖∈𝑆). The CombIdk algorithm

aggregates partial identity keys from a set 𝑆 of size at least

𝑡 and outputs the resulting identity key idk.
• 𝑘/⊥ ← Dec(idk, 𝑐). The decryption algorithm receives an

identity key idk and a ciphertext 𝑐 . It returns the resulting

key 𝑘 or ⊥ upon failure.

• J ←$ Trace𝐷 (·) (pk, tk,I, 11/𝜀 (𝜆)). The Trace algorithm is

given the public key pk, the tracing key tk, a set of possible
identities I, the parameter 𝜀, and black-box access to the

decoder 𝐷 . It outputs a set of traitors J ⊆ [𝑛].

We omit the correctness and IND−SID−CPA definitions as they

are standard and not affected by traceability.

Definition D.2. [(𝜀, 𝛿)-Traceability of TTIB−KEM] For functions

in the security parameter 𝜀 (𝜆) and 𝛿 (𝜆), a TTIB−KEM scheme is

(𝜀, 𝛿)-traceable, if for all PPT adversaries A = (A1,A2,A3) and
for all 𝜆 ∈ N the following conditions hold

Pr[GoodTr] ≥ Pr[GoodDec] − 𝛿 (𝜆) and Pr[BadTr] ≤ 𝛿 (𝜆)

with (pk,I∗, 𝐷,J ,J ′) ←$ Game−Trace−IDA,𝜀 (1𝜆) (Figure 13)

and the three events GoodTr, BadTr and GoodDec defined as fol-

lows:

• GoodTr holds when J ′ ≠ ∅ and J ′ ⊆ J , which indicates

that at least one real traitor has been traced and no non-

traitors were framed by the tracing algorithm.

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

Game−Trace−IDA,𝜀 (1𝜆)
J ← ∅

(𝑛, 𝑡, I∗, st1) ←$ A1 (1𝜆)
if I∗ = ∅ then I∗ ←$ IDSpace

(pk, {sk𝑖 } [𝑛] , tk) ←$ KGen(1𝜆, 𝑛, 𝑡, 11/𝜀 (𝜆))
(𝐶, st2) ←$ A2 (st1, pk)
𝐷 ←$ A3 (st2, {sk𝑖 }𝑖∈𝐶)

J′ ←$ Trace𝐷 (·) (pk, tk, I∗, 11/𝜀 (𝜆))
return (pk, I∗, 𝐷, J, J′)

Figure 13: Traceability game for TTIB−KEM.

• BadTr holds when at least one non-traitor was framed by

the tracing algorithm (J ′ ≠ ∅ and J ′ ⊈ J).

• GoodDec indicates the decoder is good for pk and I∗. More

formally, when 𝑃 (𝐷) ≥ 1/2 + 𝜀 (𝜆) where

𝑃 (𝐷) := Pr

[
𝐷 (𝑐, 𝑘𝑏) = 𝑏 :

ID←$ I∗, (𝑐, 𝑘0) ←$ Enc(pk, ID)
𝑘1 ←$ K𝜆, 𝑏 ←$ {0, 1}

]
.

Definition D.3 (Traceability of TTIB−KEM). A TTIB−KEM scheme

is traceable if there exist a negligible function𝜈 such that TTIB−KEM
is (1/𝑝, 𝜈)-traceable for every positive polynomial 𝑝 (𝜆).

Differences from the definition of [1]. Abdalla et al. [1] define

traitor tracing in the identity-based setting. We note that their

definition considers a different scenario than ours. In particular,

in [1] they consider group-based applications of IBE, e.g., email

addresses groups, in which all users of the group can decrypt using

a decryption key(s) that associated for the group. Note that the

decryption keys for every group are constructed and distributed

by a trusted authority who holds the master key. In their model,

they want to defend against collisions in which users of the group,

using their decryption keys, generate a pirate decoder that is able to

decrypt ciphertexts of this specific group. In the tracing definition,

the adversary chooses a group ID and the tracing algorithm returns

a set of users within group ID that constructed the decoder. In

our setting, on the other hand, we consider a scenario where the

master key is shared among shareholders, who may collude in order

to construct a pirate decoder that is potentially able to decrypt

ciphertexts for any identity. Specifically, our definition enables

us to trace decoders that are able to decrypt ciphertexts for an

identity ID even if the identity key was not derived previously (this

is modeled as the set I∗). Observe that this is not captured by the

definition in [1] since future identity keys can be derived only using

the master key, which is held only by the trusted authority. We

emphasize that the possibility to trace decryption for future identity

keys is well motivated due to the use case of IBE in threshold

mempool encryption, e.g., in [32]. In this application, the identities

correspond to epochs and the ability of the adversary to derive

future identity keys gains it an advantage in decrypting ciphertexts

for future epochs, which allows him to frontrun transactions. As

we are motivated mainly by the mempool-privacy application, our

traceability definition aims to identify those shareholders, that

collude to construct such a decoder.

Remark On identity key derivation oracle. An observant reader

may have noted that our traceability game in Figure 13 does not

offer an identity key derivation oracle. However, we note that in

this game, we consider a stronger adversary who receives enough

key shares to derive an identity key for any identity. Indeed, this

holds since the adversary receives secret shares for all corrupted

parties in 𝐶 , where |𝐶 | ≥ 𝑡 . On the other hand, one would consider

an extension of our traceability game in which the adversary is

offered a partial identity key derivation oracle, such that the adver-

sary can choose to receive the partial identity key share from any

honest party. This extended traceability notion gives the ability to

prove CCA-secure and traceable TT−KEM and TTIB−KEM in the

presence of a traceability adversary who has access to partial de-

cryptions. This is interesting, in particular, in encrypted mempool,

as it reflects the real setting where the partial decryption shares of

the committee are exposed to everyone. That said, we would like to

stress that our traceability game is a reasonable model, where we

assume that the adversary that attempts to break traceability has

access only to the final decryption result (and not the partial decryp-

tions). This reflects a setting where the partial decryption shares

are sent to a trusted combiner who aggregates all of them (then the

trusted combiner might send a ZK proof for correct aggregation).

We note that currently, it is unclear to us how to simulate the

partial identity key oracle in the traceability proof and is left as an

interesting open problem.

Remark on selective identity. We highlight the fact that the adver-

sary commits in the beginning to I∗ because it somewhat reflects

the selective-identity notion that exists for security of IBE schemes

in the context of IND−CPA and IND−CCA [11, 22]. For security,

it is well established that the normal notions imply the selective-

identity notions, but not the other way around [36]. We note that

we would be able to achieve traceability without selective-identity

using a stronger one-sided security notion for BTIB−KEM where

the adversary can decide on the challenge identity after learning
the public key and secret key shares. While our first construction

can achieve this stronger notion, our second construction can not,

hence we restrict ourselves to this version of traceability.

D.2 BTIB−KEM to TTIB−KEM Transformation
Next, we present a black-box construction Π for TTIB−KEM from

fingerprinting codes and BTIB−KEM. It is very similar to the trans-

formation of [15], but in the identity-based setting. We give the

full construction in Figure 14. The construction is black-box with

respect to a BTIB−KEM scheme ΠBTIB−KEM
and a fingerprinting

code F = (FCGen, FCTrace) as building blocks.

As a direct corollary from the traceability proof of TT−KEM as

presented in [15] (which is discussed in Appendix E.3), we achieve

the following theorem.

Theorem D.4. The TTIB−KEM construction Π is traceable (Def-
inition D.2), if the underlying BTIB−KEM protocol ΠBTIB−KEM is
one-sided secure (Definition 4.4) and the fingerprinting code F is fully
collusion-resistant.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

KGen(1𝜆, 𝑛, 𝑡, 11/𝜀)

𝛿 ← 1/2𝜀
1/2 − 2/

√
𝜆

(Γ, ℓ, tk) ←$ F.FCGen(1𝑛, 2−𝜆, 𝛿)(
pk, { (sk(𝑗)

𝑖,0
, sk(𝑗)

𝑖,1
) }𝑖∈ [𝑛], 𝑗 ∈ [ℓ]

)
←$ ΠBTIB−KEM .KGen(1𝜆, 𝑛, 𝑡, ℓ)

for 𝑖 ∈ [𝑛] do

𝑤 (𝑖) ← Γ𝑖

sk𝑖 ← {sk
(𝑗)
𝑖,𝑤
(𝑖)
𝑗

} 𝑗 ∈ [ℓ]

return (pk, {sk𝑖 }𝑖∈ [𝑛] , tk)

Enc(pk, ID)
𝑗 ←$ [ℓ]
(𝑘, (𝑐0, 𝑐1)) ←$

ΠBTIB−KEM .Enc(pk, 𝑗, ID)
return (𝑘, 𝑐 := (𝑐0, 𝑐1, 𝑗))

DIdk(sk𝑖 , ID)
idk𝑖 ←$ ΠBTIB−KEM .DIdk(sk𝑖 , ID)
return idk𝑖

CombIdk(𝑆, {idk𝑖 }𝑖∈𝑆)
idk← ΠBTIB−KEM .CombIdk(𝑆, {idk𝑖 }𝑖∈𝑆)
return idk

Dec(idk, 𝑐)
Parse 𝑐 as (𝑐0, 𝑐1, 𝑗)

𝑘 ← ΠBTIB−KEM .Dec(idk, (𝑐0, 𝑐1), 𝑗)
return 𝑘

Tr𝐷 (·) (pk, 𝑗, 𝑁 ,I, (𝑏𝑘 , 𝑏0, 𝑏1))
ctr← 0

for 𝑟 = 1, . . . , 𝑁 do

ID←$ I

(𝑘 (0) , 𝑐 (0) := (𝑐 (0)
0

, 𝑐
(0)
1
)) ←$ ΠBTIB−KEM .Enc(pk, 𝑗, ID)

(𝑘 (1) , 𝑐 (1) := (𝑐 (1)
0

, 𝑐
(1)
1
)) ←$ ΠBTIB−KEM .Enc(pk, 𝑗, ID)

𝑐∗ ← (𝑐 (𝑏0)
0

, 𝑐
(𝑏1)
1
)

if 𝐷 (𝑐∗, 𝑘 (𝑏𝑘)) = 1 then ctr← ctr + 1

return ctr

Trace𝐷 (·) (pk, tk,I, 11/𝜀)
𝑁 ← 𝜆2

𝐵 ← 𝜆3/2

for 𝑗 ∈ [ℓ] do

𝑝001 ←$ Tr𝐷 (·) (pk, 𝑗, 𝑁 , I, (𝑏𝑘 , 𝑏0, 𝑏1) := (0, 0, 1))

𝑝100 ←$ Tr𝐷 (·) (pk, 𝑗, 𝑁 , I, (𝑏𝑘 , 𝑏0, 𝑏1) := (1, 0, 0))

𝑝111 ←$ Tr𝐷 (·) (pk, 𝑗, 𝑁 , I, (𝑏𝑘 , 𝑏0, 𝑏1) := (1, 1, 1))
𝑎0 ← |𝑝001 − 𝑝100 |
𝑎1 ← |𝑝001 − 𝑝111 |
if 𝑎0 ≥ 𝐵 then 𝑤𝑗 ← 0

else if 𝑎1 ≥ 𝐵 then 𝑤𝑗 ← 1

else 𝑤𝑗 ← ’?’

𝑤̄ ← 𝑤1𝑤2 . . . 𝑤ℓ

J ← F.FCTrace(tk, 𝑤̄)
return J

Figure 14: Our black-box TTIB−KEM construction given a BTIB−KEM protocol ΠBTIB−KEM and a fingerprinting code F .

E Security Proofs of the TT−KEM Construction
E.1 CCA-security of BT−KEM

Proof of Lemma 4.5. Let Game1 be the IND−CCA game as in-

troduced in Figure 2.We introduceGame2 bymaking amodification

to the partial decryption oracle OPDec. In particular, we add an addi-
tional abort condition that causes the oracle to return ⊥. Given the

queried ciphertext 𝑐 := ((𝑐0, 𝑐1), 𝑗, vk𝑒) and the challenge ciphertext
𝑐∗ = ((𝑐∗

0
, 𝑐∗

1
), 𝑗∗, vk∗𝑒), the oracle OPDec

2
aborts, if vk𝑒 = vk∗𝑒 but

𝑐 ≠ 𝑐∗. The modification is laid out in Figure 15.

Oracle OPDec
1
((𝑐, 𝜎), 𝑖)

1 : Parse 𝑐 as ((𝑐0, 𝑐1), 𝑗, vk𝑒)
2 :

3 :

4 : if Σ.Verify(vk𝑒 , 𝑐, 𝜎) = 0 then

5 : return ⊥
6 : if 𝑐 = 𝑐∗ then

7 : ctr←$ ctr + 1

8 : if ctr ≥ 𝑡 − |𝐶 | then
9 : return ⊥
10 : 𝑑𝑖,0 ← PDec(𝑐, sk𝑖,0)
11 : 𝑑𝑖,1 ← PDec(𝑐, sk𝑖,1)
12 : return (𝑑𝑖,0, 𝑑𝑖,1)

Oracle OPDec
2
((𝑐, 𝜎), 𝑖)

Parse 𝑐 as ((𝑐0, 𝑐1), 𝑗, vk𝑒)
if vk𝑒 = vk∗𝑒 ∧ 𝑐 ≠ 𝑐∗ then

return ⊥
if Σ.Verify(vk𝑒 , 𝑐, 𝜎) = 0 then

return ⊥
if 𝑐 = 𝑐∗ then

ctr←$ ctr + 1

if ctr ≥ 𝑡 − |𝐶 | then
return ⊥

𝑑𝑖,0 ← PDec(𝑐, sk𝑖,0)
𝑑𝑖,1 ← PDec(𝑐, sk𝑖,1)
return (𝑑𝑖,0, 𝑑𝑖,1)

Figure 15: Modified OPDec oracle.

LemmaE.1. If Σ is EUF−OT−CMA-secure followingDefinition C.2,
then Game1 and Game2 are computationally indistinguishable.

Proof of lemma E.1. We prove lemma E.1 by reducing a suc-

cessful PPT distinguisher to the unforgeability of Σ. LetA be a PPT

adversary such that���Pr[GameBT−KEM
1,A (1𝜆) = 1] − Pr[GameBT−KEM

2,A (1𝜆) = 1]
��� ≥ 𝜀 (𝜆)

for a non-negligible 𝜀. We construct a PPT reduction B that runsA
internally to win the EUF−OT−CMA game (Figure 10) of Σ with

the same probability 𝜀.

Initially, B receives a challenge-verification key vk∗ from the

EUF−OT−CMA game. Then, it simulates Game−IND−CCA to A,

embedding vk∗ as the vk∗𝑒 of the challenge ciphertext. It computes

𝜎∗ by querying the signing oracle of the EUF−OT−CMA game on

𝑐∗. When B receives a partial decryption query on ((𝑐, 𝜎), 𝑖) that
triggers the additional abort condition of OPDec

2
(i.e., vk𝑒 = vk∗𝑒 and

𝑐 ≠ 𝑐∗) and also passes the abort condition Σ.Verify(vk𝑒 , 𝑐, 𝜎), then
B outputs (𝑐, 𝜎) as its forgery in the EUF−OT−CMA game.

Analysis. Clearly,A can only distinguish between the two games

by triggering the extra abort condition at least once while sending
a valid (𝑐, 𝜎). In this case, it holds that vk𝑒 = vk∗, 𝑐 ≠ 𝑐∗ and
Σ.Verify(vk∗, 𝑐, 𝜎) = 1, which means thatB’s output (𝑐, 𝜎) is a valid
forgery, as the message 𝑐 is new (i.e. not equal to the only signing

query 𝑐∗) and the signature 𝜎 is valid on 𝑐 . Also, note that B queries

the signing oracle OSign once. Hence B breaks EUF−OT−CMA of

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

Σ with A’s distinguishing advantage

Pr[Game−EUF−OT−CMAΣ
B (1

𝜆) = 1] ≥���Pr[GameBT−KEM
1,A (1𝜆) = 1] − Pr[GameBT−KEM

2,A (1𝜆) = 1]
��� ≥ 𝜀 (𝜆)

which contradicts the assumption that Σ is EUF−OT−CMA secure.

□

We conclude our proof with a reduction from Game2 to the

selective ID semantic security of the underlyingBTIB−KEM scheme

I.
LetA be a PPT adversary inGame2 with Pr[GameBT−KEM

2,A (1𝜆) =
1] ≥ 1/2 + 𝜀 (𝜆) for a non-negligible 𝜀. We construct a PPT reduc-

tion B that wins Game−IND−SID−CPA of I with the same prob-

ability. B first runs A1 and receives the parameter ℓ as a result.

Then, B generates a signing keypair (sk∗𝑒 , vk∗𝑒) ←$ Σ.KGen(1𝜆)
and returns vk∗𝑒 as the selected challenge-identity I∗ as well as ℓ to
Game−IND−SID−CPA. In the next step, B receives the public key

pk from Game−IND−SID−CPA, forwards it to A2 and sends the

corrupted set 𝐶 back to Game−IND−SID−CPA. Next, B receives

a challenge ciphertext 𝑐∗
𝐼𝐵𝐸

= (𝑐∗
0
, 𝑐∗

1
), the challenge key 𝑘∗ and

the challenge index 𝑗∗ as well as the corrupted secret key shares

{sk𝑖 }𝑖∈𝐶 . B converts this into a BT−KEM challenge ciphertext

𝑐∗ = ((𝑐∗
0
, 𝑐∗

1
), 𝑗∗, vk∗𝑒) and computes 𝜎∗ ←$ GenTag(𝑐∗, sk∗𝑒). It for-

wards (𝑐∗, 𝜎∗), 𝑘∗ and {sk𝑖 }𝑖∈𝐶 to A3 and returns the same bit as

A3.

Simulating OPDec
2

. B simulates OPDec
2

by querying the identity-

key derivation oracle ODIdk of Game−IND−SID−CPA on the iden-

tity vk𝑒 for the PDec step of OPDec
2

. Observe that the internal

counter ctrOPDec
2

of OPDec
2

is always greater or equal to the internal

counter ctrODIdk of the ODIdk oracle because OPDec
2

aborts when-

ever vk𝑒 = vk∗𝑒 = I∗, before even querying ODIdk on I∗. Hence, it
can never happen that the ODIdk oracle hits its abort condition of

ctrODIdk ≥ 𝑡 − |𝐶 | and the simulation is always successful.

Analysis. Let ˆ𝑏 be the internal bit of Game−IND−SID−CPA and

𝑏 the internal bit ofGame2. If
ˆ𝑏 = 1, thenB clearly simulatesGame2

for 𝑏 = 1 and vice versa. Consequently, B’s success probability
in Game−IND−SID−CPA is equal to A’s success probability in

Game2 and we get

Pr[Game−IND−SID−CPAIB (1
𝜆) = 1] =

Pr[GameBT−KEM
2,A (1𝜆) = 1] ≥ 1/2 + 𝜀 (𝜆)

which is a contradiction to the IND−SID−CPA security of I.
Overall, we can bound the advantage of any PPT adversary A

in Game−IND−CCA of BT−KEM as follows.

AdvBT−KEMA,Game−IND−CCA

≤AdvΣB,Game−EUF−OT−CMA + Adv
I
B,Game−IND−SID−CPA

Hence the advantage is negligible by our assumption that Σ is

EUF−OT−CMA secure and I is IND−SID−CPA secure □

E.2 One-Sided Security of BT−KEM
Proof of Lemma 4.6. Let A be a successful adversary against

Game−OSS ofBT−KEM (Figure 3) such that Pr[Game−OSSBT−KEMA (1𝜆) =

1] ≥ 1/2 + 𝜀 (𝜆) for a non-negligible 𝜀. We construct a PPT reduc-

tion B to Game−OSS−ID (Figure 6) of the underlying BTIB−KEM
scheme I. First, the reduction runs A1 and receives ℓ,𝑢 and 𝑑 .

Then it obtains a signing key-pair (sk𝑒 , vk𝑒) ←$ Σ.KGen(1𝜆), sets
ID← vk𝑒 and passes 𝑙, 𝑢, 𝑑 and ID to Game−OSS−ID. As a result,
it receives the secret-key shares 𝑆 , the public key pk, the chal-

lenge ciphertext 𝑐∗ = (𝑐∗
0
, 𝑐∗

1
), and the challenge key 𝑘 . B trans-

forms this into a challenge ciphertext of Game−OSS, by setting

𝑐∗OSS := ((𝑐∗
0
, 𝑐∗

1
), 𝑗, vk𝑒) and computing 𝜎∗ ←$ GenTag(sk𝑒 , 𝑐∗OSS).

It forwards pk, (𝑐∗OSS, 𝜎
∗), 𝑘 , and 𝑆 to A2 and returns the same bit

as A2.

B’s success probability inGame−OSS−ID is equal toA’s success

probability inGame−OSS, as B perfectly simulatesGame−OSS for
𝑏 = 1, whenever the internal bit of Game−OSS−ID is also 1 and

vice versa. Hence,

Pr[Game−OSS−IDIB (1
𝜆) = 1] =

Pr[Game−OSSBT−KEMA (1𝜆) = 1] ≥ 1/2 + 𝜀 (𝜆)
which is a contradiction to the one-sided security of I. □

E.3 Traceability Proof of TT−KEM
Here, we present in detail, how the traceability proof of [15] can be

adapted to work for our modified TT−KEM transformation from

our definition of CCA-secure BT−KEM. The crucial differences here

are (a) the modifications to the one-sided security gameGame−OSS
of BT−KEM (see Figure 3) and (b) the modified Tr subroutine of the
TT−KEM construction (see Figure 4).

Recall briefly, that the tracing works by running the Tr𝐷 (·) sub-
routine for every index 𝑗 ∈ ℓ with either valid ciphertexts or cipher-

texts that are malformed in some way. Afterwards, for every 𝑗 the

results of the different Tr runs are compared to determine, whether

the decoder contains only left keys for 𝑗 , only right keys for 𝑗 , or

mixed keys. The results are compiled into a noisy codeword 𝑤̄ ,

which is essentially just a string of length ℓ , where 0 encodes “only

left keys at positions 𝑗”, 1 encodes only right keys at position 𝑗 , and

’?’ encodes that the tracing algorithm can not determine whether

the decoder has only left, only right, or mixed keys at that position.

Henceforth, the ’?’ positions are called noisy. In the end, the code-

word 𝑤̄ is fed into the tracing algorithm of the fingerprinting code

along with the tracing key tk to determine the set of traitors.

The proof in [15] can be separated into four phases. We next

discuss these phases and explain why they are not affected by our

modifications.

In the first phase they argue that the codeword 𝑤̄ produced by

the tracing algorithm for any good decoder can at most have a frac-

tion of 𝛿 noisy positions with overwhelming probability
11
. This is a

necessary precondition for the tracing algorithm of the fingerprint-

ing code to work. This lemma follows from purely probabilistic

arguments that are derived from the definition of good decoders,

hence they are entirely unaffected by our modifications.

In the second phase, they introduce an idealized tracing experi-

ment, where they instead use an idealized tracing algorithm Trace′

that depends on the actual set of traitors J , i.e. they call Tr𝐷 with

different (𝑏𝑘 , 𝑏0, 𝑏1) dependent on whether all real traitors have left

11
The parameter 𝛿 ∈ [0, 1] is the noisiness limit of the fingerprinting code and it is

fixed depending on the desired tracing parameter 𝜀 in the TT−KEM construction.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

keys at position 𝑗 . They argue that the idealized tracing algorithm

outputs a codeword 𝑤̄ ′ that is feasible for the set of traitors J
with overwhelming probability

1213
. The arguments made to prove

this lemma rely on the fact that Tr𝐷 ((𝑏𝑘 , 𝑏0, 𝑏1) = (0, 1, 1)) and
Tr𝐷 ((𝑏𝑘 , 𝑏0, 𝑏1) = (1, 0, 0)) are identically distributed. Observe that

this is equally the case for our modified Tr subroutine, hence the
proof for this lemma is unaffected.

Now that we have the two facts that (1) 𝑤̄ and 𝑤̄ ′ are 𝛿-noisy
and (2) that 𝑤̄ ′ is feasible for J , it remains to show that the results

of the real and the idealized tracing 𝑤̄ and 𝑤̄ ′ are computational

indistinguishably distributed. This is carried out in phases three

and four through a reduction to one-sided security. Essentially,

they argue that any adversary that can meaningfully distinguish

between the two experiments, can be transformed to break the

one-sided security game of BT−KEM.

First, the one-sided security game is extended to a more general

version, which outputs 𝑁 challenges for a common bit 𝑏 instead of

just one challenge. This is carried out through a standard hybrid

argument, which can be applied to our modified Game−OSS in

exactly the same manner. In particular, we get the following bound

on the advantage in the generalized game

AdvGame−OSS-gen
A ≤ 𝑁 · AdvGame−OSS

A .

Finally, they relate the probabilities that 𝑤̄ and 𝑤̄ ′ are feasible
for J by bounding��

Pr[𝑤̄ is not feasible for J] − Pr[𝑤̄ ′ is not feasible for J]
��

by the one-sided security of BT−KEM. They reduce any distin-

guishing adversary A to the generalized one-sided security game.

The reduction B works by picking a random 𝑗∗ and 𝑑 and embed-

ding the 𝑁 challenge ciphertexts received by Game−OSS-gen as

the ciphertexts that would be generated by the Tr subroutine that
is called with different (𝑏𝑘 , 𝑏0, 𝑏1) in the real versus the idealized

experiment. If the internal bit 𝑏 of Game−OSS-gen is 0, then the

reduction simulates the real tracing experiment. If, however, the

internal bit 𝑏 is 1, then the reduction’s simulation amounts to the

idealized game. The reduction answers with the bit 𝑤̄ 𝑗∗ or outputs

a random bit, should A corrupt the wrong side for 𝑗∗. In the end,

the reduction achieves the following bound:��
Pr[𝑤̄ is not feasible for J] − Pr[𝑤̄ ′ is not feasible for J]

��
≤ 2ℓAdvGame−OSS-gen

B
≤ 2ℓ𝑁AdvGame−OSS

B .

To see, why the same reduction works for our modifications, we

make a close comparison between the (modified) Tr subroutine and
the (modified)Game−OSS in Figure 16. One can clearly see that the
modifications to Tr and Game−OSS mirror each other. Specifically,

the only difference over [15] is the additional tag 𝜏∗ that is given
to the decoder (resp. the adversary) and it is generated in exactly

the same manner in both Tr and Game−OSS. Hence, when B uses

the ciphertext-tag pairs as generated by our modified one-sided

security game to simulate the corresponding ciphertexts within the

12
Essentially, 𝑤̄ is feasible for J, if 𝑤̄ does not contain a 1 at position 𝑗 , where the

parties in J have all left keys and vice versa.

13
The feasibility of 𝑤̄ for J is important, because the tracing algorithm of the finger-

printing code that is run in the end is guaranteed to output a non-empty subset of J,
if 𝑤̄ is feasible for J (and 𝑤̄ is 𝛿-noisy).

modified Tr subroutine, B equally simulates either the real tracing

experiment or the idealized tracing experiment depending on the

interal bit 𝑏 of Game−OSS.

F Security of BTIB−KEM−1
F.1 Semantic Security
We prove semantic security in two steps. First, we introduce a new

augmented bilinear decisional Diffie Hellman (ABDDH) assumption

that is easier to work with, but is reducible to standard BDDH

(Definition C.4). We refer to Appendix G for the full reduction.

Definition F.1 (Augmented Bilinear Decisional Diffie-Hellman).
Let G be an algorithm to generate ensembles 𝐸. We say that the

augmented bilinear decisional Diffie-Hellman (ABDDH) problem is

hard for G, if for all PPT adversaries it holds that��
Pr

[
A(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑦𝑧𝑟) = 1

]
− Pr

[
A(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑣) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆),𝑤, 𝛼,𝑦, 𝑧, 𝑟, 𝑣 ←$ Z𝑝 and

®𝑥 =

(
𝑔1, 𝑔

𝑦

1
, 𝑔𝑧

1
, 𝑔

𝑦𝑧

1
, 𝑔

𝑦𝑟

1
, 𝑔𝑧𝑟

1
, 𝑔

𝛼𝑦𝑧

1
, 𝑔2, 𝑔

𝑦

2
, 𝑔𝑧

2
, 𝑔𝑤

2
, 𝑔

𝑦𝛼

2
, 𝑔𝑧𝛼

2

)
.

We conclude the proof with a reduction from IND−SID−CPA-
security of BTIB−KEM−1 to the ABDDH assumption.

Proof of Lemma 5.1. Let ℓ𝑚𝑎𝑥 > 0 be an upper bound for ℓ ,

which is an arbitrary but fixed polynomial in the security param-

eter such that 1 ≤ ℓ ≤ ℓ𝑚𝑎𝑥 . We prove IND−SID−CPA security

of our first BTIB−KEM construction by reduction to the ABDDH

assumption (Definition F.1). Let A = (A1,A2,A3) be a PPT ad-

versary against the Game−IND−SID−CPA experiment (Figure 5)

such that

Pr[Game−IND−SID−CPABTIB−KEMA (1𝜆) = 1] ≥ 1/2 + 𝜀 (𝜆)
for a non-negligible 𝜀. We construct a PPT reduction B that uses

A internally to break the ABDDH assumption.

First, B receives the security parameter 1
𝜆
as well as an ABDDH

instance

(𝑔1, 𝑔
𝑦

1
, 𝑔𝑧

1
, 𝑔

𝑦𝑧

1
, 𝑔

𝑦𝑟

1
, 𝑔𝑧𝑟

1
, 𝑔

𝛼𝑦𝑧

1
), (𝑔2, 𝑔

𝑦

2
, 𝑔𝑧

2
, 𝑔𝑤

2
, 𝑔

𝑦𝛼

2
, 𝑔𝑧𝛼

2
),𝑇

where the challenge 𝑇 is either 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑦𝑧𝑟
or 𝑒 (𝑔1, 𝑔2)𝑣 for a

random 𝑣 ∈ Z𝑝 .
B samples a random 𝑗∗ ∈ [ℓ𝑚𝑎𝑥] and runs A1 (1𝜆) to receive

the selected challenge identity I∗ and the number of positions ℓ ,

while simulating the random oracle.

Simulating the random oracleH(𝑗, ID). For each queryH(𝑗, ID),
B simulates the random oracleH as follows: If (𝑗, ID) = (𝑗∗,I∗),
then output the group element 𝑔𝑤

2
from the ABDDH instance. Oth-

erwise, sample a random𝑤 𝑗,ID ←$ Z𝑝 and output 𝑔
𝑤𝑗,ID
2

. B answers

queries consistently, i.e. it saves the values and repeats answers for

identical queries.

If 𝑗∗ ∉ ℓ , then B stops the simulation and outputs a random

bit. One can bound the loss incurred here by 1/ℓ𝑚𝑎𝑥 . Otherwise, B
simulates KGen as follows:

• For 𝑗 ≠ 𝑗∗, run the normal key generation procedure.

• For 𝑗∗, embed the ABDDH instance into the public key. In

particular, set 𝑋 𝑗∗ ← 𝑔
𝛼𝑦𝑧

1
and set 𝑌𝑗∗ ← 𝑔

𝑦

1
as well as

𝑍 𝑗∗ ← 𝑔𝑧
1
, which are part of the ABDDH instance.

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

Tr𝐷 (·) (pk, 𝑗, 𝑁 , 𝑏𝑘 , 𝑏0, 𝑏1)
ctr← 0

for 𝑟 = 1, . . . , 𝑁 do

(sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆)

(𝑘 (0) , 𝑐 (0) := (𝑐 (0)
0

, 𝑐
(0)
1
)) ←$ BT−KEM.Enc(pk, 𝑗, vk𝑒)

(𝑘 (1) , 𝑐 (1) := (𝑐 (1)
0

, 𝑐
(1)
1
)) ←$ BT−KEM.Enc(pk, 𝑗, vk𝑒)

𝑐∗ ← (𝑐 (𝑏0)
0

, 𝑐
(𝑏1)
1
)

𝜋∗ ←$ GenTag(𝑐∗, sk𝑒)

if 𝐷 ((𝑐∗, 𝜋∗), 𝑘 (𝑏𝑘)) = 1 then ctr← ctr + 1

return ctr

Game−OSSA (1𝜆)
(ℓ,𝑢,𝑑, st1) ←$ A1 (1𝜆)

(pk, sk) ←$ KGen(1𝜆, 𝑛, 𝑡, ℓ)

(sk𝑒 , vk𝑒) ←$ TagKeys(1𝜆)

(𝑘 (0) , 𝑐 (0) := (𝑐 (0)
0

, 𝑐
(0)
1
)) ←$ Enc(pk,𝑢, vk𝑒)

(𝑘 (1) , 𝑐 (1) := (𝑐 (1)
0

, 𝑐
(1)
1
)) ←$ Enc(pk,𝑢, vk𝑒)

𝑏 ←$ {0, 1}
if 𝑏 = 0 then 𝑐∗ ← (𝑐 (0)

0
, 𝑐
(1)
1
)

if 𝑏 = 1 then 𝑐∗ ← (𝑐 (𝑑)
0

, 𝑐
(𝑑)
1
)

𝜋∗ ←$ GenTag(𝑐∗, sk𝑒)

shares← {(sk(𝑗)
𝑖,0

, sk(𝑗)
𝑖,1
) }𝑖∈ [𝑛], 𝑗 ∈ [ℓ]\{𝑢}, {sk(𝑢)𝑖,𝑑

}𝑖∈ [𝑛]
𝑏′ ←$ A2 (st1, pk, (𝑐∗, 𝜋∗), 𝑘 (0) , shares)
return 𝑏

?

= 𝑏′

Figure 16: Comparison between the Tr subroutine and the one-sided security game of BT−KEM. Modifications over [15] are
highlighted in gray.

B runs A2 with the resulting public key and receives a set 𝐶 of

corrupted parties. Then, B sets the challenge encapsulation key

𝑘 to the ABDDH challenge 𝑘 ← 𝑇 and the challenge ciphertext

𝑐 ← (𝑔𝑦𝑟
1
, 𝑔𝑧𝑟

1
), which B also takes from the ABDDH instance.

Finally,B assembles the secret key of the corrupted parties {sk𝑖 }𝑖∈𝐶
as follows. For 𝑗 ≠ 𝑗∗, B uses the normal secret keys from KGen.
For 𝑗∗, B just samples a random left and right key from Z𝑝 on

behalf of every corrupted party. W.l.o.g. we assume that |𝐶 | = 𝑡 − 1.

Let 𝑢𝑖 be the left secret key of corrupted party 𝑖 and 𝑣𝑖 be the right

secret key of corrupted party 𝑖 . Note that 𝑢𝑖 corresponds to the

field element 𝑧 · 𝑠 (𝑗
∗)

𝑖
and 𝑣𝑖 corresponds to 𝑦 · 𝑠 (𝑗

∗)
𝑖

. It is possible to

simulate these with random values, as A only receives up to 𝑡 − 1

shares.

B runsAODIdk

3
((𝑐, 𝑘), {sk𝑖 }𝑖∈𝐶), receiving a bit 𝑏′ as a result. In

the end, B returns 𝑏′ as its guess in the ABDDH instance (if 𝑏′ = 0,

it guesses that the challenge 𝑇 is equal to 𝑒 (𝑔1, 𝑔2)𝑣 (i.e., unifromly

random inG𝑇) and if 𝑏
′ = 1, it guesses that the challenge is equal to

𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑦𝑧𝑟
). On top of that, B needs to simulate oracle queries

to ODIdk to A.

Simulating the identity key derivation oracle ODIdk (ID, 𝑥). If the
target party 𝑥 is corrupted (𝑥 ∈ 𝐶), we can trivially simulate identity

key derivation using the simulated key shares𝑢𝑥 and 𝑣𝑥 . Otherwise,

we do the following: For all 𝑗 ≠ 𝑗∗, B can simulate ODIdk according
to protocol, as it knows all the secret keys. For 𝑗∗, we distinguish
between 2 cases. If ID = I∗, then we abort

14
. If ID ≠ I∗ we do the

following:

• Define the polynomial 𝑓 with 𝑓 (0) = 𝑤 𝑗∗,ID · 𝑧𝛼 and 𝑓 (𝑖) =
𝑢𝑖 for 𝑖 ∈ 𝐶 .

14
This is what would happen in the game, as we assume that |𝐶 | = 𝑡 − 1. If |𝐶 | < 𝑡 − 1,

the simulation could return two random group elements consistently instead.

• Compute 𝑔
𝑓 (0)
2
← (𝑔𝑧𝛼

2
)𝑤𝑗∗,ID

from the ABDDH instance
15

and 𝑔
𝑓 (𝑖)
2
← 𝑔

𝑢𝑖
2

for 𝑖 ∈ 𝐶 . Use these 𝑡 values to interpolate
𝑓 in G2 and evaluate 𝑔

𝑓 (𝑥)
2

← Π𝑖∈𝐶∪{0} (𝑔
𝑓 (𝑖)
2
)𝑙𝑖,𝐶∪{0} (𝑥)

where 𝑙𝑖,𝐶∪{0} (𝑥) is the Lagrange coefficient of index 𝑖 for

interpolation at position 𝑥 among the set 𝐶 ∪ {0}.
• Set idk(𝑗

∗)
𝑖,0
← 𝑔

𝑓 (𝑥)
2

.

• Repeat the same for the right key for the function 𝑔 with

𝑔(0) = 𝑤 𝑗∗,ID · 𝑦𝛼 and 𝑔(𝑖) = 𝑣𝑖 for 𝑖 ∈ 𝐶 .

Analysis. Observe that if B is running in an ABDDH instance

where 𝑣 is random, then B simulates Game−IND−SID−CPA with

𝑏 = 0 toA. If, however, the ABDDH challenge equals 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑦𝑧𝑟
,

then B simulates Game−IND−SID−CPA with 𝑏 = 1. Hence, B has

the non-negligible advantage 𝜀 (𝜆)/ℓ𝑚𝑎𝑥 to break ABDDH. □

F.2 One-Sided Security
Just as in the semantic security proof, we introduce the following

augmented XDH assumption (AXDH) that is easier to work with in

the security proof. A full reduction from AXDH to standard XDH

(Definition C.5) is presented in Appendix G.

Definition F.2 (Augmented XDH Assumption). Let G be an algo-

rithm to generate ensembles 𝐸. We say that the augmented external

Diffie-Hellman (AXDH) problem is hard for G, if for all PPT adver-

saries it holds that��
Pr

[
A(𝐸, ®𝑥, 𝑔𝑧𝑟

1
) = 1

]
− Pr

[
A(𝐸, ®𝑥, 𝑔𝑧𝑟

′
1
) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆), and 𝑦, 𝑧, 𝑟, 𝑟 ′ ←$ Z𝑝 and

®𝑥 =

(
𝑔1, 𝑔

𝑦

1
, 𝑔𝑧

1
, 𝑔

𝑦𝑟

1
, 𝑔

𝑦𝑟 ′

1
, 𝑔2

)
.

15
This is possible, because for ID ≠ I∗ the field element 𝑤𝑗∗,ID is sampled by B

during simulation of the random oracle and thus known to B. In case A has never

queried for H(𝑗∗, ID) , B just samples a value for 𝑤𝑗∗,ID and continues to answer

consistently for the random oracle.

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

Our result of one-sided security is therefore captured by the

following Lemma.

Lemma F.3. For all PPT adversariesA, there exists a PPT reduction
B such that

Game−OSS−IDBTIB−KEM−1
A (1𝜆) ≤ AdvAXDHB,G

for all 𝜆 ∈ N.

Proof of Lemma F.3. Wemake a reduction fromGame−OSS−ID
of BTIB−KEM−1 (Figure 6) to AXDH (Definition F.2). Let A be

a PPT adversary such that Pr[Game−OSS−IDBTIB−KEM−1
A (1𝜆) =

1] ≥ 1/2 + 𝜀 (𝜆). We construct a reduction B, which is solving the

AXDH problem. B receives 𝑔1, 𝑔
𝑦

1
, 𝑔𝑧

1
, 𝑔

𝑦𝑟

1
, 𝑔

𝑦𝑟 ′

1
∈ G1 and 𝑔2 ∈ G2

as input along with a challenge 𝑇 which is either 𝑔𝑧𝑟
1

or 𝑔𝑧𝑟
′

1
.

B runsA to get (ℓ,𝑢, 𝑑, ID∗), while simulating the random oracle

as follows throughout the reduction. For now, we assume that 𝑑 = 0.

At the end of the proof, we explain what changes for 𝑑 = 1. In

the 𝑑 = 0 case, the adversary A gets a matching key 𝑘 and left

ciphertext 𝑐0 and needs to distinguish whether the right ciphertext

𝑐1 fits with 𝑘 and 𝑐0 (case 𝑏 = 1) or belongs to another encryption

(case 𝑏 = 0). In the reduction, we will leverage A’s advantage by

embedding the challenge 𝑇 as the right ciphertext.

Simulating the random oracle H . For each query H(𝑗, ID), B
simulates the random oracleH by sampling a random𝑤 𝑗,ID ←$ Z𝑝
and outputting 𝑔

𝑤𝑗,ID
2

. B answers queries consistently, i.e. it saves
the values and repeats answers for identical queries. We assume,

A makes a hash query on the target identity ID∗ for level 𝑢; if not,
the reduction makes the queryH(𝑢, ID∗) itself.

Simulating key generation. Our simulation differs between the

target position 𝑢 and all other positions as follows:

• For all 𝑗 ≠ 𝑢, 𝑗 ∈ [ℓ], we sample 𝛼 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 , compute the

public keys𝑋 𝑗 , 𝑌𝑗 , 𝑍 𝑗 and all secret key shares for both sides

honestly.

• For 𝑗 = 𝑢, we need to simulate only left key shares. For

this, we sample 𝛽 ←$ Z𝑝 and embed 𝑋𝑢 ←
(
𝑔
𝑦

1

)𝛽
, as

well as 𝑌𝑢 ← 𝑔
𝑦

1
and 𝑍𝑢 ← 𝑔𝑧

1
from the AXDH instance.

Following the notation of the scheme, we view 𝑋𝑢 = 𝑔
𝛼𝑦𝑧

1

where 𝛼 = 𝛽/𝑧 or 𝛽 = 𝛼𝑧. Next, we create a Shamir secret

sharing 𝛽1, . . . , 𝛽𝑛 of 𝛽 . We set 𝑠𝑘
(𝑢)
𝑖,0

= 𝛽𝑖

Simulating the key and ciphertext. Let𝑤 = 𝑤𝑢,𝐼𝐷∗ . Recall that B

receives𝑔
𝑦𝑟

1
as part of the challenge.B computes𝑘0 ← 𝑒

(
𝑔
𝑦𝑟

1
, 𝑔𝑤

2

)𝛽
= 𝑒 (𝑔1, 𝑔2)𝛼𝑤𝑦𝑧𝑟

. We set the left ciphertext as 𝑐
(0)
0
← 𝑔

𝑦𝑟

1
and the

right ciphertext as 𝑐1 ← 𝑇 , where 𝑇 is AXDH challenge. We pass

𝑘0, 𝑐0 and 𝑐1 together with the secret shares and the public key to

the adversary. In the end, the reduction B outputs the same bit as

A.

Analysis. When 𝑇 = 𝑔𝑧𝑟
1
, then B simulates all the parameters

for 𝑏 = 1 as 𝑐1 = 𝑇 = 𝑔𝑧𝑟
1

fits with the pair 𝑘0 = 𝑒 (𝑋𝑢 ,H(𝑢, ID∗))𝑟

and 𝑐
(0)
0

= 𝑔
𝑦𝑟

1
. Similarly when 𝑇 = 𝑔𝑧𝑟

′
1

then B simulates all the

parameters for 𝑏 = 0, where the right ciphertext 𝑐1 = 𝑔𝑧𝑟
′

1
does

not fit with 𝑘0 and 𝑐
(0)
0

. Hence, B has the same advantage against

AXDH, as A against Game−OSS−ID of BTIB−KEM−1.

Case d = 1. For this case, we swap 𝑌𝑢 and 𝑌𝑧 in the public key.

We essentially treat 𝑔
𝑦

1
as 𝑔𝑧

1
and vice-versa. We set the challenge

as follows:

• Set 𝑐1 = 𝑔
𝑦𝑟

1
, 𝑐0 = 𝑇 , where 𝑇 is the challenge B received.

𝑇 ∈ {𝑔𝑧𝑟
1
, 𝑔𝑧𝑟

′
1
}.

• Set 𝑐∗ = (𝑐0, 𝑐1)
• Let𝑤 = 𝑤𝑢,𝐼𝐷∗ . Recall, B receives 𝑔

𝑦𝑟 ′

1
as part of the chal-

lenge. B computes

𝑘0 =

(
𝑔
𝑦𝑟 ′

1
, 𝑔𝑤

2

)𝛽
= (𝑔1, 𝑔2)𝛼𝑤𝑦𝑧𝑟 ′ .

The correctness of the decapsulation follows similarly as above.

Clearly, 𝑘0 does not fit with 𝑐1. When 𝑇 = 𝑔𝑧𝑟
1

then B simulates all

the parameters for 𝑏 = 1. In particular, 𝑐0 = 𝑔𝑧𝑟
1

matches with 𝑐1 =

𝑔
𝑦𝑟

1
. Similarly when 𝑇 = 𝑔𝑧𝑟

′
1

then B simulates all the parameters

for 𝑏 = 0 as 𝑐0 = 𝑔𝑧𝑟
′

1
matches with 𝑘0 = 𝑒 (𝑔1, 𝑔2)𝛼𝑤𝑦𝑧𝑟 ′

. This

concludes the proof. □

G Reductions to Well-Established Assumptions
In this section, we reduce the ABDDH assumption and the AXDH

assumption, whichwere introduced tomake amore comprehensible

proof of semantic security and one-sided security forBTIB−KEM−1,
to the standard BDDH and XDH assumptions

First we recall the two augmented hardness assumptions.

Definition G.1 (Augmented Bilinear Decisional Diffie-Hellman).
Let G be an algorithm to generate ensembles 𝐸. We say that the

augmented bilinear decisional Diffie-Hellman (ABDDH) problem is

hard for G, if for all PPT adversaries it holds that��
Pr

[
A(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑦𝑧𝑟) = 1

]
− Pr

[
A(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑣) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆),𝑤, 𝛼,𝑦, 𝑧, 𝑟, 𝑣 ←$ Z𝑝 and

®𝑥 =

(
𝑔1, 𝑔

𝑦

1
, 𝑔𝑧

1
, 𝑔

𝑦𝑧

1
, 𝑔

𝑦𝑟

1
, 𝑔𝑧𝑟

1
, 𝑔

𝛼𝑦𝑧

1
, 𝑔2, 𝑔

𝑦

2
, 𝑔𝑧

2
, 𝑔𝑤

2
, 𝑔

𝑦𝛼

2
, 𝑔𝑧𝛼

2

)
.

The second one is the augmented XDH assumption

Definition G.2 (Augmented XDH Assumption). Let G be an algo-

rithm to generate ensembles 𝐸. We say that the augmented external

Diffie-Hellman (AXDH) problem is hard for G, if for all PPT adver-

saries it holds that��
Pr

[
A(𝐸, ®𝑥, 𝑔𝑧𝑟

1
) = 1

]
− Pr

[
A(𝐸, ®𝑥, 𝑔𝑧𝑟

′
1
) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆), and 𝑦, 𝑧, 𝑟, 𝑟 ′ ←$ Z𝑝 and

®𝑥 =

(
𝑔1, 𝑔

𝑦

1
, 𝑔𝑧

1
, 𝑔

𝑦𝑟

1
, 𝑔

𝑦𝑟 ′

1
, 𝑔2

)
.

G.1 Augmented BDDH
We show a reduction from the standard Bilinear Decisional Diffie-

Hellman problem for type-3 pairing [20] as defined in Definition C.4.

We redefine it here with different variable names to make the re-

duction easier to follow.

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

Definition G.3 (Bilinear Decisional Diffie-Hellman). Let G be an

algorithm to generate ensembles 𝐸. We say that the bilinear deci-

sional Diffie-Hellman (BDDH) problem is hard for G, if for all PPT
adversaries B, it holds that��

Pr

[
B(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑟) = 1

]
− Pr

[
B(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑣) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆),𝑤, 𝛼, 𝑟, 𝑣 ←$ Z𝑝 and

®𝑥 =
(
𝑔1, 𝑔

𝛼
1
, 𝑔𝑟

1
, 𝑔2, 𝑔

𝑤
2
, 𝑔𝛼

2

)
.

The reduction works in the following way. Suppose we are given

an adversaryA against the Augmented BDDH problem. We design

an adversary B against the standard BDDH problem. The input

to B is (𝐸, ®𝜒,𝑇) where either 𝑇 = 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑟
(real case) or 𝑇 =

𝑒 (𝑔1, 𝑔2)𝑣 (ideal case). B samples 𝑦, 𝑧 ←$ Z𝑝 and computes the

following elements of G1 in ®𝑥 .

𝑔
𝑦

1
, 𝑔𝑧

1
, 𝑔

𝑦𝑧

1
,
(
𝑔𝑟

1

)𝑦
,
(
𝑔𝑟

1

)𝑧
, (𝑔𝛼

1
)𝑦𝑧 .

For the elements in G2, B already got 𝑔𝑤
2
as the input. For the

rest of the elements of G2 in ®𝑥 , B computes

𝑔
𝑦

2
, 𝑔𝑧

2
,
(
𝑔𝛼

2

)𝑦
,
(
𝑔𝛼

2

)𝑧
.

Finally, B computes 𝑇 = 𝑇 𝑦𝑧
and invokes A on (𝐸, ®𝑥,𝑇). If A

returns real, B outputs real. Otherwise, B outputs random.

For the analysis, we see that all the elements of ®𝑥 is computed

following the same distribution as in the problem statement. For real

case,𝑇 is computed truthfully. Further, as 𝑣 is uniformly distributed

and independent from 𝑦, 𝑧, the distribution of 𝑣 = 𝑣𝑦𝑧 is uniform.

Thus distribution of 𝑇 is identical to that of the problem statement.

Hence B simulates the problem instance perfectly.

We conclude

AdvBDDHB,G = AdvABDDHA,G

G.2 Augmented XDH
Recall the standard XDH assumption. We redefine it with different

variable names.

Definition G.4 (XDH Assumption). Let G be an algorithm to gen-

erate ensembles 𝐸. We say that the external Diffie-Hellman (XDH)

problem is hard for G, if for all PPT adversaries
ˆB it holds that��

Pr

[
B(𝐸, ®𝑥, 𝑔𝑧𝑟

1
) = 1

]
− Pr

[
B(𝐸, ®𝑥, 𝑔𝑣

1
) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆), and 𝑧, 𝑟, 𝑣 ←$ Z𝑝 and

®𝑥 =
(
𝑔1, 𝑔

𝑧
1
, 𝑔𝑟

1
, 𝑔2

)
.

We show a two step reduction from the standard XDH problem.

First, we introduce the external 2-Diffie Hellman problem.

Definition G.5 (X2DH Assumption). Let G be an algorithm to

generate ensembles 𝐸. We say that the external two Diffie-Hellman

(X2DH) problem is hard for G, if for all PPT adversaries B it holds

that ��
Pr

[
B(𝐸, ®̂𝜒, 𝑔𝑧𝑟

1
) = 1

]
− Pr

[
B(𝐸, ®𝜒,𝑔𝑧𝑟

′
1
) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆), and 𝑧, 𝑟, 𝑟 ′ ←$ Z𝑝 and

®𝜒 =

(
𝑔1, 𝑔

𝑧
1
, 𝑔𝑟

1
, 𝑔𝑟
′

1
, 𝑔2

)
.

Hardness of X2DH can be established by applying the XDH

assumption twice (once between 𝑔𝑧𝑟
1

and 𝑔𝑣
1
and then between 𝑔𝑧𝑟

′
1

and 𝑔𝑣
1
). Thus for all PPTM B, it holds that

AdvX2DHB,G ≤ 2AdvXDHB,G
For the second step, we show a reduction from the AXDH prob-

lem to the X2DH problem. Consider any adversary A against the

AXDH problem. We construct and adversary B against the X2DH

problem. B receives (𝐸, ®𝜒,𝑇) as input where ®𝜒 =

(
𝑔1, 𝑔

𝑧
1
, 𝑔𝑟

1
, 𝑔𝑟
′

1
, 𝑔2

)
,

and either 𝑇 = 𝑔𝑧𝑟
1

or 𝑇 = 𝑔𝑧𝑟
′

1
. B samples 𝑦 ←$ Z𝑝 , and computes

𝑔
𝑦

1
, (𝑔𝑟

1
)𝑦 and (𝑔𝑟 ′

1
)𝑦 . Note, these three elements along with ®𝜒 con-

stitutes the required vector ®𝑥 . B invokesA on (𝐸, ®𝑥,𝑇), and returns
the response from A. Clearly, B is correct whenever A is correct.

From the distribution of the input to B and uniformity of 𝑦, the

inputs to A are simulated perfectly to the problem condition. We

conclude

AdvX2DHB,G = AdvAXDHA,G
Thus we conclude that for all PPTM A, there exists PPTM B

such that

AdvAXDHA,G ≤ 2AdvXDHB,G

H Thresholdized BTIB−KEM-2
In this section we present our second BTIB−KEM construction

(BTIB−KEM−2) in detail. Upfront, we note that the BTIB−KEM−2
construction is defined with respect to an arbitrary but fixed con-

stant ℓ𝑚𝑎𝑥 such that 1 ≤ ℓ ≤ ℓ𝑚𝑎𝑥 , where ℓ𝑚𝑎𝑥 is polynomial in the

security parameter 𝜆. This requirement is only necessary because

of a minor technical detail in the semantic security proof, which

requires the reduction to know an upper bound on ℓ upfront. This

detail does not in any way impact the practicality of the scheme.

• Setup(1𝜆) → pp
– Generate a pairing ensemble𝐸 = (G1, 𝑔1,G2, 𝑔2,G𝑇 , 𝑝, 𝑒).
– Sample random group elements 𝑢1, 𝑢2, 𝑣1, 𝑣2 ←$ G1.

– Additionally, we use a hash function 𝐻 with output

domain in G1.

– Output pp := (𝐸, (𝑢1, 𝑢2, 𝑣1, 𝑣2)).
• KGen(1𝜆, 𝑛, 𝑡, ℓ) → (pk, sk)

– Sample 𝛼,𝑦, 𝑧 ←$ Z𝑝 .
– Compute 𝑋 ← 𝑔𝛼

1
, 𝑌 ← 𝑔

𝑦

2
, 𝑍 ← 𝑔𝑧

2
and 𝑄 ← 𝑔

𝛼𝑦𝑧

2
.

– Set pk = {𝑋,𝑌, 𝑍,𝑄}
– Additionally, we define the functions L1,L2,R1,R2

for 𝑗 ∈ [ℓ], ID ∈ Z𝑝 as follows:

L1 (𝑗) = 𝑋 𝑗 · 𝑢1 [= 𝑔𝛼 𝑗
1
· 𝑢1]

L2 (ID) = 𝑋 ID · 𝑢2

R1 (𝑗) = 𝑋 𝑗 · 𝑣1

R2 (ID) = 𝑋 ID · 𝑣2

Note that they can be evaluated by anyone in posses-

sion of the public pk and the public parameters p.
– Generate a (𝑡, 𝑛)-sharing {𝛼𝑖 }𝑖∈[𝑛] of 𝛼 .
– For every (𝑗, 𝑖) ∈ [ℓ] × [𝑛]:

∗ Sample 𝑟
(𝑗)
1,𝑖
, ℎ
(𝑗)
1,𝑖
←$ Z𝑝 .

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

∗ Compute the left key-shares as:

𝑠𝑘
(𝑗)
𝑖,0
← (𝐻 (𝑗)𝛼𝑖𝑧 · L1 (𝑗)𝑟

(𝑗)
1,𝑖 , 𝑌

𝑟
(𝑗)
1,𝑖 , 𝑔

𝑟
(𝑗)
1,𝑖

2
, 𝑔

𝑧𝛼𝑖
2
)

∗ Compute the right key-shares as

𝑠𝑘
(𝑗)
𝑖,1
← (𝐻 (𝑗)𝛼𝑖𝑦 · R1 (𝑗)ℎ

(𝑗)
1,𝑖 , 𝑍

ℎ
(𝑗)
1,𝑖 , 𝑔

ℎ
(𝑗)
1,𝑖

2
, 𝑔

𝑦𝛼𝑖
2
)

– Set sk← {(𝑠𝑘 (𝑗)
𝑖,0
, 𝑠𝑘
(𝑗)
𝑖,1
} 𝑗∈[ℓ],𝑖∈[𝑛]

– Output pk, sk.
• Enc(𝑝𝑘, 𝑗, ID) → (𝑘, 𝑐 = (𝑐0, 𝑐1))

– Sample 𝑠, 𝑡0, 𝑡1 ←$ Z𝑝
– Compute the key𝑘 ← 𝑒 (𝐻 (𝑗)𝑠 , 𝑄) [= 𝑒 (𝐻 (𝑗), 𝑔2)𝛼𝑦𝑧𝑠].
– Set the left ciphertext

𝑐0
:=(𝑐0,1, 𝑐0,2, 𝑐0,3, 𝑐0,4, 𝑐0,5, 𝑐0,6)

←(𝑌 𝑠 · 𝑔𝑡0

2
,L1 (𝑗)𝑠 ,L2 (ID)𝑠 ,L1 (𝑗)𝑡0 ,L2 (ID)𝑡0 , 𝐻 (𝑗)𝑡0)

– Set the right ciphertext

𝑐1
:=(𝑐1,1, 𝑐1,2, 𝑐1,3, 𝑐1,4, 𝑐1,5, 𝑐1,6)
←(𝑍𝑠 · 𝑔𝑡1

2
,R1 (𝑗)𝑠 ,R2 (ID)𝑠 ,R1 (𝑗)𝑡1 ,R2 (ID)𝑡1 , 𝐻 (𝑗)𝑡1)

– Assemble 𝑐 = (𝑐0, 𝑐1) and output (𝑘, 𝑐)
• DIdk([sk(𝑗)

𝑖,𝑏𝑖,𝑗
] 𝑗∈[ℓ] , ID) → idk𝑖 The identity key deriva-

tion algorithm uses either the left or right secret key share

per index 𝑗 of party 𝑖 to derive a left or right identity key

share respectively. For left shares, the bit 𝑏𝑖, 𝑗 is 0, for right

shares it is 1.

– For all 𝑗 ∈ [ℓ] do:
∗ Let sk𝑖 ← sk(𝑗)

𝑖,𝑏𝑖,𝑗

∗ If 𝑏𝑖, 𝑗 = 0, then sample 𝑟
(𝑗)
2,𝑖
←$ Z𝑝 and compute

the left partial identity key as

(𝑤 𝑗,𝑖,1,𝑤 𝑗,𝑖,2,𝑤 𝑗,𝑖,3,𝑤 𝑗,𝑖,4,𝑤 𝑗,𝑖,5,𝑤 𝑗,𝑖,6)

←(sk𝑖,1 · L2 (ID)𝑟
(𝑗)
2,𝑖 , sk𝑖,2, 𝑌

𝑟
(𝑗)
2,𝑖 , sk𝑖,3, 𝑔

𝑟
(𝑗)
2,𝑖

2
, sk𝑖,4)

∗ Otherwise, if 𝑏𝑖, 𝑗 = 1, then sample ℎ
(𝑗)
2,𝑖
←$ Z𝑝

and compute the right partial identity key as

(𝑤 𝑗,𝑖,1,𝑤 𝑗,𝑖,2,𝑤 𝑗,𝑖,3,𝑤 𝑗,𝑖,4,𝑤 𝑗,𝑖,5,𝑤 𝑗,𝑖,6)

←(sk𝑖,1 · R2 (ID)ℎ
(𝑗)
2,𝑖 , sk𝑖,2, 𝑍

ℎ
(𝑗)
2,𝑖 , sk𝑖,3, 𝑔

ℎ
(𝑗)
2,𝑖

2
, sk𝑖,4)

∗ Set idk(𝑗)
𝑖
← (𝑤 𝑗,𝑖,1,𝑤 𝑗,𝑖,2,𝑤 𝑗,𝑖,3,𝑤 𝑗,𝑖,4,𝑤 𝑗,𝑖,5,𝑤 𝑗,𝑖,6).

– Output idk𝑖 ← [(𝑏𝑖, 𝑗 , idk(𝑗)𝑖
)] 𝑗∈[ℓ] .

• CombIdk(𝑆, [idk𝑖]𝑖∈𝑆) → idk This algorithm combines the

identity key shares obtained through previousDIdk queries
to the Servers in 𝑆 .

– Require that 𝑆 ⊆ [𝑛], where |𝑆 | ≥ 𝑡 .
– For all 𝑗 ∈ [ℓ] do:

∗ Denote by 𝑆0 ← {𝑖 ∈ 𝑆 | 𝑏𝑖, 𝑗 = 0} the set of

all servers who have provided left identity key

shares for index 𝑗 .

∗ Denote by 𝑆1 ← 𝑆 \ 𝑆0 the set of all servers

who provided right identity key shares of index

𝑗 . Observe that, by construction, 𝑆0 ∪𝑆1 = 𝑆 and

𝑆0 ∩ 𝑆1 = ∅.

∗ Compute the left identity key of position 𝑗 :

𝐿 (𝑗) := (𝐿 (𝑗)
1
, . . . , 𝐿

(𝑗)
6
),

where 𝐿
(𝑗)
𝑚 ← ∏

𝑖∈𝑆0
𝑤
𝑙𝑖,𝑆 (0)
𝑗,𝑖,𝑚

for 𝑚 ∈ [1, 6].
Here, we partially aggregate the left identity key

shares derived by parties from 𝑆0 through inter-

polation at position 0 among the set 𝑆 .

∗ Compute the right identity key for position 𝑗 :

𝑅 (𝑗) := (𝑅 (𝑗)
1
, . . . , 𝑅

(𝑗)
6
),

where 𝑅
(𝑗)
𝑚 ←∏

𝑖∈𝑆1
𝑤
𝑙𝑖,𝑆 (0)
𝑗,𝑖,𝑚

for𝑚 ∈ [1, 6]. We

aggregate all right shares also by partial inter-

polation among 𝑆 .

– Return idk = (𝐿 (𝑗) , 𝑅 (𝑗)) 𝑗∈[ℓ] .
• Dec(idk, 𝑐 = (𝑐0, 𝑐1), 𝑗) → 𝑘

– Compute

𝑘1 ←
𝑒 (𝐿 (𝑗)

1
, 𝑐0,1)∏

6

𝑚=2
𝑒 (𝑐0,𝑖 , 𝐿

(𝑗)
𝑚)

,

𝑘2 ←
𝑒 (𝑅 (𝑗)

1
, 𝑐1,1)∏

6

𝑚=2
𝑒 (𝑐1,𝑖 , 𝑅

(𝑗)
𝑚)

.

– Return 𝑘 ← 𝑘1 · 𝑘2.

H.1 Security
We prove semantic security and one-sided security by reduction to

the following two assumptions.

Definition H.1 (ABDDH-2 Assumption). Let G be an algorithm to

generate ensembles 𝐸. We say that the ABDDH-2 problem is hard

for G, if for all PPT adversaries it holds that��
Pr

[
A(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑦𝑧𝑠) = 1

]
−

Pr

[
A(𝐸, ®𝑥, 𝑒 (𝑔1, 𝑔2)𝑣) = 1

] ��
is negligible in 𝜆 where 𝐸 ←$ G(1𝜆),𝑤, 𝛼,𝑦, 𝑧, 𝑠, 𝑣 ←$ Z𝑝 and

®𝑥 =

(
𝑔1, 𝑔

𝑤
1
, 𝑔𝑤𝑧

1
, 𝑔

𝑤𝑦

1
, 𝑔𝛼

1
, 𝑔𝑠

1
, 𝑔2, 𝑔

𝑦

2
, 𝑔𝑧

2
, 𝑔

𝑤𝑦𝑧

2
, 𝑔

𝑦𝑠

2
, 𝑔𝑧𝑠

2
, 𝑔

𝛼𝑦

2
, 𝑔𝛼𝑧

2
, 𝑔

𝛼𝑦𝑧

2

)
.

Definition H.2 (AXDH-2 Assumption). Let G be an algorithm to

generate ensembles 𝐸. We say that the AXDH-2 problem is hard

for G, if for all PPT adversaries it holds that��
Pr

[
A(𝐸, ®𝑥, (𝑔𝑠+𝑣1𝑠

1
, 𝑔

𝑠+𝑣2𝑠
1

, 𝑔
𝑧𝑠+𝑡1

2
)) = 1

]
−

Pr

[
A(𝐸, ®𝑥, (𝑔𝑠

′+𝑣1𝑠
′

1
, 𝑔

𝑠′+𝑣2𝑠
′

1
, 𝑔

𝑧𝑠′+𝑡1

2
)) = 1

] �� ≤ negl(𝜆),

where 𝐸 ←$ G(1𝜆),𝑤,𝑦, 𝑧, 𝑠, 𝑠′𝑡0, 𝑡1, 𝑢1, 𝑢2, 𝑣1, 𝑣2 ←$ Z𝑝 and

®𝑥 =
(
𝑔1, 𝑔

𝑦

1
, 𝑔𝑧

1
, 𝑔𝑤

1
, 𝑔𝑤𝑧

1
, 𝑔

𝑤𝑡1

1
, 𝑔

𝑤𝑡0

1
, 𝑔

𝑢1

1
, 𝑔

𝑣1

1
, 𝑔

𝑢2

1
, 𝑔

𝑣2

1
,

𝑔
𝑡1+𝑣1𝑡1

1
, 𝑔

𝑡0+𝑢1𝑡0

1
, 𝑔

𝑠+𝑢1𝑠
1

, 𝑔
𝑡1+𝑣2𝑡1

1
, 𝑔

𝑡0+𝑢2𝑡0

1
, 𝑔

𝑠+𝑢2𝑠
1

,

𝑔2, 𝑔
𝑦

2
, 𝑔𝑧

2
, 𝑔

𝑦𝑧

2
, 𝑔

𝑦𝑠+𝑡0

2
,

𝑒 (𝑔1, 𝑔2)𝑤𝑦𝑧𝑠 , 𝑒 (𝑔1, 𝑔2)𝑤𝑦𝑧𝑠′)

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

Hardness of the Assumptions. Both assumptions can be seen as

instances of the Uber problem for bilinear groups [8, 20], which has

been shown to be hard in the (bilinear) generic group model (GGM)

if there is no trivial way to compute the challenge from elements in ®𝑥
using group and pairing operations [8, 47]. Particularly for the more

complex AXDH-2 assumption, this was verified by checking that all

pairing results between the source-group challenge elements and

elements from ®𝑥 do not appear as non-trivial linear combinations of

pairings between elements from ®𝑥 and the challenge16. As this is the
case for both of the above, the ABDDH-2 and AXDH-2 assumptions

hold in the GGM.

H.1.1 Semantic Security.

Lemma H.3 (IND−SID−CPA security of BTIB−KEM−2). Our
BTIB−KEM−2 construction is IND−SID−CPA secure if the ABDDH-2
assumption (Definition H.1) holds in the underlying pairing ensemble.

Proof. We prove IND−SID−CPA security of BTIB−KEM−2 by
reduction to the ABDDH-2 assumption (Definition H.1). LetA be a

PPT adversary against Game−IND−SID−CPA (Figure 5) such that

Pr[Game−IND−SID−CPABTIB−KEM−2A (1𝜆) = 1] ≥ 1/2 + 𝜀 (𝜆)

for a non-negligible 𝜀. We construct a PPT reduction B that uses

A internally to break the ABDDH-2 assumption.

First, B receives the security parameter 1
𝜆
as well as an ABDDH-

2 instance

𝑔1, 𝑔
𝑤
1
, 𝑔𝑤𝑧

1
, 𝑔

𝑤𝑦

1
, 𝑔𝛼

1
, 𝑔𝑠

1

𝑔2, 𝑔
𝑦

2
, 𝑔𝑧

2
, 𝑔

𝑤𝑦𝑧

2
, 𝑔

𝑦𝑠

2
, 𝑔𝑧𝑠

2
, , 𝑔

𝛼𝑦

2
, 𝑔𝛼𝑧

2
, 𝑔

𝛼𝑦𝑧

2

with challenge 𝑇 .

Let ℓ𝑚𝑎𝑥 be the upper bound on ℓ for BTIB−KEM−2. First, the
reduction B samples a random 𝑗∗ ∈ [ℓ𝑚𝑎𝑥]. We note here that

at this point, the adversary A did not output ℓ yet, hence the

BTIB−KEM−2 construction defines an upper bound ℓ𝑚𝑎𝑥 such that

1 ≤ ℓ ≤ ℓ𝑚𝑎𝑥 . Then, the reduction B runs A1 to get ID∗ and ℓ
while simulating the random oracle as follows.

Simulating the random oracle 𝐻 . For each query H(𝑗), B sim-

ulates the random oracle 𝐻 as follows: If 𝑗 = 𝑗∗, then output the

group element𝑔𝑤
1
from the assumption instance. Otherwise, sample

a random 𝑤 𝑗 ←$ Z𝑝 and output 𝑔
𝑤𝑤𝑗

1
. B answers queries consis-

tently, i.e. it saves the values and repeats answers for identical

queries.

If 𝑗∗ ∉ [ℓ], then B immediately returns a random bit. The proba-

bility for this to happen can be bounded by 1/ℓmax.

Then, B prepares a simulation of the public parameters and

KGen. For this, the challenge is embedded in the public key as

𝑋 ← 𝑔𝛼
1
, 𝑌 ← 𝑔

𝑦

2
, 𝑍 ← 𝑔𝑧

2
, and 𝑄 ← 𝑔

𝛼𝑦𝑧

2
. Further, B samples

𝑘0,1, 𝑘0,2, 𝑘1,1, 𝑘1,2 ←$ Z𝑝 to set the public parameters

• 𝑢1 ← (𝑔𝛼
1
)− 𝑗∗ · 𝑔𝑘0,1

1

• 𝑢2 ← (𝑔𝛼
1
)−ID∗ · 𝑔𝑘0,2

1

• 𝑣1 ← (𝑔𝛼
1
)− 𝑗∗ · 𝑔𝑘1,1

1

• 𝑣2 ← (𝑔𝛼
1
)−ID∗ · 𝑔𝑘1,2

1

16
We note that many possible combinations can be ruled out right away, as many

target monomials do not appear at all in pairings among ®𝑥 .

B sets pk← (𝑋,𝑌, 𝑍,𝑄) and runs A2 (st1, pk) to obtain the set of

corrupted parties 𝐶 . W.l.o.g. we assume that 𝐶 = {1, . . . , 𝑡 − 1}. In
the next step, the reduction needs to prepare a simulation of the

secret key shares for corrupted parties in𝐶 as well as the challenge

ciphertext and KEM key.

Simulating secret key shares. The reduction samples random 𝑠1,

. . . , 𝑠𝑡−1 ←$ Z𝑝 to simulate a sharing of 𝛼 , which is a standard

simulation of Shamir’s secret sharing. Hence, this Shamir simulation

is with respect to a polynomal 𝑝 (𝑖), where 𝑝 (0) = 𝛼 and 𝑝 (𝑖) = 𝑠𝑖
of 𝑖 ∈ 𝐶 . As the reduction only knows 𝑔𝛼

1
, but not 𝛼 , we can only

interpolate 𝑝 in the exponent. We will use this trick extensively in

our simulation of identity-key derivation later. We can simulate

𝑡 − 1 secret shares for parties in𝐶 by sampling 𝑟
(𝑗)
𝑖,1
, ℎ
(𝑗)
𝑖,1
←$ Z𝑝 for

all 𝑗 ∈ [ℓ], 𝑖 ∈ 𝐶 and setting the secret key shares as follows. For

the left share, we set sk(𝑗)
𝑖,0
← (𝑒 (𝑗)

𝑖,0
, 𝑌

𝑟
(𝑗)
𝑖,1 , 𝑔

𝑟
(𝑗)
𝑖,1

2
, 𝑔

𝑧𝑠𝑖
2
), where

𝑒
(𝑗)
𝑖,0
← (𝑔𝑤𝑧

1
)𝑤𝑗𝑠𝑖 · (𝑔𝛼

1
) 𝑗 ·𝑟

(𝑗)
𝑖,1 · 𝑢𝑟

(𝑗)
𝑖,1

1
[= 𝐻 (𝑗)𝑧𝑠𝑖 · L1 (𝑗)𝑟

(𝑗)
𝑖,1] .

For the right share, we set sk(𝑗)
𝑖,1
← (𝑒 (𝑗)

𝑖,1
, 𝑍

ℎ
(𝑗)
𝑖,1 , 𝑔

ℎ
(𝑗)
𝑖,1

2
, 𝑔

𝑦𝑠𝑖
2
), where

𝑒
(𝑗)
𝑖,1
← (𝑔𝑤𝑦

1
)𝑤𝑗𝑠𝑖 · (𝑔𝛼

1
) 𝑗 ·ℎ

(𝑗)
𝑖,1 · 𝑣ℎ

(𝑗)
𝑖,1

1
[= 𝐻 (𝑗)𝑦𝑠𝑖 · R1 (𝑗)𝑟

(𝑗)
𝑖,1] .

To prepare the challenge key and ciphertext, the reduction sam-

ples 𝑡0, 𝑡1 ∈ Z𝑝 and embeds the instance of the ABDDH-2 assump-

tion and sets the key to the ABDDH-2 challenge 𝑘 ← 𝑇 . The

ciphertext 𝑐0 is simulated as follows.

• 𝑌 𝑠 ← 𝑔
𝑦𝑠

2
· 𝑔𝑡0

2

• L1 (𝑗∗)𝑠 = (𝑔𝛼 𝑗
∗

1
· 𝑢1)𝑠 = (𝑔𝛼 𝑗

∗

1
· 𝑔−𝛼 𝑗

∗+𝑘0,1

1
)𝑠 ← (𝑔𝑠

1
)𝑘0,1

• L2 (ID∗)𝑠 ← (𝑔𝑠
1
)𝑘0,2

• L1 (𝑗∗)𝑡0 ← 𝑔
𝑡0 ·𝑘0,1

1

• L2 (ID∗)𝑡0 ← 𝑔
𝑡0 ·𝑘0,2

1

• 𝐻 (𝑗∗)𝑡0 ← (𝑔𝑤
1
)𝑡0

and the right ciphertext 𝑐1 is simulated similarly using the elements

𝑔𝑧𝑠
2

and 𝑔𝑠
1
from the assumption.

Finally, B runs 𝑏′ ←$ AODIdk

3
(st2, (𝑐, 𝑘), {sk𝑖 }𝑖∈𝐶), while simu-

lating the ODIdk oracle and returns the same bit 𝑏′.

Simulating ODIdk. Given a query on (𝑥, ID), the identity key

shares from 𝑥 ∈ 𝐶 can be simulated honestly from their secret

shares. We next show how to simulate the oracle for 𝑥 ∉ 𝐶 . The

simulation returns⊥ if ID = ID∗. Here, we focus on how to simulate

the left identity-key share. The simulation for the right identity-key

share works in a similar manner, using the elements 𝑔
𝑤𝑦

1
, 𝑔𝑧

2
, and

𝑔
𝑤𝑦𝑧

2
from the assumption and sampling new random elements

(the random elements used for the right side are independent from

the ones used on the left side). Then:

• For 𝑗 ≠ 𝑗∗. Sample 𝑟
(𝑗)
𝑥,1
←$ Z𝑝 and let in the following 𝑙𝑖 =

𝑙𝑖,𝐶∪{0} (𝑥) be the Lagrange coefficient for interpolation at

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

target index 𝑥 for index 𝑖 among the set 𝐶 ∪ {0}. Compute

𝑤 ′𝑗,𝑥,1 ← (𝑔
𝑤𝑧
1
)
−𝑤𝑗𝑘0,1 ·𝑙0

𝑗− 𝑗∗ ·
(
(𝑔𝛼

1
) 𝑗− 𝑗

∗
· 𝑔𝑘0,1

1

)𝑟 (𝑗)
𝑥,1 ·

𝑡−1∏
𝑖=1

(𝑔𝑤𝑧
1
)𝑤𝑗 𝑙𝑖𝑠𝑖

= 𝑔

−𝑤𝑤𝑗𝑧𝑘0,1 ·𝑙0
𝑗− 𝑗∗

1
· 𝑔 (𝛼 𝑗−𝛼 𝑗

∗+𝑘0,1) ·𝑟 (𝑗)𝑥,1

1
·
𝑡−1∏
𝑖=1

𝑔
𝑤𝑤𝑗𝑧𝑙𝑖𝑠𝑖
1

= 𝑔

−𝑤𝑤𝑗𝑧𝑘0,1 ·𝑙0
𝑗− 𝑗∗

1
· L1 (𝑗)𝑟

(𝑗)
𝑥,1 ·

𝑡−1∏
𝑖=1

𝑔
𝑤𝑤𝑗𝑧𝑙𝑖𝑠𝑖
1

= 𝑔
𝑤𝑤𝑗𝑧𝛼𝑙0
1

·
𝑡−1∏
𝑖=1

𝑔
𝑤𝑤𝑗𝑧𝑙𝑖𝑠𝑖
1

· L1 (𝑗)𝑟
(𝑗)
𝑥,1
− 𝑤𝑗𝑤𝑧𝑙

0

𝑗− 𝑗∗ .

Further we set

𝑤 𝑗,𝑥,4 ← (𝑔𝑤𝑧
1
)𝑤𝑗

−𝑙
0

𝑗− 𝑗∗ · 𝑔𝑟
(𝑗)
𝑥,1

1
= 𝑔

−𝑤𝑤𝑗𝑧 ·𝑙0
𝑗− 𝑗∗ +𝑟 (𝑗)

𝑥,1

1
.

Note that these are valid parts of the identity key share. For

this, consider 𝑟
(𝑗)
𝑥,1

= 𝑟
(𝑗)
𝑥,1
− 𝑤𝑤𝑗𝑧𝑙0

𝑗− 𝑗∗ . Then we get that

𝑤 ′𝑗,𝑥,1 = 𝑔
𝑤𝑤𝑗𝑧𝛼𝑙0
1

·
𝑡−1∏
𝑖=1

𝑔
𝑤𝑤𝑗𝑧𝑙𝑖𝑠𝑖
1

· L1 (𝑗)𝑟
(𝑗)
𝑥,1
− 𝑤𝑗𝑤𝑧𝑙

0

𝑗− 𝑗∗

= 𝑔
𝑤𝑤𝑗𝑧𝛼𝑥
1

· L1 (𝑗)𝑟
(𝑗)
𝑥,1 [= 𝐻 (𝑗)𝑧𝛼𝑥 · L1 (𝑗)𝑟

(𝑗)
𝑥,1] .

Also, it holds that𝑤 𝑗,𝑥,4 = 𝑔
𝑟
(𝑗)
𝑥,1

1
.

Next, we compute 𝑤 𝑗,𝑥,2 ← (𝑔𝑦
2
)𝑟
(𝑗)
𝑥,1 · (𝑔𝑤𝑦𝑧

2
)𝑤𝑗

−𝑙
0

𝑗− 𝑗∗ =

𝑌
𝑟
(𝑗)
𝑥,1 and 𝑤 𝑗,𝑥,6 ← (𝑔𝛼𝑧

2
)𝑙0 ·∏𝑡−1

𝑖=1
(𝑔𝑧

2
)𝑠𝑖𝑙𝑖 = 𝑔

𝛼𝑥𝑧
2

. To fin-

ish, we compute the part of the second layer honestly,

that is: we sample 𝑟
(𝑗)
𝑥,2

and compute 𝑤 𝑗,𝑥,1 ← 𝑤 ′
𝑗,𝑥,1
·

L2 (ID)𝑟
(𝑗)
𝑥,2 , 𝑤 𝑗,𝑥,3 ← 𝑌

𝑟
(𝑗)
𝑥,2 , and 𝑤 𝑗,𝑥,5 ← 𝑔

𝑟
(𝑗)
𝑥,2

2
. Note that

(𝑤 𝑗,𝑥,1, . . . ,𝑤 𝑗,𝑥,6) is a valid left decryption key share from

party 𝑥 for identity ID and position 𝑗 .

• For 𝑗 = 𝑗∗. The case is handled similarly. The only difference

is that we now simulate the part of the first layer honestly

and apply the previous trick to the second layer.

Analysis. Observe that, if𝑇 = 𝑒 (𝑔1, 𝑔2)𝑤𝛼𝑦𝑧𝑠
, then B’s simulates

Game−IND−SID−CPA for 𝑏 = 1. If instead 𝑇 = 𝑒 (𝑔1, 𝑔2)𝑣 , B’s
simulation of 𝑘 is uniformly random fromK(𝜆), hence B simulates

the game for 𝑏 = 0. Bounding the loss of guessing 𝑗∗ ∈ [ℓ] by
1/ℓ𝑚𝑎𝑥 , we get that

Pr[Game−IND−SID−CPABTIB−KEM−2A (1𝜆) = 1] ≤ ℓ𝑚𝑎𝑥 ·AdvAXDH−2G,B

□

H.1.2 One-sided Security. Our result of one-sided security is cap-

tured by the following Lemma. We prove it by reduction to the

AXDH-2 assumption (Definition H.2).

LemmaH.4. For all PPT adversariesA, there exists a PPT reduction
B such that

Game−OSS−IDBTIB−KEM−2
A (1𝜆) ≤ ℓ𝑚𝑎𝑥AdvAXDH−2G,B

for all 𝜆 ∈ N.

Proof. The adversary B, who is solving the AXDH-2 prob-

lem, receives a challenge 𝑇 which is either (𝑔𝑠+𝑣1𝑠
1

, 𝑔
𝑠+𝑣2𝑠
1

, 𝑔
𝑧𝑠+𝑡1

2
)

or (𝑔𝑠
′+𝑣1𝑠

′

1
, 𝑔

𝑠′+𝑣2𝑠
′

1
, 𝑔

𝑧𝑠′+𝑡1

2
). It also receives the following group

elements:

• FromG1 : 𝑔1, 𝑔
𝑦

1
, 𝑔𝑧

1
, 𝑔𝑤

1
, 𝑔𝑤𝑧

1
, 𝑔

𝑤𝑡1

1
, 𝑔

𝑤𝑡0

1
, 𝑔

𝑢1

1
, 𝑔

𝑣1

1
, 𝑔

𝑢2

1
, 𝑔

𝑣2

1
, 𝑔

𝑡1+𝑣1𝑡1

1
,

𝑔
𝑡0+𝑢1𝑡0

1
, 𝑔

𝑠+𝑢1𝑠
1

, 𝑔
𝑡1+𝑣2𝑡1

1
, 𝑔

𝑡0+𝑢2𝑡0

1
, 𝑔

𝑠+𝑢2𝑠
1

.

• From G2 : 𝑔2, 𝑔
𝑦

2
, 𝑔𝑧

2
, 𝑔

𝑦𝑧

2
, 𝑔

𝑦𝑠+𝑡0

2
.

• From G𝑇 : 𝑒 (𝑔1, 𝑔2)𝑤𝑦𝑧𝑠 , 𝑒 (𝑔1, 𝑔2)𝑤𝑦𝑧𝑠′
.

First, B guesses 𝑗∗ ←$ [ℓ𝑚𝑎𝑥].

Simulating the random oracle 𝐻 . For each query 𝐻 (𝑗), B simu-

lates the random oracle 𝐻 as follows:

• If 𝑗 = 𝑗∗, return 𝑔𝑤
1
from the AXDH-2 instance.

• Otherwise, sample a random 𝑤 𝑗 ←$ Z𝑝 and output 𝑔
𝑤𝑗

1
.

B answers queries consistently, i.e. it saves the values and
repeats answers for identical queries.

• We assume, A makes a hash query on 𝑗∗; if not, the reduc-
tion makes the query 𝐻 (𝑗∗) itself.

B runs A to get (ℓ,𝑢, 𝑑, ID∗) and aborts if 𝑢 ≠ 𝑗∗.

Simulating Setup. The reduction B computes the public parame-

ters using elements from the assumption. That is, it first samples

𝛼 ←$ Z𝑝 and then sets𝑢1 = (𝑔𝑢1

1
)𝛼 𝑗∗ ,𝑢2 = (𝑔𝑢2

1
)𝛼 ID∗ , 𝑣1 = (𝑔𝑣1

1
)𝛼 𝑗∗ ,

and 𝑣2 = (𝑔𝑣2

1
)𝛼 ID∗𝑣2

. Hence the function L and R behave as fol-

lows:

L1 (𝑗) = 𝑔𝛼 𝑗
1
· 𝑢1 = 𝑔

𝛼 𝑗

1
· 𝑔𝛼 𝑗

∗𝑢1

1

L2 (ID) = 𝑔𝛼 ID1
· 𝑢2 = 𝑔𝛼 ID

1
· 𝑔𝛼 ID

∗𝑢2

1

R1 (𝑗) = 𝑔𝛼 𝑗
1
· 𝑣1 = 𝑔

𝛼 𝑗

1
· 𝑔𝛼 𝑗

∗𝑣1

1

R2 (ID) = 𝑔𝛼 ID1
· 𝑣2 = 𝑔𝛼 ID

1
· 𝑔𝛼 ID

∗𝑣2

1

We start with the case 𝑑 = 0 first. In this case, the adversary is

tasked to determine whether the given right side ciphertext 𝑐1 fits

with a correctly derived key and left ciphertext pair (𝑘, 𝑐0).

Simulating key generation. Given the above public parameters.

the AXDH-2 instance, as well as 𝛼 , we simulate key generation as

follow:

• Generate (𝑡, 𝑛)-Shamir shares 𝑠1, . . . , 𝑠𝑛 of 𝛼 .

• For the public key, we set 𝑋 ← 𝑔𝛼
1
, 𝑌 ← 𝑔

𝑦

2
, 𝑍 ← 𝑔𝑧

2
, and

𝑄 ← (𝑔𝑦𝑧
2
)𝛼 .

• For 𝑗 ≠ 𝑢 the secret shares can be simulated since𝐻 (𝑗)𝑧𝑠𝑖 =
(𝑔𝑧

1
)𝑤𝑗𝑠𝑖

where𝑤 𝑗 and 𝑠𝑖 are known to the reduction and𝑔
𝑧
1

comes from the AXDH-2 instance. Then,B samples random

𝑟
(𝑗)
𝑖,1
, ℎ
(𝑗)
𝑖,1
←$ Z𝑝 for all (𝑗, 𝑖) ∈ ([ℓ] \ { 𝑗∗}) × [𝑛] and sets

the left share as

𝑠𝑘
(𝑗)
𝑖,0
←

(
(𝑔𝑧

1
)𝑤𝑗𝑠𝑖 · L1 (𝑗)𝑟

(𝑗)
𝑖,1 , (𝑔𝑦

2
)𝑟
(𝑗)
𝑖,1 , 𝑔

𝑟
(𝑗)
𝑖,1

2
, (𝑔𝑧

2
)𝑠𝑖

)
,

and the right share as

𝑠𝑘
(𝑗)
𝑖,1
←

(
(𝑔𝑦

1
)𝑤𝑗𝑠𝑖 · R1 (𝑗)ℎ

(𝑗)
𝑖,1 , (𝑔𝑧

2
)ℎ
(𝑗)
𝑖,1 , 𝑔

ℎ
(𝑗)
𝑖,1

2
, (𝑔𝑦

2
)𝑠𝑖

)
.

• For 𝑗 = 𝑢 we need to simulate only the left shares. They

can be simulated using the element 𝑔𝑧𝑤
1

from the AXDH-2

instance, since𝐻 (𝑢)𝑧𝑠𝑖 = (𝑔𝑧𝑤
1
)𝑠𝑖 . The adversaryB samples

CCA-Secure Traceable Threshold (ID-based) Encryption and Application

𝑟
(𝑗)
𝑖,1

for every 𝑖 ∈ [𝑛] and then the left shares are computed

as:

𝑠𝑘
(𝑢)
𝑖,0
←

(
(𝑔𝑧𝑤

1
)𝑠𝑖 · L1 (𝑢)𝑟

(𝑢)
𝑖,1 , (𝑔𝑦

2
)𝑟
(𝑢)
𝑖,1 , 𝑔

𝑟
(𝑢)
𝑖,1

2
, (𝑔𝑧

2
)𝑠𝑖

)
Simulating the KEM key and ciphertext. B sets the KEM key

𝑘0 ← (𝑒 (𝑔1, 𝑔2)𝑤𝑦𝑧𝑠)𝛼 , where (𝑒 (𝑔1, 𝑔2)𝑤𝑦𝑧𝑠) is from the AXDH-2

instance. Conceptually, this means that 𝑘0 = 𝑒 (𝐻 (𝑗∗), 𝑔2)𝛼𝑦𝑧𝑠 . The
challenge ciphertext for (𝑢, ID∗) is simulated as follows.

• The components of the left side, we simulate from the in-

stance:

– 𝑐0,1 ← (𝑔𝑠+𝑢1𝑠
1
)𝛼 𝑗∗ [= (𝑔𝛼 𝑗

∗

1
· 𝑔𝑢1 ·𝛼 𝑗∗

1
)𝑠 = L1 (𝑗∗)𝑠]

– 𝑐0,2 ← (𝑔𝑠+𝑢2𝑠
1
)𝛼 ID∗ [= (𝑔𝛼 ID∗

1
·𝑔𝑢1 ·𝛼 ID∗

1
)𝑠 = L2 (ID∗)𝑠]

– 𝑐0,3 = 𝑔
𝑦𝑠+𝑡0

2

– 𝑐0,4 = (𝑔𝑡0+𝑢1𝑡0

1
)𝛼 𝑗∗ [= L1 (𝑗∗)𝑡0]

– 𝑐0,5 = (𝑔𝑡0+𝑢2𝑡0

1
)𝛼 ID∗ [= L2 (ID∗)𝑡0]

– 𝑐0,6 = 𝑔
𝑤𝑡0

1
[= 𝐻 (𝑗∗)𝑡0]

• In order to set 𝑐1, we use elements from the challenge. De-

note the challenge by 𝑇 = (𝑇1,𝑇2,𝑇3), then:
– 𝑐1,1 ← (𝑇1)𝛼 𝑗

∗
, which is either R1 (𝑗∗)𝑠 or R1 (𝑗∗)𝑠

′
.

– 𝑐1,2 ← (𝑇2)𝛼 ID
∗
, which is eitherR2 (ID∗)𝑠 orR2 (ID∗)𝑠

′
.

– 𝑐1,3 = 𝑇3, which is either 𝑔
𝑧𝑠+𝑡1

2
or 𝑔

𝑧𝑠′+𝑡1

2
.

– 𝑐1,4 = (𝑔𝑡1+𝑣1𝑡1

1
)𝛼 𝑗∗ [= R1 (𝑗∗)𝑡1]

– 𝑐1,5 = (𝑔𝑡1+𝑣2𝑡1

1
)𝛼 ID∗ [= R2 (ID∗)𝑡1]

– 𝑐1,6 = 𝑔
𝑤𝑡1

1
[= 𝐻 (𝑗∗)𝑡1]

The adversary B passes 𝑘0, 𝑐0, 𝑐1 together with the secret shares to

A. In the end the reduction B outputs what A outputs.

Analysis. Observe that 𝑐0 is a valid ciphertext that is consistent

with 𝑘0. Furthermore, when 𝑇 = (𝑔𝑠+𝑣1𝑠
1

, 𝑔
𝑠+𝑣2𝑠
1

, 𝑔
𝑧𝑠+𝑡1

2
), then B

simulates the case 𝑏 = 1 as 𝑐1 is consistent with 𝑐0 and 𝑘0. On

the other hand, when 𝑇 = (𝑔𝑠
′+𝑣1𝑠

′

1
, 𝑔

𝑠′+𝑣2𝑠
′

1
, 𝑔

𝑧𝑠′+𝑡1

2
), B simulates

the case 𝑏 = 0 since 𝑐1 is not consistent with 𝑐0 and 𝑘0. Hence, B
simulates the one-sided security game for A for the case 𝑑 = 0.

The case 𝑑 = 1 is handled symmetrically, except that now

we set 𝑘0 = 𝑒 (𝐻 (𝑗∗), 𝑔2)𝛼𝑦𝑧𝑠
′
and now we simulate 𝑐0 using the

challenge 𝑇 (instead of 𝑐1). Also, we swap 𝑦 and 𝑧. Hence, when

𝑇 = (𝑔𝑠
′+𝑣1𝑠

′

1
, 𝑔

𝑠′+𝑣2𝑠
′

1
, 𝑔

𝑧𝑠′+𝑡1

2
), it holds that 𝑐0 is consistent with 𝑘0

and not with 𝑐1, thus B simulates 𝑏 = 0. On the other hand, when

𝑇 = (𝑔𝑠+𝑣1𝑠
1

, 𝑔
𝑠+𝑣2𝑠
1

, 𝑔
𝑧𝑠+𝑡1

2
), then 𝑐0 is consistent with 𝑐1 but not

with 𝑘0, thus, B simulates 𝑏 = 1. □

I Computational Efficiency
We present the concrete computational efficiency of CCA-secure

TT−KEM, when instantiated with our two constructions in Fig-

ure 17. We conclude that for both constructions the computational

efficiency is sufficient for practical applications. To see this, note

that on modern curves that support pairings such as BLS12-381,

even the most expensive operations (that is the pairing itself) are

computable in less than 1 millisecond on consumer hardware
17
.

17
These results were obtained on an AMD RYZEN 5800x CPU based on the https:

//github.com/kilic/bls12-381 implementation.

Algo With BTIB−KEM−1 With BTIB−KEM−2

Enc
Σ.KGen + Σ.Sign + H
+3ExpG1

+ 1Pair

Σ.KGen + Σ.Sign + 2H+
4MulG1

+ 13ExpG1

+
2MulG2

+ 4ExpG2

+ 1Pair

PDec Σ.Verify + H + 1ExpG2

Σ.Verify + 2H
2MulG1

+ 2ExpG1

+ 2ExpG2

Comb
(𝑡 − 2)MulG2

+ 𝑡ExpG2

2Pair + 1MulG𝑇

(𝑡 − 2)MulG1
+ 𝑡ExpG1

+
5(𝑡 − 2)MulG2

+ 5𝑡ExpG2

+
12Pair + 11MulG𝑇

+ 1ExpG𝑇

Figure 17: Summary of the computational efficiency of im-
portant CCA-secure TT−KEM operations, when instantiating
with BTIB−KEM−1 or BTIB−KEM−2 and a signature scheme Σ
as building blocks.

J Consistency
J.1 Consistency Definition for TT−KEM
In the consistency experiment Game−Consist (Figure 18) the ad-
versary obtains all secret key shares for all share holders. Then, the

adversary outputs a ciphertext 𝑐 with the attached proof 𝜋 along

with two sets 𝑆, 𝑆 ′ ∈ [𝑛] that each contain at least 𝑡 parties. Further-

more, the adversary outputs partial decryptions (shares) {𝑑𝑖 }𝑖∈𝑆
and {𝑑′

𝑖
}𝑖∈𝑆 ′ on behalf of the parties in 𝑆 and 𝑆 ′. The game verifies

the proof as well as the partial decryption shares. The proof is veri-

fied using the Verify algorithm, which already exists for TT−KEM
according to definition 3.1. We add an algorithm PVerify to verify

partial decryptions. If all verifications pass, the game combines

the decryption shares of 𝑆 and the decryption shares of 𝑆 ′. The
adversary wins, if the resulting KEM-keys are different or either de-

cryption fails (returns ⊥). Observe that without the proof 𝜋 , the ad-
versary can win the game in TT−KEM, which is based on BT−KEM,

as the adversary can output a ciphertext with mismatching left and

right parts.

Game−ConsistA (1𝜆)
(pk, {sk𝑖 }𝑖∈ [𝑛] , tk) ←$ KGen(1𝜆, 𝑛, 𝑡, 11/𝜀 (𝜆))

(𝑐, 𝜋), 𝑆, 𝑆 ′, {𝑑𝑖 }𝑖∈𝑆 , {𝑑 ′𝑖 }𝑖∈𝑆 ′ ←$ A1 (1𝜆, pk, {sk𝑖 } [𝑛])
if Verify(pk, 𝑐, 𝜋) = 0 then return 0

if 𝑆 ⊈ [𝑛] ∨ |𝑆 | ≤ 𝑡 then return 0

if 𝑆 ′ ⊈ [𝑛] ∨ |𝑆 ′ | ≤ 𝑡 then return 0

if ∃𝑖 ∈ 𝑆 : PVerify(pk, 𝑐, 𝑑𝑖) = 0 then return 0

if ∃𝑖 ∈ 𝑆 ′ : PVerify(pk, 𝑐, 𝑑 ′𝑖) = 0 then return 0

𝑘 ← Comb(𝑆, {𝑑𝑖 }𝑖∈𝑆 , 𝑐)
𝑘 ′ ← Comb(𝑆 ′, {𝑑 ′𝑖 }𝑖∈𝑆 ′ , 𝑐)
if 𝑘 ≠ 𝑘 ′ ∨ 𝑘 = ⊥ ∨ 𝑘 ′ = ⊥ then return 1

return 0

Figure 18: Consistency game for TT−KEM.

Definition J.1 (Consistency of Traceable Threshold KEM). We say

that a TT−KEM protocol achieves consistency, if for all PPT adver-

sariesA := (A1,A2,A3) there exists a negligible function negl(𝜆)

https://github.com/kilic/bls12-381
https://github.com/kilic/bls12-381

Rishiraj Bhattacharyya, Jan Bormet, Sebastian Faust, Pratyay Mukherjee, and Hussien Othman

such that

Pr

[
Game−ConsistTT−KEMA (1𝜆) = 1

]
≤ negl(𝜆),

where Game−Consist is defined in Figure 18.

J.1.1 Verification of Partial Decryption. Given a ciphertext 𝑐 in-

cluding vk𝑒 the partial decryption PDec boils down to deriving the

partial identity key on the identity ID = vk𝑒 for index 𝑗 . Looking
at the BTIB−KEM construction (Section 5), the partial identity key

derivation is computed as 𝑑𝑖 = 𝐻 (𝑗, vk𝑒)sk
(𝑗)
𝑖 , which is basically a

BLS-signature [13] on message (𝑗, vk𝑒). Hence the correctness of
partial decryptions can be easily verified through the BLS equation

𝑒 (𝑔1, 𝑑𝑖) = 𝑒 (𝑔
𝑠𝑘
(𝑗)
𝑖

1
, 𝐻 (𝑗, vk𝑒)), where𝑔

sk(𝑗)
𝑖

1
is part of the public key.

We implement this check by letting the PVerify algorithm output 1,

if the above equation holds and 0 otherwise.

J.2 Consistency of the modified TT−KEM
Theorem J.2 (Consistency of the modified TT−KEM). Let

M−TT−KEM be the modified TT−KEM-scheme that is described here
and in Section 7. M−TT−KEM is consistent, if the proof system Π
achieves knowledge-soundness and the DLog assumption holds in G1.

Proof of Theorem J.2. We prove consistency in a series of game-

hops. First, we replace the decryption shares of the adversary by

honestly generated ones, then we extract the witness 𝜔 for the

proof that is attached to the adversary’s ciphertext and finally, we

exclude the possibility that the adversary has generated the proof

using the trapdoor. In the end, we show that both decryptions must

yield the same key 𝑘 ≠ ⊥ by correctness of TT−KEM.

Let Game0 be the consistency game Game−ConsistM−TT−KEM
as displayed in Figure 18.

Game1: In this game-hop, we generate honest decryption shares

on behalf of the paries in 𝑆 and 𝑆 ′ and use the honestly generated

shares instead of those provided by the adversary when reconstruct-

ing 𝑘 and 𝑘′.

Lemma J.3. GameM−TT−KEM
0

and GameM−TT−KEM
1

are equiva-
lent, i.e. for all adversariesA it holds that Pr[GameM−TT−KEM

0,A (1𝜆) =
1] = Pr[GameM−TT−KEM

1,A (1𝜆) = 1]

Proof of Lemma J.3. Due to the bilinearity of the pairing oper-

ation 𝑒 , the honestly generated decryption shares must be equal to

the decryption shares provided by the adversary, if the share verifi-

cation PVerify passes (i.e. if 𝑒 (𝑔1, 𝑑𝑖) = 𝑒 (𝑔
sk(𝑗)

𝑖

1
, 𝐻 (𝑗, vk𝑒))). □

Game2: Next, we require the adversary to send a witness 𝜔

along with the ciphertext 𝑐 and proof 𝜋 and abort, if (𝜒,𝜔) ∉ R for

𝜒 = (pk, 𝑐0, 𝑐1, 𝑗, vk𝑒). In particular, Game2 aborts, if 𝑔𝜔
1
≠ 𝑄 and

either 𝑐0 ≠ 𝑌𝜔
𝑗

or 𝑐1 ≠ 𝑍𝜔
𝑗
.

Lemma J.4. If the proof system Π is knowledge-sound (Defini-
tion C.3), then for all PPT adversaries A there exists a negligible
function negl(𝜆) and PPT adversary B such that

Pr[GameM−TT−KEM
2,B (1𝜆) = 1] ≥

Pr[GameM−TT−KEM
1,A (1𝜆) = 1] | − negl(𝜆)

Proof of Lemma J.4. Let A be a PPT adversary such that

Pr[GameM−TT−KEM
1,A (1𝜆) = 1] = 𝜀 (𝜆)

for a non-negligible 𝜀 (𝜆). We construct an adversary B that inter-

nally uses A as well as the extractor Ext to win Game2. B runs

A to receive the tuple (𝑐, 𝜋) as well as the partial decryptions

and then runs ExtA(·) (𝜒, 𝜋) to obtain a witness 𝜔 . B then returns

𝑐 , 𝜋 , the partial decryptions and the witness 𝜔 to Game2. Note

that due to the knowledge-soundness of Π, Verify(pk, 𝑐, 𝜋) = 1

but (𝜒,𝜔) ∉ R can only happen with negligible probability, hence

Pr[GameM−TT−KEM
2,B (1𝜆) = 1] ≥ 𝜀 − negl(𝜆). □

Game3: In the next step, we add an additional abort condition.

In particular, we abort if 𝑔𝜔
1
= 𝑄 .

Lemma J.5. If the DLog problem holds in G1 then both games are
computationally indistinguishable

GameM−TT−KEM
2

≈𝑐 GameM−TT−KEM
3

.

Proof of Lemma J.5. Let A be a PPT adversary with a non-

negligible distinguishing advantage 𝜀 (𝜆). Clearly, A can only dis-

tinguish the two games by triggering the additional abort condition,

thus providing 𝜔 such that 𝑔𝜔
1
= 𝑄 . We construct a PPT reduction

B that usesA to break the DLog assumption with probability 𝜀 (𝜆).
Initially, B receives the group setup as well as a DLog challenge 𝑇 .

B sets𝑄 = 𝑇 in the public key and runsA and returns𝜔 . Whenever

A triggers the additional abort, then 𝑔𝜔
1
= 𝑄 = 𝑇 , hence B breaks

the DLog assumption. □

To close the proof, we observe that no adversary exists that

can win Game3. In particular it holds that 𝑐0 = 𝑌𝜔
𝑗

and 𝑐1 = 𝑍𝜔
𝑗
.

Following the correctness of TT−KEM, the Comb operations for

both 𝑆 and 𝑆 ′ yield 𝑘 = 𝑒 (𝑔1, 𝑔2)𝛼 𝑗 𝑦 𝑗𝑧 𝑗𝜔
. □

	Abstract
	1 Introduction
	1.1 Technical Overview
	1.2 Further Related Works
	1.3 Roadmap

	2 Preliminaries
	3 CCA-secure Traceable Threshold KEM
	3.1 Definition: TT-KEM with CCA-security
	3.2 Definition: BT-KEM with CCA-security
	3.3 Generic Construction: CCA BT-KEM to CCA TT-KEM

	4 CCA BT-KEM from Identity-Based BT-KEM
	4.1 Definition: Bipartite Threshold Identity Based Key Encapsulation (BTIB-KEM)
	4.2 Generic Construction: BTIB-KEM to CCA-Secure BT-KEM

	5 Concrete Instantiations of BTIB-KEM
	5.1 BTIB-KEM-1 (Short Ciphertext)
	5.2 BTIB-KEM-2 (Constant-Size Public Key)

	6 Efficiency Analysis
	7 Consistency
	References
	A CCA Attacks on BPR24 Constructions
	B More related work
	C Additional Definitions
	C.1 Cryptographic Building Blocks
	C.2 Well-Established Bilinear Pairing Assumptions
	C.3 Traceable Threshold KEM

	D TTIB-KEM From BTIB-KEM
	D.1 Traceable Threshold Identity-Based KEM
	D.2 BTIB-KEM to TTIB-KEM Transformation

	E Security Proofs of the TT-KEM Construction
	E.1 CCA-security of BT-KEM
	E.2 One-Sided Security of BT-KEM
	E.3 Traceability Proof of TT-KEM

	F Security of BTIB-KEM-1
	F.1 Semantic Security
	F.2 One-Sided Security

	G Reductions to Well-Established Assumptions
	G.1 Augmented BDDH
	G.2 Augmented XDH

	H Thresholdized BTIB-KEM-2
	H.1 Security

	I Computational Efficiency
	J Consistency
	J.1 Consistency Definition for TT-KEM
	J.2 Consistency of the modified TT-KEM

