
CT-LLVM: Automatic Large-Scale Constant-Time Analysis

Zhiyuan Zhang , Gilles Barthe

MPI-SP, Bochum, Germany
IMDEA Software Institute, Madrid, Spain

Abstract
Constant-time (CT) is a popular programming discipline to
protect cryptographic libraries against micro-architectural tim-
ing attacks. One appeal of the CT discipline lies in its concep-
tual simplicity: a program is CT iff it has no secret-dependent
data-flow, control-flow or variable-timing operation. Thanks
to its simplicity, the CT discipline is supported by dozens
of analysis tools. However, a recent user study demonstrates
that these tools are seldom used due to poor usability and
maintainability (Jancar et al. IEEE SP 2022).

In this paper, we introduce CT-LLVM, a CT analysis
tool designed for usability, maintainability and automatic
large-scale analysis. Concretely, CT-LLVM is packaged as
a LLVM plugin and is built as a thin layer on top of two
standard LLVM analysis: def-use and alias analysis. Besides
confirming known CT violations, we demonstrate the usabil-
ity and scalability of CT-LLVM by automatically analyzing
nine cryptographic libraries. On average, CT-LLVM can au-
tomatically and soundly analyze 36% of the functions in these
libraries, proving that 61% of them are CT. In addition, the
large-scale automatic analysis also reveals new vulnerabilities
in these libraries. In the end, we demonstrate that CT-LLVM
helps systematically mitigate compiler-introduced CT viola-
tions, which has been a long-standing issue in CT analysis.

1 Introduction

The constant-time (CT) discipline is commonly used to pro-
tect cryptographic libraries against micro-architectural timing
attacks. Informally, the CT discipline mandates that programs
should not have secret-dependent data-flow, control-flow, or
variable-timing operations. While the CT discipline is con-
ceptually simple, it remains a challenge for developers to
write efficient CT code. As an attempt to mitigate the issue,
many tools have been developed over the last fifteen years to
help developers writing CT code. Yet, despite the availability
of these tools, CT violations are still consistently found in
cryptographic libraries.

Problems Identification. We identify two main reasons for
not closing the gap between the CT discipline and the practice.
The first reason is the low adoption of CT analysis tools
in real-world development. A recent study [24] shows that
developers do not routinely use CT analysis tools because of
poor usability. First, most available tools are difficult to install,
due to complex dependencies and reliance on deprecated
software. Second, once installed, the overwhelming majority
of the tools are still hard to use. For instance, they may require
complex setups for each use of the tool. Third, analysis results
may be difficult to interpret, due to the underlying analysis
techniques, or to the lack of clear mechanisms to locate the
root cause of leakages.

The second reason is that current tools are designed with
expectation that the user needs to choose a specific func-
tion/execution path to analyze, and to annotate the secrets [24].
Consequently, the user can only analyze a small portion of the
codebase, such as the parts they are familiar with or suspect
to be CT insecure, leaving large fragments of the libraries
outside of their analysis. As an example, it was recently dis-
covered that Base64 decoding is not CT in most crypto-
graphic libraries[35]. Base64 decoding does not participate in
cryptographic operations directly, but is necessary to convert
asymmetric keys from PEM format to binary format. Surpris-
ingly, the implementation of Base64 decoding is as simple as
looking up a predefined table. However, due to the lack of ex-
posure to cryptographers, the function has not been analyzed
by any CT analysis tools until 2021.
Contributions. While we can keep relying on occasional
studies to find CT violations, we believe that a usable tool
aiming for automatic large-scale sound analysis is necessary
to make cryptographic libraries CT. In this paper, we design,
implement and evaluate CT-LLVM, a new CT analysis tool
for LLVM programs, aiming to address the aforementioned
problems. The tool has five main features:

• usability: CT-LLVM is implemented as a LLVM plugin
and is thus easy to install, to maintain and to run. CT-
LLVM delegates the core of the analysis to the LLVM;
specifically, CT-LLVM relies on LLVM for alias and

1

data-dependency analysis. As a result, the code of the
plugin is compact, and easy to maintain. Furthermore,
as a LLVM plugin, the tool can be used seamlessly by
library developers when compiling the project;

• transparency: CT-LLVM’s analysis operates directly
on LLVM IR, avoiding potentially problematic transla-
tions to alternative representations—such translations
are typically not designed for security analysis and may
potentially introduce or remove CT violations [30];

• soundness: CT-LLVM tracks the propagation of secrets
and detects their flows into memory address, branches
and variable-timing operations. The analysis is sound
when the tool captures the entire propagation of secrets.

• automation: CT-LLVM supports automatically analyz-
ing the entire library, without specifying the functions
and variables to analyze. To be specific, CT-LLVM, as
a static information-flow analysis tool, can soundly an-
alyze functions that do not have external function calls
(after inlining), function pointers, and inline assembly.

• customization: CT-LLVM is implemented in a modular
way and has a simple CT analysis logic. Therefore, it
is easy to customize and extend the tool for specific
needs. For example, the tool can be used to mitigate CT
violations introduced by compiler optimizations.

To summarize, we make following contributions in this
paper:

• We propose and implement a CT analysis tool which
only relies on the LLVM infrastructure;

• We build a database consists of vulnerable cryptographic
implementations and demonstrate that our tool achieves
the same or better performance, compared to other tools;

• We demonstrate that our tool can be used to verify the
absence of CT violations with examples;

• We automatically find CT violations and prove their ab-
sence in nine popular cryptographic libraries;

• We demonstrate that our tool can be used to mitigate CT
violations introduced by compiler optimizations. Inter-
estingly, we show that fixes for CT violations lead to
new vulnerabilities.

Outline. The rest of the paper is organized as follows. We
first introduce the background and related work of CT analy-
sis tools in Section 2. Then we explain the design choices of
our tool in Section 3, and LLVM features that we leverage in
Section 4. After that, we present the implementation of our
tool in Section 5. Our evaluation comes in three parts: we
confirm known CT violations in Section 6; we detail the pro-
cedure to verify the absence of CT violations with an example
of Kyber in Section 7; and we perform a large-scale evalua-
tion in Section 8. In the end, we demonstrate that CT-LLVM
detects CT violations introduced by compiler optimizations in
Section 9. We conclude the paper in Section 10 and detail the
results and new CT violations from disclosing our findings to
the studied cryptographic libraries in Section 11.

2 Background & Releated Work

In this section, we first introduce the background of micro-
architectural timing attacks and the CT policy. Then, we
present related work on building and using CT analysis tools.
Micro-architectural Timing Attacks. Program execu-
tion is affected by the availability of micro-architectural re-
sources, such as the cache and the branch predictor. Micro-
architectural timing attacks either actively affect the vic-
tim program’s execution or passively monitors its execu-
tion. Often, these attacks exploit secret-dependent cache ac-
cesses [27, 44, 45], and control flow [1, 20, 46] to infer the
value of the secret. Besides, variable-time instructions, such
as division, can also be exploited to leak secrets [4, 11].
CT Policy. To prevent from having variable execution time
with different secrets, constant-time (CT) policy requires that
the secret should not affect the memory access and the control
flow. A strict CT policy, which is the one we follow in this
paper, further requires that the secret should not be processed
by variable-time instructions.
Classification of CT Tools. Barbosa et al. [8] and Geimer
et al. [22] have classified the CT analysis tools based on their
formal guarantees and the type of analysis they perform, re-
spectively. Existing CT analysis tools can be classified into
three categories. First, dynamic analysis collects execution
traces and analyze whether different inputs cause different
memory access and control flow [40, 41, 42]. Second, sta-
tistical analysis [32] collect the actual execution time of the
program and statistically analyze the timing variance. Third,
static analysis leverages symbolic execution [16], abstract
interpretation [17, 18], information-flow analysis [33, 47]
or logical reduction [2] to provide different-level of formal
guarantees. In contrast, the methodologies of dynamic and
statistical analysis cannot provide soundness guarantees.
Usability of CT Analysis Tools. Jancar et al. [24] and Fourné
et al. [21] study the usability of CT analysis tools and their
deployment in the development process. Jancar et al. [24]
shows that installing the tools is painful and the cost of setting
up a test, such as writing a test wrapper, may cost more time
than just browsing the code. Fourné et al. [21] shows that the
tools are not routinely used by developers. Only five tools out
of 49 surveyed tools are used by developers in 15 out of 27
surveyed cryptographic libraries. Particularly, 11 of these 15
libraries use the same tool, ctgrind [26], which is a dynamic
analysis tool that patches the valgrind.
LLVM-based CT Analysis Tools. There exist several tools
operate on LLVM IR [2, 6, 14, 33, 47] that provide different
levels of formal guarantees by leveraging logical reduction or
information-flow analysis. From the view of usability, they
require the source code to be first compiled to IR code before
the analysis which makes it hard to be integrated into existing
projects. Furthermore, some tools rely on deprecated formal
verifiers [2, 6, 14] or specific versions of LLVM [33, 47],
which makes it hard to maintain and scale the analysis.

2

Limitation of Analyzing IR Code. CT analysis that oper-
ates on IR code has been long criticized for not capturing
leakages caused by compiler optimizations. Examples of such
leakages have been separately reported or discussed in vari-
ous works [8, 16, 21, 22, 37]. Recently, Schneider et al. [34]
carries out a systematic study with binary-level dynamic CT
analysis and show that both LLVM and GCC optimize CT
code into conditional branches under three scenarios. Partic-
ularly, LLVM introduces leakages by lowering the select
instruction into conditional branches. Such optimization hap-
pens after LLVM issues the IR code that is analyzed by cur-
rent LLVM-based CT analysis tools. Therefore, the leakages
cannot be captured by these tools.

3 Design Goals and Choices

We propose CT-LLVM with the goal of providing a usable
tool that can automatically detect CT violations and prove
their absence in cryptographic libraries. In this section, we dis-
cuss the criteria that we consider important for a CT analysis
tool, and our trade-offs in designing CT-LLVM.

3.1 Sound Analysis Methodology
First of all, a CT analysis tool should have a sound analysis
methodology. That is, when the CT analysis tool reports that
the test target has no CT violations, it should be guaranteed
that the test target is indeed CT. Compared to just detecting
CT violations, proving their absence is more challenging. In
fact, according to a recent study [21], only 16 out of 49 CT
analysis tools have a sound methodology.
Our approach. We consider CT analysis as a taint analysis
problem. Intuitively, the analysis tracks the propagation of a
secret input and check whether a tainted instruction breaches
the CT policy. If the taint analysis captures all instructions
that depend on the secret input, it inherently can detect all
CT violations, assuring the soundness of the analysis. Fur-
thermore, a sound CT analysis does not need to consider CT
violations caused by implicit information-flow, as a program
is already not CT if it branches on a secret. Fixing a CT viola-
tion caused by explicit information-flow automatically fixes
the implicit information-flow that depends on it.

We notice that capturing explicit information-flow of a se-
cret input is naturally solved by compilers, which analyze
the dependency between instructions to perform optimiza-
tions. For example LLVM leverages def-use chains to track
the propagation of static single assignment (SSA) variables
and alias analysis to track the propagation of memory objects.
Therefore, we simply leverage these two analysis to track the
propagation of secret in CT-LLVM.
Trade-offs. While the methodology is straightforward in
theory, it has limitations in practice. First, compiler treats in-
line assembly as a black box. Therefore, the analysis cannot
reason whether an inline assembly breaches the CT policy or

whether it affects memory objects that depend on the secret
input. Second, compiler cannot reason about functions that
are only declared, but not defined in the same translation unit.
Similarly, the analysis cannot reason indirect branches, includ-
ing indirect function calls, as the target of the branch is not
known at compile time. These limitations can be addressed by
over-approximating the analysis and providing function signa-
tures that define the behavior of declared functions. However,
the former approach often comes with high false positives,
while the latter approach requires manual effort to provide
function signatures, which makes the tool less usable.

Our Implementation. We choose to accept these limita-
tions in CT-LLVM and focus on providing a tool that is easy
to use and has low false positives. To be specific, we con-
figure CT-LLVM to provide two modes of analysis: Proof
Mode and Violation Finding Mode. Proof Mode enforces a
sound analysis and do not analyze functions that cannot be
fully inlined. Violation Finding Mode assumes non-inlined
functions are CT and does not modify memory content with
secret-dependent values. Therefore, this mode can find CT
violations but cannot prove their absence. The intuition of
having a Violation Finding Mode is to cover functions that
cannot be analyzed in proof mode.

3.2 Platform-(In)dependent Analysis

Since def-use chains and alias analysis are LLVM analysis
passes for LLVM IR programs, CT-LLVM thus operates on
LLVM IR programs, which are platform-independent. The
advantage of analyzing LLVM IR programs is that it is a cheap
and effective way to analyze platform-dependent programs
by cross-compiling them to LLVM IR on any host platform.

Platform-dependent Leakages. One potential concern with
analyzing LLVM IR programs is that it is believed to miss
compiler-induced CT leakages [16, 19, 37, 43], which are
platform-dependent. Such optimizations often come at the
backend of the compiler, where the compiler generates ma-
chine code from the IR. Simon et al. [37] and Daniel et al.
[16] show that a source code can be CT on x86-64, but not
on i386. Schneider et al. [34] summarizes three classes of
optimizations that introduce conditional branches on secret-
dependent values under different optimization flags and for
different target platforms. Interestingly, we find that all three
classes of introduced leakages are caused by the select in-
struction in LLVM IR, which is used to select a value based
on a condition. That is, currently identified LLVM-induced
CT leakages are all connected to this special instruction.

Our approach. Since the select instruction is introduced
at LLVM IR level, CT-LLVM can thus naturally capture the
existence of them. This is done by adding one more rule to
the CT policy: a select instruction breaches the CT policy if
its condition is secret-dependent. Compared to the dynamic
analysis approach used by Schneider et al. [34], our approach

3

is much cheaper and can detect all such leakages just by com-
piling the program with CT-LLVM.
Trade-offs. Our approach over-approximates that all select
instructions will be converted to conditional branches in the
machine code. Due to the complexity of the backend opti-
mization, it is unclear under which combination of optimiza-
tion flags and target platforms, the select instruction will
be lowered to conditional branches. However, we find that
starting from LLVM18, if the select instruction is lowered
to a conditional move, it can always be converted to a con-
ditional branch with flag x86-cmov-converter-force-all.
This indicates that with the progress of LLVM, new flags
can be added to control the optimization of select instruc-
tions. Therefore, we argue that only completely removing the
select instruction from the IR can prevent such leakages.

3.3 Usability and Maintenance
So far, we have discussed two important criteria for CT anal-
ysis: soundness and detecting both platform-independent and
dependent CT violations. We now discuss how we make CT-
LLVM usable and maintainable.
Minimize False Positives. CT-LLVM minimizes false posi-
tives by performing flow-sensitive and context-sensitive taint
analysis to track the propagation of secrets. Flow-sensitive
analysis is achieved by the nature of def-use chains and the
reachability analysis implemented in LLVM for alias analysis.
Context-sensitive analysis is achieved by inlining functions
with an API provided by LLVM. We note that neither of
two sound LLVM-based CT analysis tools proposed in re-
cent years, Flowtracker [2] and CT-Checker [33], supports
both flow-sensitive and context-sensitive analysis at the same
time. Specifically, Flowtracker does not reason about invoked
functions and is flow-insensitive, while CT-Checker is flow-
insensitive but context-sensitive.

We adopt a type system to further filter false positives
according to a common assumption in CT threat model: ad-
dresses, unless tainted, are considered public. In fact, the only
source of false positives in CT-LLVM comes from the alias
analysis, which is conservative, implemented in LLVM. How-
ever, we argue that the false positives caused by alias analysis
can possibly be reduced with the improvement of LLVM.
Usability. We implement CT-LLVM as a LLVM plugin,
which can be easily integrated into the compilation process.
Specifically, it can be integrated into GitHub Continuous In-
tegration (CI), as GitHub CI has LLVM pre-installed. CT-
LLVM supports two ways to use. First, it can be invoked
when compiling the program. The user only needs to pass
a flag -fpass-plugin=ctllvm.so to clang to enable CT-
LLVM. Compared to other tools that analyze LLVM IR pro-
grams [2, 33, 47], CT-LLVM does not require the user to first
convert the program to an alternative form, such as .bc or .ll
files. Our approach largely ease the integration of CT-LLVM
into the development pipeline of cryptographic libraries.

Second, CT-LLVM can be used as a standalone tool to an-
alyze LLVM IR programs “decompiled” from binaries. This
is achieved by keeping IR instructions in the binary when
compiling the program with -fembed-bitcode flag. This ap-
proach also does not require changes to the compilation pro-
cess, and it benefits the sound analysis by putting all function
implementations in the same file. Therefore, more functions
can be inlined for sound analysis.
Annotation. CT-LLVM does not force the user to annotate
the program to specify secrets. Instead, it can automatically
analyze all function arguments as if they are secret. After
the analysis, CT-LLVM generates a report for each tainted
function argument, reporting whether it breaches the CT pol-
icy at which line of code. The user only needs to identify
whether arguments that breach the CT policy are secret or not.
In contrast, it does not matter whether an argument may hold
a secret when it never breaches the CT policy.
Maintenance. The core logic of tracking the propagation of
secrets leverages functionalities provided by LLVM. There-
fore, the maintenance of CT-LLVM is partially supported by
the open-source community of LLVM. On the other hand, CT-
LLVM serves as a glue to stick these functionalities together
for CT analysis. This makes the codebase of CT-LLVM sim-
ple and compact, which also reduces the maintenance cost.

3.4 Transparency
In the end, we discuss the transparency of CT-LLVM. The
concept is first introduced by a recent study [30], where trans-
parency means that the transformation of a program to an
alternative form does not introduce or eliminate CT viola-
tions. Transparency is essential for the soundness of the tool.
For example, binary lifter may optimize the lifted program,
just like a compiler, to improve the readability. This may re-
sult in eliminating CT violations (e.g., dead load) in the lifted
program. Similarly, Zhou et al. [47] reports that lifter used by
CacheS [39] lifts conditional moves into conditional branches,
which introduce CT violations that do not exist in the binary.
Such incorrect lifting introduces new CT violations.
Our approach. The transformation of source code to LLVM
IR is transparent if all optimizations are disabled. Hence,
using -O0 helps guarantee the transparency of the transfor-
mation. Besides the default transformation done by LLVM,
CT-LLVM further leverages the mem2reg promotion and
function inlining to improve the precision of the analysis. The
former transformation promotes stack variables that temporar-
ily hold the value of a secret to SSA variables, while the latter
transformation replaces function calls with the function body.
These two transformations are also transparent, as they do not
introduce or eliminate CT violations.
Trade-offs. CT-LLVM operates under all optimization levels
to make the tool usable. Since optimizations may remove
codes, such as dead loads or branches, it is possible that CT-
LLVM may not be transparent under optimization levels other

4

than -O0. We make this trade-off to make CT-LLVM usable,
and state optimizations affect the transparency of CT-LLVM.

3.5 Summary of Design Choices
In summary, CT-LLVM is a flow-sensitive and context-
sensitive CT analysis tool that supports transparent transfor-
mation of source code to the interpretation analyzed by the
tool. It has two modes to prove the absence of CT violations
and detect CT violations, respectively. Although CT-LLVM
analyzes platform-independent LLVM IR programs, it sup-
ports detecting platform-dependent CT violations that are
introduced by the select instruction. Since CT-LLVM is
implemented as a LLVM plugin and leverages functionalities
provided by LLVM, it can be easily integrated into existing
development pipelines and has a low maintenance cost.

4 LLVM Features for CT Analysis

In this section, we present LLVM features that supports our
sound analysis mechanism. We begin by introducing the
static single assignment (SSA) form, which is the founda-
tion for compiler analysis and optimization. Next, we delve
into LLVM’s implementation of the def-use chain and alias
analysis, highlighting how they contribute to the CT anal-
ysis. In the end, we describe how we make alias analysis
flow-sensitive with reachability analysis.

4.1 LLVM’s Static Single Assignment
Static single assignment (SSA) assigns each SSA value only
once and creates a new SSA value whenever it gets reassigned.
Presenting the code in SSA form largely simplifies the depen-
dency analysis and thus is widely used in compilers.
SSA Form in LLVM. LLVM also structures its intermedi-
ate representation (IR) in SSA form. However, by default, it
avoids introducing multiple SSA values for the same variable
by always spilling SSA values to the stack. Therefore, the
SSA value is loaded from the stack whenever needed and
stored back after it is modified. Data flow analysis does not
benefit from such a semi-SSA form, as the data propagation
is not explicitly represented in SSA form. To convert such
IR into a strict SSA form, LLVM provides the mem2reg pass,
which promotes stack operations to SSA values. Specifically,
this pass replaces pairs of load and store operations with a
single SSA value. Our analysis is conducted on this strict SSA
form, obtained by applying the mem2reg pass.
Example. To illustrate the transformation from source code
to strict SSA form, we present a simple C function and its
corresponding LLVM IR in Figure 1. Later, we reuse this ex-
ample for demonstrating LLVM’s data-dependency analysis.
The function takes a public value pub and a secret value sec
as inputs. An internal variable, tmp, is first assigned the value
of sec incremented by one. Then this value is assigned a new

value depends on the value of pub. In the end, the function
checks if tmp is non-zero. This operation may or may not leak
the secret value, depending on the value of pub.

The IR in strict SSA form is shown on the right side of Fig-
ure 1. We highlight the SSA variable that represents tmp in
red. As we can see from the IR, different SSA values are
used to represent the same variable at different points in the
program. Particularly, the conditional update of tmp based
on pub is represented by a phi instruction, which selects the
value of tmp based on the predecessor block. With the phi
instruction, the compiler easily knows that tmp can potentially
hold zero or sec based on the value of pub.

1 func(pub, sec) {
2 tmp = sec + 1;
3 if (pub)
4
5 tmp = 0;
6 else
7 tmp = sec ;
8
9 if (tmp) { ; }

10
11 }

C Code

1 define @func(%0, %1) {
2 %2 = add %1, 1
3 %3 = icmp ne %0, 0
4 br i1 %3, label1 , label2
5 label1 : br label3
6 label2 : br label3
7 label3 : %4 = phi [0, label1],
8 [%1, label2]
9 %5 = icmp ne %4, 0

10 br i1 %5, label4 , label5
11}

LLVM IR

Figure 1: An example LLVM IR in strict SSA form

4.2 LLVM’s Def-Use Chain
Based on the SSA form, LLVM maintains a def-use chain
for each SSA variable, which records the direct use of the
variable. In other words, the chain does not track the indirect
use of a variable. For example, the def-use chain of x contains
p := x+1 but do not contain the use of p. However, we can
easily extend the def-use chain by recursively querying the
def-use chain of the uses (e.g., query the use of p in this case).
Def-Use Chain for CT Analysis. We leverage the def-use
chain to track the propagation of secrets, which we refer to
as taint source. Particularly, we taint a secret value and then
recursively query the def-use chain to find all operations that
depend on the secret. Once we have a complete list of the
propagation of the secret, we can search for CT violation.
Soundness Discussion. Since the def-use chain operates on
the SSA form, it can capture the entire propagation of a secret
through SSA values. Therefore, the CT analysis based on the
def-use chain is sound when the secret is never stored to the
memory. Once the secret has been stored to the memory, the
def-use chain loses the track of the secret as it cannot reason
whether a variable is loaded from the same or aliased location
that stores the secret.
Application Demo. We present a demo of traversing the
def-use chain with the IR example in Figure 1. The analysis

5

starts by tainting the secret value sec and querying the def-
use chain of %1, which is the SSA variable of sec. This query
returns the uses of it at line 2 and line 7. Both line 2 and line 7
define new SSA values, %2 and %4, respectively. Therefore, we
query the def-use chain of %2 and %4, and find that %4 defines
a new SSA variable %5 at line 8. Finally, we query the def-use
chain of %5 and find that it is used in the branch instruction at
line 9. We visualize the def-use chain of %1 in Figure 2. By
recursively querying the def-use chain, we are able to build
a list that captures the entire propagation of the secret. With
a naive violation detection rule, which marks a CT violation
whenever a branch is found in the list, we can conclude that
the function violates the CT policy.

%1

%2

%4 %5 br

Figure 2: A visualized def-use chain of sec.

4.3 LLVM’s Alias Analysis
Alias analysis determines whether two pointers point to the
same memory location. This feature perfectly addresses
the limitation of the def-use chain, which cannot determine
whether the address of a load operation is aliased with the
address of a store operation.
Alias Analysis for CT Analysis. We use alias analysis to
track the propagation of a secret across memory operations.
Specifically, we query the alias analysis API provided by
LLVM with the addresses of a store and a load operation. We
add the loaded value to the taint list if the API suggests that
the two addresses are aliased. Then, we query the def-use
chain of the loaded value to enrich the taint list.
Soundness Discussion. With alias analysis, we can track
the propagation of a secret across memory operations. By
incorporating alias analysis with the def-use chain, we are
able to capture the entire propagation of a secret through
both SSA variables and memory operations. Therefore, CT
analysis based on the def-use chain and alias analysis is sound.
LLVM’s Alias Analysis. LLVM implements multiple alias
analysis algorithms, however most of them are implemented
in an external analysis pass [28], and have long been depre-
cated 1. We leverage the core API provided by the release
version of LLVM, called BasicAA, for alias analysis.

The alias analysis we leverage is field-sensitive, but not
context-sensitive or flow-sensitive. Furthermore, the analy-
sis is conservative to ensure the correctness of the analysis.

1https://github.com/securesystemslab/poolalloc

Therefore, LLVM’s alias analysis may over-approximate the
alias relationship between two pointers, which may introduce
false positives. For each query, it returns four possible out-
comes: MustAlias, NoAlias, PartialAlias, and MayAlias. The
first two outcomes indicate that two pointers do or do not point
to the same memory location. PartialAlias indicates that two
pointers point to overlapping memory locations. MayAlias
is returned when the analysis cannot determine the alias rela-
tionship between two pointers. Therefore, even two pointers
are not aliased, the analysis may still return MayAlias.
Algorithm of Incorporating Alias Analysis. In a nutshell,
the algorithm iterates each tainted store operation and checks
whether the store address is aliased with any untainted load
operation in the target function. Therefore, a nested loop is
used to iterate all tainted store operations and untainted load
operations. We store the results that LLVM can confirm in
one list, and the results that LLVM cannot confirm in the
other list. That is, the load operations that are MustAlias or
PartialAlias with the store operation are stored in one list,
while the load operations that are MayAlias with the store
operation are stored in another list. We present the detailed
algorithm, Algorithm 1, in the Appendix.

4.4 LLVM’s Reachability Analysis
Although the algorithm is sound, it introduces false positives
due to the context-insensitive and flow-insensitive nature of
the alias analysis. The former limitation can be addressed by
inling functions and the later limitation can be addressed by
reachability analysis, which tells whether a load operation is
reachable from a store operation. We discard the alias analysis
results if a load is not reachable from a store.
Soundness Discussion. Reachability analysis does not affect
the soundness of the analysis. In contrast, it reduces false
positives by making the alias analysis flow-sensitive.
Application Scenario. We present a simple example where
reachability analysis is applicable in Listing 1. The first ele-
ment of a public array, public_array, affects the control flow
twice at line 2 and line 4. However, the first branch is benign,
as the array does not hold a secret at that time. Without reach-
ability analysis, both branches are reported as CT violations
as they read from addresses that are aliased with the store op-
eration at line 3. With reachability analysis, we can determine
that the first branch is not reachable from the store operation,
so that we can filter the false positive.

1 func (secret , public_array) {
2 if (public_array [0]) { ; } Benign
3 public_array [0] = secret ;
4 if (public_array [0]) { ; } CT Violation
5 }

Listing 1: Benefit of reachability analysis.

LLVM’s Reachability Analysis. In principle, reachability
analysis can be done by traversing the control flow graph

6

https://github.com/securesystemslab/poolalloc

1. Locate
Taint/Declassified

Source

Def-Use

2. Build
Taint Lists

Taint Declassify

Def
List

Alias Analysis

Def
List

May
ListMay

Must/Partial

Check & Type

3. Check
Violations

4. Report
Violations

May
Violate

Def
Violate

Figure 3: CT-LLVM’s CT Analysis Logic Overview.

(CFG) and checking whether one instruction is reachable
from another. LLVM eases this process by providing an API
that already implements the reachability analysis, returning
true if the destination instruction is reachable from the source
instruction, and false otherwise. Therefore, we only need to
call the API with the two instructions and incorporate the
results into the alias analysis to make it flow-sensitive.

5 CT-LLVM

In this section, we explain how we leverage the aforemen-
tioned LLVM features to implement CT-LLVM. The tool
first transforms the IR code with mem2reg and function in-
lining to a form that is suitable for analysis. Then, it takes
four stages to detect CT violations. We first explain the four-
stage analysis logic. Then, we explain how we define the type
system to reduce false positives. In the end, we explain how
CT-LLVM supports proving the absence of CT violations
and detecting CT violations in two different analysis modes.

5.1 CT Analysis Mechanism
We present a high-level diagram of the CT analysis logic in
Figure 3. First, CT-LLVM locates the taint and declassify
sources. Second, it builds two taint lists by leveraging the
def-use chain and alias analysis. Third, it iterates each tainted
instruction and checks whether it violates the CT policy. Fi-
nally, it generates a summary for each taint source and reports
CT violations with source code information.
Stage 1 Locate Source. In the first stage, CT-LLVM locates
the taint and declassify sources in two different ways. Taint
source stands for variable that is marked as secret, while de-
classify source stands for variable that is marked as public.
First, the user can specify which variable to taint or declassify
by providing its name and type. This method is applicable to
scenarios where the user has knowledge on what variables, in-
cluding both function arguments and internal variables, are se-

cret or public. Alternatively, CT-LLVM assumes all function
arguments are secret and taints all of them. This method is ap-
plicable to scenarios where the user cannot identify all secrets
in a cryptographic library. It may introduce false positives
due to over-approximation. However, CT-LLVM provides
an analysis summary for each analyzed taint source, allowing
the user to inspect the results of interest.
Stage 2 Build Taint Lists. After locating the taint and de-
classify sources, the analysis proceeds to track the explicit
data flow of the taint source by building two taint lists. Both
taint lists contain results of traversing the def-use chain, while
one contains the MustAlias and PartialAlias results from the
Alias Analysis and the other contains the MayAlias results.

CT-LLVM first recursively traverses the def-use chain
of the taint source to build a list called the Def List. This
list contains instructions that use values propagated from the
taint source. Before inserting an instruction into the list, CT-
LLVM checks if it is an immediate use of a declassified
source and skips it if so. Each instruction in the Def List is
typed to reduce false positives. In the next section, we elabo-
rate on the type system. Since the SSA form is already flow-
sensitive, CT-LLVM does not need to check the reachability
of the inserted instruction in this step.

To track the propagation through memory operations, CT-
LLVM enriches the Def List by leveraging the Alias Analy-
sis. We have already illustrated the algorithm fo doing so in
Section 4.3. In practice, only store operations that store a non-
declassified tainted variable into the memory are evaluated.
Similarly, only those load operations that reachable from the
store operation being evaluated are examined. In addition, we
also leverage the LLVM intrinsic functions to track the taint
propagation through memcpy and memmove functions that has
data length known at compile time.

LLVM’s alias analysis provides conservative results by re-
turning MayAlias, which is the main source of false positives.
To distinguish precise results from conservative results, we
maintain two separate lists to keep the results of MustAl-
ias and PartialAlias separate from MayAlias. The results of
MustAlias and PartialAlias are merged with the Def List from
the first step, while the results of MayAlias are kept in the
other list, called the May List. Same as the first step, each in-
struction is checked for immediate use of declassified sources
and typed when updating the corresponding list. We recur-
sively traverse the def-use chain and query the Alias Analysis
to complete the propagation of variables loaded from aliased
addresses. We note that the def-use chain of tainted variables
from the May List is also stored in the May List.
Stage 3 Check CT Violations. After obtaining two complete
lists of tainted instructions, CT-LLVM then checks whether
they breach the CT policy. By default, CT-LLVM checks for
three types of CT violations. First, it checks whether a tainted
variable, labelled as H, is used to compute the condition of a
branch instruction, which can be leaked through branch pre-
dictor attacks [20, 46]. Second, it checks whether the address

7

of a store/load operation has been tainted and labelled as H.
If so, the secret can be leaked through cache attacks [31, 44].
Third, it checks whether a tainted variable, which is labelled
as H, is used as an operand of variable-time instructions, such
as divisions. If so, the secret can be potentially leaked through
timing attacks [4, 11]. In addition, the user could also specify
other sources of CT violations, such as the select instruction,
to fit the analysis for different threat models.
Stage 4 Report CT Violations. As the last stage of the
CT analysis, CT-LLVM reports the found violations. First,
the tool reports an analysis summary for each taint source,
including their name in the source code and the number of
each type of CT violations. Second, the tool locates the source
code that violates the CT policy and prints the line number
and the source code. In addition, the user could choose to
dump the entire analysis procedure to reason how the tainted
source propagates to the printed code. The dump reports each
tainted source code and the reason of tainting it.

5.2 Type System
We now elaborate how we define the type system to reduce
false positives. In a nutshell, we leverage a common assump-
tion in the CT threat model that an address, which is not
computed with secret, is public, while the value loaded from
it is secret. Therefore, the goal of the type system is to distin-
guish whether a tainted variable is propagated from a public
address or a secret value.
Motivating Example. We present a motivating example
in Figure 4. On the left is the source code and on the right
is the corresponding LLVM IR code. The function takes a
pointer that points to a memory region where secrets are
stored in. To prevent null pointer dereference, it first checks
if the pointer is valid before reading the first element pointed
by the pointer. If the pointer is valid, the function then checks
if the first element pointed by the pointer is zero. Validating a
pointer before dereferencing it is a common practice to avoid
null pointer dereference and thus frequently appears in the
source code. Apparently, validating a pointer does not leak
secret information. However, our empirical study finds that
both Ctchecker [47] and Flowtracker [33] report CT violations
at line 2 and line 7. The former violation is a false positive
while the latter one is a true positive. We note that Ctchecker
does not use type system at all while Flowtracker uses a
variation of flow-sensitive type system [23].
Typing Rules. Our type system has a semi-lattice structure,
which has three types {H,L,⊥}. We use H for secret-related
variables, L for public-related variables. By default, all vari-
ables are typed as ⊥, indicating no knowledge of their type.

With this semi-lattice type system, we define three typing
rules to systematically distinguish between public addresses
and secret values. ❶ First, we consider addresses, including
those pointed by pointers, (e.g., pointer, struct, array) are pub-
lic, unless they are computed with secrets. ❷ Second, we type

1 func(int* s_ptr){
2 if (! s_ptr)
3 { return ; }
4
5
6
7 if (s_ptr [0])
8 { return; }
9

10
11 }

C Code

1 define @func(i32* %0) {
2 L %1 = icmp eq i32* %0, null
3 ⊥ br %1, EXIT, NEXT1
4 L NEXT1: %2 = getelementptr
5 i32* %0, i64 0
6 H %3 = load i32 , i32* %2
7 H %4 = icmp ne i32 %6, 0
8 ⊥ br i1 %4, NEXT, label %9
9 ⊥ NEXT2: br EXIT

10 ⊥ EXIT: RET
11 }

LLVM IR

Figure 4: A motivating example for removing false positivevs
with type system.

all variables loaded from the memory as H unless it has been
previously declassified or labelled as L. ❸ Third, we type
a variable as H if it is propagated from any variable that is
labelled as H. The third typing rule is common in information-
flow analysis, while the first two rules are explicitly defined
for the CT threat model.
Application Demo. We explain how the type system re-
moves the false positive while keeping the true positive with
the LLVM IR code in Figure 4. CT-LLVM first taints the
SSA value of s_ptr as the taint source. Since the taint source
is never stored in the memory, simply traversing the def-use
chain is sufficient to capture the entire data flow of the taint
source. The taint source, %0 has two immediate uses, one
computes the branch condition at line 2 and the other com-
putes the memory address at line 4. Since both of them are
not loaded from the memory, CT-LLVM types them as L.
According to our rules of detecting CT violation, the branch
at line 2 is considered as benign. At line 6, the computed
address is used to load a value from the memory. According
to our second typing rule, a value loaded from memory is
considered as secret. Therefore, CT-LLVM types the loaded
value as H. It then propagates the typed value according to the
third typing rule. Consequently, the branch condition at line 7
is inherently typed as H and is considered as a CT violation.
Customization. We implement the type system as a plu-
gin of CT-LLVM. Therefore, it can be updated, replaced or
even removed to serve for different threat models while not
affecting the other parts of the analysis. For example, the user
can remove the first typing rule if the threat model assumes
addresses are secret.

5.3 Proof Mode
CT-LLVM provides two modes for CT analysis, Proof Mode
and Violation Finding Mode, focusing on two analysis tasks.
Although both modes can find CT violations, the Proof Mode
further ensures the absence of CT violations if no violations

8

are found. In this section, we explain how CT-LLVM op-
erates under the Proof Mode. We first define cases that are
provable by CT-LLVM, then we state the features of CT-
LLVM that are necessary for the sound analysis. In the end,
we discuss the limitations of the Proof Mode.
Provable Cases. As a common limitation of modular static
analysis, CT-LLVM cannot analyze functions that are de-
fined in files that are not passed to the compiler. Therefore,
we force inlining all functions within the analyzed function
to ensure the soundness of the analysis. We say a function
is provable by CT-LLVM if it does not contain following
cases: ❶ recursive functions, including mutual recursion; ❷
functions that contain indirect calls; ❸ functions that contain
inline assembly; ❹ functions that are declared but not defined;
❺ and memcpy that has run-time determined data length.
Necessary CT-LLVM Features. Our sound analysis is built
on the ability to capture all explicit data flow of a taint source.
Therefore, CT-LLVM enforces using the def-use chain and
all results of alias analysis to track the propagation of the taint
source under the Proof Mode. The user could specify the taint
source or chose to taint all function arguments.
Limitations. The Proof Mode has two limitations. First,
it cannot analyze all functions due to the aforementioned
limitations. Second, CT-LLVM relies on the correctness and
precision of the alias analysis implemented in LLVM.

5.4 Violation Finding Mode
The goal of the Violation Finding Mode is to cover cases that
are not provable by the Proof Mode. Since it does not aim
for a sound analysis, the user can selectively enable the alias
analysis and function inlining to find CT violations while
ignoring the impact of function calls and alias analysis. In the
next section, we show that this mode is effective in finding
CT violations just as other CT analysis tools.

6 Reliability Evaluation

Our focus in this paper is not confirming known CT vulnera-
bilities but automatically detecting CT violations and prove
their absence in a large-scale manner. However, confirming
known CT vulnerabilities is an effective way to demonstrate
the tool is reliable. Therefore, following the routine in the
literature, we first evaluate the reliability of CT-LLVM by
confirming known CT vulnerabilities.

6.1 Benchmark Suite and Tool Selection
We build the benchmark suite by referring to previous
works [7, 12, 13, 15, 16, 17, 25, 38, 39]. We find that most of
the previous work target at two types of CT violations. That is,
the table lookup operations in symmetric ciphers (e.g., AES)
and branches in modular exponentiation for asymmetric ci-
phers (e.g., RSA, ECC). We thus pick five different algorithms

that have been practically exploited according to a survey of
micro-architectural timing attacks in cryptography [29]. The
vulnerable algorithms and their corresponding cryptographic
scheme are presented in Table 1. Our interest is not in con-
firming the same algorithm that is implemented in different
libraries. Therefore, we only pick one implementation for
each algorithm in our benchmark suite. Besides the five algo-
rithms, we also include a recently discovered vulnerability in
Kyber [11], which leaks secrets through a secret-dependent di-
vision. In the end, our benchmark suite contains six different
algorithms 2 that cover all three types of CT violations.

Tool Selection We select ctgrind [26] and Flowtracker [33]
for comparison. We choose ctgrind as it is the only popular
tool used by cryptographic library developers [24]. We choose
Flowtracker as it is another LLVM-based tool that has a sound
analysis mechanism. Another important reason is that we are
able to install, configure and use it without any issues.

6.2 Evaluation Results

We run CT-LLVM in the Violation Finding Mode, without
inlining functions, and report the results with different com-
bination of LLVM features in Table 1. We mark the leakage
source that has been exploited by practical attacks, and the
number of found CT violations for each tool in the table.

Confirm Leakages. We confirm that all three tools can find
CT violations that have been previously exploited. The excep-
tion is Flowtracker and the release version of valgrind do not
support detecting variable-time CT violations. Interestingly,
we find that CT-LLVM can detect all exploitable CT viola-
tions just by traversing the def-use chain. We note that it only
takes less than 50 LoC to implement this analysis mechanism.

False Positive. We then manually inspect the false positives
in the results, except for flowtracker which reports too many
CT violations. We confirm that ct-grind does not report any
false positive, which is expected as it only reports violations
at lines that are actually executed. Furthermore, CT-LLVM
only reports false positives in the case of ECDSA with sliding-
window. We manually confirm that these false positives are
caused by the conservative alias analysis in LLVM.

Variant Number of Found Violations. In addition to
the false positives, our manual inspection also finds that
ct-grind does not report all CT violations at lines of code
that got executed. A simple example is presented in Listing 2,
where x is marked as a secret and b is a secret-dependent vari-
able. We find that ctgrind reports a violation at line 2 but not
at line 3. This explains why ctgrind reports fewer violations
than CT-LLVM in some tests

2The implementation we chose are from bearssl-0.6, gnupg-1.4.13, gnupg-
1.4.14, openssl-1.0.1e, openssl-1.0.1e and PQClean-round3 in the order of
the table.

9

Table 1: Results of Reliability Evaluation. We manually verify whether each violation is true or false
positive for ctgrind and CT-LLVM. The number of them is reported in the form of T/F.

Cryptography Implementation Leakage Source Flowtracker ctgrind CT-LLVM
Def Def + MustAlias Def + Alias

AES T-table [10, 31] Cache x 32 32 32/0 32/0 32/0 32/0

RSA Square-and-Multiply [44] Branch x 1 86 3/0 5/0 5/0 5/0
Square-and-Multiply-Always [46] Branch x 1 88 3/0 6/0 6/0 6/0

ECDSA Montgomery-Ladder [5] Branch x 1 94 2/0 2/0 2/0 2/0
Sliding-Window[9] Branch x 1 207 12/0 7/0 7/0 56/42

Kyber512 Division [11] Variable-Time x 1 – – 1/0 1/0 1/0

1 mark_secret(&x, sizeof (x));
2 b = table [x]; Detected
3 while (b) {...}; Not Detected

Listing 2: ctgrind only reports the first CT violation.

6.3 Summary of Reliability Evaluation
We note that this is expected that all tested tools perform well
in finding known CT violations. Furthermore, the difference
in the number of found violations is also expected, as each
tool has its own analysis mechanism. Hence, finding more
CT violations does not necessarily mean the tool is better
than others. For example, although ct-grind finds fewer
violations than CT-LLVM in testing RSA, it still rejects the
leaky implementation. In fact, our manual efforts highlight
the difficulty of fairly comparing different CT analysis tools
by only counting the number of found violations.

7 Proving Kyber Constant-Time

In this section, We demonstrate how CT-LLVM works in
the Proof Mode with an example of Kyber implemented in
PQClean 3. We choose Kyber, now known as ml-kem, as our
example because it is selected by NIST as a standard post-
quantum KEM algorithm. Therefore, it is crucial to ensure
that Kyber is CT. We first detail the steps we take to evaluate
Kyber, which also serves as a tutorial of using CT-LLVM.
Then, we report the results of the proof, showing that Kyber’s
rejection sampling violates the traditional CT policy.

7.1 Proof Procedure
To demonstrate the automation of CT-LLVM, we do not
make efforts on annotating secrets in the code. Therefore,
we configure CT-LLVM to taint all function arguments. CT-
LLVM runs in the Proof Mode and inline all function calls.

We compile Kyber512 with clang-18 under the optimiza-
tion level -O3 provided by the default Makefile. In addition,

3https://github.com/PQClean/PQClean

we pass the compilation flag -fembed-bitcode to embed
LLVM IR into the object file. After obtaining the object file,
we extract the LLVM IR code with the llvm-dis tool. The
output is stored in several IR files, which corresponds to their
own source files. We thus merge them into one IR file with
the llvm-link tool to facilitate function inlining. Finally, we
leverage the opt tool to invoke the CT-LLVM pass to analyze
the merged IR file. We note that the entire analysis process
does not require any source code modification or changes to
the building process of the project. Furthermore, the tools we
rely on to extract, merge and analyze the IR code is provided
by the official LLVM toolchain.

7.2 Proof Results
We conduct our experiment on i7-1165G7 CPU that runs
Ubuntu 22.04TLS. The entire analysis procedure is automatic
without any human efforts. In 5.5 seconds, CT-LLVM ana-
lyzes 45,316 lines of IR code and reports that 30 out of 41
functions are CT, no matter their inputs are secret or not. Since
CT-LLVM reports each line of source code that reported as
a CT violation, we can manually go through the results and
confirm whether they are true or false positives.
SELECT Instruction. First, we find select in-
struction in four functions, poly_tobytes, polyvec_tobytes,
polyvec_compress and poly_compress. We provide an ex-
ample in Listing 3. The C code at line 2 checks whether
t0 is negative and adds KYBER_Q to t0 if it is. While the
source code uses bitwise operations, its LLVM IR code uses
the select operation to implement the conditional addition.
Hence, if the operation is lowered to a conditional branch, the
condition is leaked through the branch. With our best efforts,
we find that the select operation is always lowered to bitwise
operations in this case. However, we cannot guarantee that
this will always be the case, as compiler optimization strategy
is complex and changes over time.
Non-Secret CT Violations. Second, we find function
verify is considered as non-CT by CT-LLVM due to the
over-approximation of taint sources. The function compares
whether two arrays are equal by iterating the arrays in a loop,
which leaks the length of the arrays. If the length of the ar-

10

https://github.com/PQClean/PQClean

1 poly_tobytes :
2 t0 += ((int16_t) t0 >> 15) & KYBER_Q;
3
4 %8 = icmp slt i16 t0 , 0,
5 %9 = select i1 %8, i16 KYBER_Q, i16 0,
6 %10 = add i16 %9, %7,

Listing 3: select instruction for & operation.

rays is a secret, then it leaks through the number of iterations.
Otherwise, the function is CT.
Rejection Sampling. Third, we find five functions are re-
jected by CT-LLVM as they involve rejection sampling
when generating random numbers. Rejection sampling checks
whether the generated number is within a range and regener-
ates a new number if it is not. Hence, conditional branches
are used to check whether a random number is within a range.
Although these branches do violates the traditional CT policy,
it is still CT under a probabilistic notion of CT [3].
False Positive. In the end, we find that CT-LLVM reports
one false positive in the function shake256_rkprf due to the
conservative alias analysis in LLVM. LLVM’s alias analysis
considers two array indexes may aliased, although they are
not at run time. A detailed discussion is in Appendix A.
Summary. To summarize, CT-LLVM automatically proves
30 out of 41 functions are always CT without annotating se-
crets in the code. Four functions are rejected because they
contain select instructions and one function is rejected due
to the over-approximation of taint sources. One function is
rejected due to the conservative alias analysis in LLVM. The
rest five functions are not CT due to the use of rejection sam-
pling. Giving the fact that only one false positive is reported
among 41 tests, we believe that CT-LLVM is reliable in prov-
ing CT in cryptographic libraries. We provide a full list of the
proved functions in Table 4.

8 Large-Scale Analysis

In this section, we leverage the technique we present in the last
section to automatically analyze nine popular cryptographic
libraries. 4 Due to the limitation of static information-flow
analysis, CT-LLVM cannot soundly analyze all functions.
Therefore, the first goal of our large-scale analysis is to un-
derstand the number of proveable functions in the wild and
the main reasons that make functions to be unprovable. The
second goal is to investigate how many functions can be auto-
matically proved to be CT without human efforts of annotating
secrets in the code. The third goal is to find CT violations in
the libraries. Due to the page limit, we only selectively report
CT violations that we manually verified.

4gmssl (commit:34fa519dc0f94a9a3995d9daf09c84cdac37abd8), bearssl-
0.6, wolfssl-5.7.6, s2n-tls-1.5.10, libgcrypt-1.11.0, mbedtls-3.6.2, Tongsuo-
8.4.0, openssl-3.4.0, boringssl-0.20241024.0

8.1 Analysis Setup

Same as the setup in the Kyber example, we configure CT-
LLVM to run in the Proof Mode and taint all function ar-
guments as secrets. In addition, we set a limitation on the
number of inlining levels and the number of memory opera-
tions for analysis to stop the analysis when it takes too long to
finish. Specifically, we set the maximum inlining level to 10
and the maximum number of memory operations for analysis
to 2,000. Therefore, the functions we prove are not only fully
inlined but also under a certain size.

8.2 Analysis Results

We present the statistics of the analysis results in Table 2.
In the table, we list the number of functions in each library
(All), and the percentage of provable functions (Provable). We
compute the percentage of functions verified by CT-LLVM
(CT) with respect to all functions and provable functions,
respectively. In addition, we report the time cost for analyzing
each library in seconds.

Table 2: Statistics of Automatic Proof Analysis on
Cryptographic Libraries.

Library All Proverable CT Time
(seconds)All Provable

GmSSL 1550 33% 9% 28% 87
BearSSL 1268 70% 48% 69% 145
wolfSSL 1802 42% 17% 41% 38
s2n-tls 1911 17% 14% 81% 14
Libgcrypt 2716 35% 22% 62% 52
MbedTLS 1548 33% 15% 45% 23
BoringSSL 5624 29% 21% 72% 37
Tongsuo 12576 32% 25% 77% 220
OpenSSL 14351 32% 24% 77% 290

Percentage of Provable Functions. We find that the percent-
age of provable functions is not consistent across different
libraries. In contrast, it varies from 17% to 70%, with an aver-
age of 36% of the functions are provable. In fact, such a large
variance is expected, as libraries, such as s2n-tls, that relies
on external cryptographic libraries, have fewer functions that
can be inlined. On the other hand, having 36% of the functions
provable is a good start towards automatically proving CT for
all functions. Specifically, the ability of proving 70% of the
functions in BearSSL is a very promising result. This shows
that cryptographic libraries can be designed and implemented
in a way that facilitates large-scale automatic CT analysis.
Percentage of CT Functions. Compared to the various
percentage of provable functions, the percentage of CT func-
tions is more consistent across different libraries. On average,
61% of the provable functions are CT. Recall that we over-
approximate the taint sources to facilitate the automatic anal-
ysis, which introduces false positives. Therefore, our results

11

Indirect Branch
48.1%

Func Declaration
43.0%

Other Reasons
Dynamic Memcpy Size (3.5%)
Over Threshold (1.5%)

Recursion (0.1%)
Inline Assembly (3.8%)

Figure 5: Distribution of reasons for unprovable functions.

show that mainstream cryptographic libraries do make efforts
to implement their functions in a CT manner.
Analysis Time. The time cost of analyzing libraries increases
with the number of analyzed functions. However, we note
that the analysis overhead is relatively low. Specifically, it
takes less than three minutes to analyze 70% of the functions
in BearSSL. The low overhead of the analysis process sug-
gests that CT-LLVM can be integrated into the development
pipeline with a relatively low cost.

8.3 Reasons for Unprovable Functions
We then investigate the reasons that make functions unprov-
able and present the distribution of the reasons in Figure 5. As
shown in the figure, two main reasons make functions unprov-
able are the use of indirect branches and external functions
that cannot be inlined. They account for more than 90% of the
unprovable functions. This also indicates that a cryptographic
library using fewer indirect branches and external functions
can have more functions to be soundly analyzed. According
to Table 2, BearSSL is such a library that implements fewer
indirect branches and external functions, which makes 70% of
its functions provable. Besides, the use of inline assembly and
using run-time determined memcpy size also make functions
unprovable. We note that memcpy whose size is determined at
runtime cannot be soundly analyzed by static analysis, unless
we assume a maximum size for the memcpy operation. In the
end, only 1.5% of the unprovable functions are due to the
limitation we set to prevent the analysis from taking too long
to finish. Compared to the other reasons, this number is small
enough to be ignored.

8.4 Report CT Violations
Based on the analysis summary, we find two interesting facts
about the CT violations in the libraries. First, the libraries
adopt fewer CT implementations to functions that are not
directly used in cryptographic schemes. Second, well-known
CT vulnerabilities still exist in some libraries. We now report
several CT violations that we manually verified.
wolfSSL. We manually inspect the results of analyzing
misc.c in wolfssl-5.7.6. We find several non-CT arithmetic
(e.g., comparison, addition) functions and data-type conver-
sion functions. An example of vulnerable comparison func-
tion is shown in Listing 4, which leaks the minimum value of
two inputs under O0 flag.

1 word32 min(word32 a, word32 b) {
2 return a > b ? b : a;
3 }

Listing 4: Non-CT Comparison.

Another example is the non-CT BytetoHex conversion as
shown in Listing 5. Although the array takes less than a cache
line size, partial bits of the input can still be leaked through
sub-cache-line accesses [35, 36].

1 char ByteToHex(byte in) {
2 char kHexChar[] = {’0’ , ’1’ , ’2’ , ’3’ , ’4’ , ’5’ , ’6’ ,
3 ’7’ , ’8’ , ’9’ , ’A’,’B’, ’C’, ’D’,’E’, ’F’ };
4 return (char)(kHexChar[in & 0xF]);
5 }

Listing 5: Non-CT Byte to Hex Conversion.

S2n-tls. We find the library using a vulnerable version of
reading and writing base64 encoded data, implemented in file
s2n_stuffer_base64.c. Similar functions in other libraries
have been exploited by previous works [35, 36]. The code in
Listing 6 checks if the input is a base64 character.

1 static const uint8_t b64_inverse[256] = {...};
2 bool s2n_is_base64_char(unsigned char c) {
3 return (b64_inverse [*((uint8_t *) (&c))]
4 != 255);
5 }

Listing 6: Non-CT Check Base64 Format.

GmSSL. First, the library contains vulnerable base64 encod-
ing and decoding functions (link) that are vulnerable to sub-
cache-line attacks [35, 36]. Second, it uses secret-dependent
division for the poly-compression function in the Kyber im-
plementation (link). Third, although the library leverages
constant-time hardware instructions (such as AES-NI and
AVX512) to implement SM4, it still uses an S-box lookup
table for the key scheduling and encryption (link). In the
end, we find a few non-CT implementations, such as non-CT
comparison (link) for SM2 signature scheme in the library.
Although some of the non-CT implementations, has its CT
version in the assembly code, they are not used by default.

9 Detect Compiler-Introduced CT Violations

In the end, we show that CT-LLVM helps detect compiler-
introduced CT violations. The methodology relies on the
observation that currently identified LLVM-related compiler-
introduced CT violations are due to the lowering of the
select instruction to conditional branches. Hence, as we
have illustrated in Section 3.2, capturing the select instruc-
tion in the LLVM IR is a cheap and effective way to detect
such violations. In this section, we conducted a large-scale
study and report the status of using select in the wild. Then
we report violations that are detected by CT-LLVM.

12

https://github.com/guanzhi/GmSSL/blob/34fa519dc0f94a9a3995d9daf09c84cdac37abd8/src/base64.c#L35
https://github.com/guanzhi/GmSSL/blob/34fa519dc0f94a9a3995d9daf09c84cdac37abd8/src/kyber.c#L515
https://github.com/guanzhi/GmSSL/blob/34fa519dc0f94a9a3995d9daf09c84cdac37abd8/src/sm4_aesni.c#L104C9-L104C12
https://github.com/guanzhi/GmSSL/blob/34fa519dc0f94a9a3995d9daf09c84cdac37abd8/src/sm2_z256.c#L167

9.1 Select Instruction In the Wild

We configure CT-LLVM in the Proof Mode and only analyze
functions that can be soundly analyzed. We trigger LLVM
issues select instructions, by compiling libraries with O3
optimization level. We report the results in Table 3, where we
present the number of analyzed functions and the percentage
of functions that contain select instructions. According to
the table, we can see that the select instruction is relatively
common in most of the tested libraries.

In fact, the idea of selecting a value based on a condition
is a common mitigation to defeat timing attacks. Such miti-
gation is usually built by storing the condition in a mask and
using branchless operations, such as val |= a & mask, to
selectively update the value. Under higher optimization lev-
els, LLVM may detect such sophisticated operations can be
simplified into a select instruction. In some cases, LLVM
lowers the select instruction into conditional moves, which
are CT. However, on platform that do not support conditional
moves, or compiler believes branches are better than condi-
tional moves, the select instruction is lowered to branches.
It is hard to anticipate whether and when the select instruc-
tion is lowered to a branch. Therefore, a conservative but safe
approach is to prevent the select instruction from appearing
in the code.

Table 3: Number of Functions that contains select

GmSSL BearSSL wolfSSL s2n-tls Libgcrypt

#Funcs 430 864 752 164 873
#Select 9% 5% 19% 0.03% 9%

MbedTLS BoringSSL Tongsuo Openssl

#Funcs 498 786 2602 2907
#Select 19% 10% 7% 8%

9.2 Report CT Violations

We manually analyze partial results and confirm that select
instructions tend to appear when fixing a CT violation or try-
ing to make the code CT with the mask technique. In this sec-
tion, we report three interesting cases that we have verified the
select instruction can be lower to conditional branches with
magic flag x86-cmov-converter-force-all in clang18.
New Violation after Fixing One. First, we find that fixing
a CT violation can sometimes lead to a new violation. For
example, wolfSSL fixes the CT vulnerability in the Base64
conversion by always accessing two cache lines and using a
mask to select the value from two cache lines (link). We find
that under O3 optimization, a select instruction is used to
conditionally select the value from two cache lines.
(Non-)CT Function Second, we find that functions partic-
ularly designed to be CT are not CT under O3 optimization.
For example, function sp_clamp_ct in wolfSSL, which is

frequently used in big number arithmetics, is particularly de-
signed to be CT (link). Similarly, the use of the mask is also
converted into a select instruction by LLVM.

Another interesting case we find is the finite-field multi-
plication for AES in GmSSL. As shown in the code snippet
in Listing 7, when the conditional move is lowered to a branch,
it leaks the top bit of the input.

1 static uint8_t x2(uint8_t a) {
2 return (a >> 7) ?
3 ((a << 1) ^ 0x1b) : (a << 1);
4 }

Listing 7: Finite Field Multiplication for AES.

9.3 Discussion

Exhausting all compiler-introduced CT violations is challeng-
ing as it is affected by many factors. For example, we find a
select operation in BoringSSL where converting ASCII to
binary is explicitly written in a CT manner (example). How-
ever, such operation only exist with llvm14 instead of llvm18.
We confirm that the operation is lowered to branches under
flag -O3 -m32 -march=i386 in clang14. Since CT-LLVM
works with LLVM14 to the latest version at the time of writing
(LLVM19), it is possible to try different versions of clang and
different optimization levels to detect more CT violations.

10 Conclusion

In this paper, we take a significant step toward automatically
analyzing cryptographic libraries for constant-time proper-
ties. We propose and implement a new CT analysis tool, CT-
LLVM, that is usable, maintainable and scalable for automatic
and sound CT analysis. With the large-scale study, we show
that on average 36% of the functions in cryptographic libraries
can be soundly analyzed without human efforts, and 61% of
the analyzed functions are CT. Based on the large-scale analy-
sis results, we also find new CT violations in the source code
or due to compiler optimizations.

According to the findings reported in this paper, several
future works can be done with CT-LLVM. First, it is possible
to annotate cryptographic code, and reason about inline as-
semblies to get more functions soundly analyzed. Second, it is
possible to extend the analysis of CT properties to speculative
CT properties, by updating the violation detection rules of
CT-LLVM. Third, since CT-LLVM is an LLVM plugin and
works with multiple versions of LLVM, more comprehensive
analysis can be done to understand which version of LLVM
under which optimization level can introduce CT violations.
Finally, an interesting direction is to transparently lift binary
code into LLVM IR, so that CT-LLVM can analyze the CT
properties of binary code.

13

https://github.com/wolfSSL/wolfssl/blob/1729d0312375ebb9d3b289337969f60ae711ef26/wolfcrypt/src/coding.c#L93
https://github.com/wolfSSL/wolfssl/blob/1729d0312375ebb9d3b289337969f60ae711ef26/wolfcrypt/src/sp_int.c#L8023
https://godbolt.org/z/7Gs53hTG6

11 Responsible Disclosure

We have shared our findings and our tool 5 with the nine
cryptographic libraries that we have analyzed in this paper.
We first report the results of the responsible disclosure for
libraries that we have identified CT violations in this paper.
Then we report the status of the responsible disclosure for
the rest of the libraries. During the discussion with wolfSSL
and GnuPG teams, we found and reported two new CT viola-
tions in wolfSSL and Libgcrypt. This shows that completely
avoiding CT violations in a large codebase is challenging.

wolfSSL. WolfSSL acknowledged our findings and fixed the
reported source-code level CT violations in a recent pull re-
quest (PR). Currently, wolfSSL is working on fixing compiler-
introduced CT violations reported in this paper.

During the discussion, we helped check whether a non-
table-based implementation of Base64 decoding is CT (link).
Interestingly, CT-LLVM reports that the implementation
is CT at the source-code level but may not be CT with
compiler optimizations, due to the use of select instruc-
tion. Our further investigation confirms that under O3 and
x86-cmov-converter-force-all flags, branches are intro-
duced to the binary code. This again highlights the difficulty
of writing CT code. A demo is available at here.

Additionally, we would like to thank the wolfSSL team for
trying CT-LLVM when fixing the CT violations and sharing
their experience with us.

s2n-tls. AWS Security quickly responded to our report and
fixed the reported CT violation in a recent pull request (PR).

BoringSSL. We have reported the found compiler-introduced
CT violations in BoringSSL through the Google Bug Hunter
system. The responsible team has labelled the reported issue
with severity 2 and is considering the fix.

GmSSL. We have contacted the maintainer of GmSSL on
23/01/2025 and reported the found CT violations. Till the
time of publication, we have not received any response.

Libgcrypt. We have contacted the security team of Libgcrypt
on 23/01/2025 and shared our research findings. The secu-
rity team thanked us for sharing the findings. During the
follow-up discussion, we have notified the security team that
_gcry_mpih_cmp_ui implemented in file mpih_cmp_ui is not
CT. The security team acknowledged the issue and has fixed
it in a recent commit (link).

MbedTLS, OpenSSL. MbedTLS thanks us for sharing the
research findings and OpenSSL has shared our findings to the
openssl-security list for consideration.

BearSSL, Tongsuo. We have contacted the maintainers
of BearSSL and Tongsuo on 23/01/2025 and shared the
manuscript of this paper. Till the time of publication, we
have not received any response.

5Available at https://github.com/Neo-Outis/CT-LLVM-Artifact

References

[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
On the power of simple branch prediction analysis.
IACR Cryptol. ePrint Arch., page 351, 2006.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
François Dupressoir, and Michael Emmi. Verifying
constant-time implementations. In USENIX Security,
pages 53–70, 2016.

[3] José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and
Dominique Unruh. Leakage-free probabilistic jasmin
programs. In CPP, pages 3–16, 2025.

[4] Marc Andrysco, David Kohlbrenner, Keaton Mowery,
Ranjit Jhala, Sorin Lerner, and Hovav Shacham. On
subnormal floating point and abnormal timing. In IEEE
SP, pages 623–639, 2015.

[5] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Taka-
hashi, Mehdi Tibouchi, and Yuval Yarom. Ladderleak:
Breaking ECDSA with less than one bit of nonce leak-
age. In CCS, pages 225–242, 2020.

[6] Konstantinos Athanasiou, Byron Cook, Michael Emmi,
Colm MacCárthaigh, Daniel Schwartz-Narbonne, and
Serdar Tasiran. Sidetrail: Verifying time-balancing of
cryptosystems. In VSTTE, volume 11294, pages 215–
228, 2018.

[7] Qinkun Bao, Zihao Wang, Xiaoting Li, James R. Larus,
and Dinghao Wu. Abacus: Precise side-channel analysis.
In ICSE, pages 797–809, 2021.

[8] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,
Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan
Parno. Sok: Computer-aided cryptography. In IEEE SP,
pages 777–795, 2021.

[9] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. "ooh aah... just a little bit" : A small
amount of side channel can go a long way. In CHES,
volume 8731, pages 75–92, 2014.

[10] Daniel J Bernstein. Cache-timing attacks on aes. 2005.
[11] Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam

Bhasin, Anupam Chattopadhyay, Tee Kiah Chia,
Matthias J. Kannwischer, Franziskus Kiefer, Thales
Paiva, Prasanna Ravi, and Goutam Tamvada. Kyber-
slash: Exploiting secret-dependent division timings in
kyber implementations. IACR Cryptol. ePrint Arch.,
page 1049, 2024.

[12] Sandrine Blazy, David Pichardie, and Alix Trieu. Veri-
fying constant-time implementations by abstract inter-
pretation. In ESORICS, volume 10492, pages 260–277,
2017.

[13] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan,
and Mahmut T. Kandemir. Casym: Cache aware sym-
bolic execution for side channel detection and mitigation.
In IEEE SP, pages 505–521, 2019.

14

https://github.com/wolfSSL/wolfssl/pull/8396
https://github.com/wolfSSL/wolfssl/blob/29c3ffb5eee35ad8d8f661b4e237148c247ab622/wolfcrypt/src/coding.c#L63
https://godbolt.org/z/8hasjhMxE
https://github.com/aws/s2n-tls/pull/5103
https://dev.gnupg.org/rC9c658cc8214f277d43b18d722bbc316972802d47
https://github.com/Neo-Outis/CT-LLVM-Artifact

[14] Luwei Cai, Fu Song, and Taolue Chen. Towards efficient
verification of constant-time cryptographic implementa-
tions. In FSE, pages 1019–1042, 2024.

[15] Sudipta Chattopadhyay and Abhik Roychoudhury. Sym-
bolic verification of cache side-channel freedom. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 37(11):
2812–2823, 2018.

[16] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk.
Binsec/rel: Efficient relational symbolic execution for
constant-time at binary-level. In IEEE SP, pages 1021–
1038, 2020.

[17] Goran Doychev and Boris Köpf. Rigorous analysis
of software countermeasures against cache attacks. In
PLDI, pages 406–421. ACM, 2017.

[18] Goran Doychev, Dominik Feld, Boris Köpf, Laurent
Mauborgne, and Jan Reineke. CacheAudit: A tool for
the static analysis of cache side channels. In USENIX
Security, pages 431–446, 2013.

[19] Vijay D’Silva, Mathias Payer, and Dawn Xiaodong Song.
The correctness-security gap in compiler optimization.
In IEEE SPW, pages 73–87, 2015.

[20] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B.
Abu-Ghazaleh. Jump over ASLR: attacking branch
predictors to bypass ASLR. In MICRO, pages 40:1–
40:13, 2016.

[21] Marcel Fourné, Daniel De Almeida Braga, Jan Jancar,
Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-
Alain Fouque, and Yasemin Acar. "these results must be
false": A usability evaluation of constant-time analysis
tools. In USENIX Security, 2024.

[22] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules,
Lesly-Ann Daniel, Sébastien Bardin, and Clémentine
Maurice. A systematic evaluation of automated tools for
side-channel vulnerabilities detection in cryptographic
libraries. In CCS, pages 1690–1704, 2023.

[23] Sebastian Hunt and David Sands. On flow-sensitive
security types. In POPL, pages 79–90, 2006.

[24] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga,
Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-
Alain Fouque, and Yasemin Acar. "they’re not that
hard to mitigate": What cryptographic library developers
think about timing attacks. In IEEE SP, pages 632–649,
2022.

[25] Ke Jiang, Yuyan Bao, Shuai Wang, Zhibo Liu, and Tian-
wei Zhang. Cache refinement type for side-channel
detection of cryptographic software. In CCS, pages
1583–1597, 2022.

[26] Adam Langley. Ctgrind. https://www.
imperialviolet.org/2010/04/01/ctgrind.html,
2010.

[27] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In IEEE SP, pages 605–622, 2015.

[28] LLVM. Llvm implementation of alias
analysis. Online, n.d. URL https:
//llvm.org/docs/AliasAnalysis.html#
available-aliasanalysis-implementations.

[29] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian
Zhang. A survey of microarchitectural side-channel
vulnerabilities, attacks, and defenses in cryptography.
ACM Comput. Surv., 54(6):122:1–122:37, 2022.

[30] Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,
Sören van der Wall, and Zhiyuan Zhang. Transparent
decompilation for timing side-channel analyses. arXiv
preprint, 2025.

[31] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In CT-
RSA, pages 1–20, 2006.

[32] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede.
Dude, is my code constant time? In DATE, pages 1697–
1702, 2017.

[33] Bruno Rodrigues, Fernando Magno Quintão Pereira,
and Diego F. Aranha. Sparse representation of implicit
flows with applications to side-channel detection. In
CC, pages 110–120, 2016.

[34] Moritz Schneider, Daniele Lain, Ivan Puddu, Nicolas
Dutly, and Srdjan Capkun. Breaking bad: How com-
pilers break constant-time~implementations. CoRR,
abs/2410.13489, 2024.

[35] Florian Sieck, Sebastian Berndt, Jan Wichelmann, and
Thomas Eisenbarth. Util::lookup: Exploiting key decod-
ing in cryptographic libraries. In CCS, pages 2456–2473,
2021.

[36] Florian Sieck, Zhiyuan Zhang, Sebastian Berndt,
Chitchanok Chuengsatiansup, Thomas Eisenbarth, and
Yuval Yarom. Teejam: Sub-cache-line leakages strike
back. CHES, 2024:457–500, 2024.

[37] Laurent Simon, David Chisnall, and Ross J. Anderson.
What you get is what you C: controlling side effects
in mainstream C compilers. In EuroS&P, pages 1–15,
2018.

[38] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and
Dinghao Wu. Cached: Identifying cache-based timing
channels in production software. In USENIX Security,
pages 235–252, 2017.

[39] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng
Zhang, and Dinghao Wu. Identifying cache-based side
channels through secret-augmented abstract interpreta-
tion. In USENIX Security, pages 657–674, 2019.

[40] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja
Miller, Stefan Mangard, and Georg Sigl. DATA - dif-
ferential address trace analysis: Finding address-based
side-channels in binaries. In USENIX Security, pages
603–620, 2018.

[41] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth,
and Berk Sunar. Microwalk: A framework for finding

15

https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://llvm.org/docs/AliasAnalysis.html#available-aliasanalysis-implementations
https://llvm.org/docs/AliasAnalysis.html#available-aliasanalysis-implementations
https://llvm.org/docs/AliasAnalysis.html#available-aliasanalysis-implementations

1 keccak_inc_absorb(state , r , key, mlen):
2 while (mlen + state [25] >= r) {
3 for (i = 0; i < r − state [25]; ++i) {
4 state [(state [25] + i) >> 3] ^=
5 (uint64_t)key[i] << ...;
6 }
7 mlen −= (size_t)(r − state [25]);
8 m += r − state [25];
9 state [25] = 0;

10 }

Listing 8: False Positive Example

side channels in binaries. In ACSAC, pages 161–173,
2018.

[42] Jan Wichelmann, Florian Sieck, Anna Pätschke, and
Thomas Eisenbarth. Microwalk-ci: Practical side-
channel analysis for javascript applications. In CCS,
pages 2915–2929, 2022.

[43] Jianhao Xu, Kangjie Lu, Zhengjie Du, Zhu Ding, Linke
Li, Qiushi Wu, Mathias Payer, and Bing Mao. Silent
bugs matter: A study of compiler-introduced security
bugs. In USENIX Security, pages 3655–3672, 2023.

[44] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In USENIX Security, pages 719–732, 2014.

[45] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-vm side channels and their
use to extract private keys. In CCS, pages 305–316,
2012.

[46] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell,
Chitchanok Chuengsatiansup, Daniel Genkin, and Yuval
Yarom. Bunnyhop: Exploiting the instruction prefetcher.
In USENIX Security, pages 7321–7337, 2023.

[47] Quan Zhou, Sixuan Dang, and Danfeng Zhang.
CtChecker: A precise, sound and efficient static analysis
for constant-time programming. In ECOOP, volume
313 of LIPIcs, pages 46:1–46:26, 2024.

A False Positive in Proving Kyber CT

We present a simplified version of the code in Listing 8, where
state[25] stores the number of bytes that have been absorbed
but not permuted. Although its update does not depend on the
secret data (key) at run time, LLVM’s alias analysis considers
the address of state at line 4 may aliased with the address
of state[25] at line 2 and line 3. Therefore, it considers the
function as non-CT.

B Full List of Provable Kyber512 Functions

We present the proof results of all provable Kyber512 func-
tions in Table 4. We mark a function is proved to be CT with
✓, not CT with ✗, and false positive with ●. In addition, we
also report the number of evaluated IR instructions and the
time cost in milliseconds for each function.

Table 4: Kyber512 Proof Results

Function CT Instructions Time (ms)
montgomery_reduce ✓ 7 0.136
barrett_reduce ✓ 9 0.139
poly_reduce ✓ 11 0.195
poly_tomont ✓ 11 0.197
cmov_int16 ✓ 13 0.318
poly_tomsg ✓ 15 0.288
poly_cbd_eta2 ✓ 17 0.364
polyvec_reduce ✓ 23 0.315
poly_frombytes ✓ 23 0.282
poly_cbd_eta1 ✓ 24 0.445
poly_frommsg ✓ 32 0.382
ntt ✓ 32 0.452
poly_compress ✗ 39 0.374
polyvec_decompress ✓ 41 0.391
polyvec_frombytes ✓ 48 0.46
kyber_shake128_absorb ✓ 49 1.355
poly_decompress ✓ 52 0.387
poly_ntt ✓ 53 0.532
poly_add ✓ 53 0.496
poly_sub ✓ 53 0.493
polyvec_compress ✗ 55 1.196
poly_tobytes ✗ 59 0.459
poly_invntt_tomont ✓ 74 0.641
invntt ✓ 74 0.651
verify ✗ 98 0.701
polyvec_ntt ✓ 107 1.021
polyvec_add ✓ 109 0.816
polyvec_tobytes ✗ 120 0.936
polyvec_invntt_tomont ✓ 149 1.311
basemul ✓ 269 1.691
poly_basemul_montgomery ✓ 620 4.478
poly_getnoise_eta2 ✓ 846 13.614
indcpa_dec ✓ 880 15.318
polyvec_basemul_acc_montgomery ✓ 1282 12.394
poly_getnoise_eta1 ✓ 1640 33.499
gen_matrix ✗ 1702 54.996
kyber_shake256_rkprf ● 2215 21.36
indcpa_keypair_derand ✗ 3756 434.695
indcpa_enc ✗ 7292 1208.916
crypto_kem_enc_derand ✗ 9688 1493.274
crypto_kem_keypair_derand ✗ 13676 2181.493

16

Algorithm 1 Alias Analysis for CT Analysis

1: taint_chain← def-use-chain of secret
2: load_Instrs← load instructions in target function
3: alias_list,mayalias_list← /0

4: for store_op ∈ taint_chain do
5: stored_value← value stored by store_op
6: if stored_value ∈ taint_chain then
7: for load_op ∈ load_Instrs do
8: if load_op /∈ taint_chain then
9: store_ptr← address of store_op

10: load_ptr← address of load_op
11: alias← AA: store_ptr and load_ptr
12: if alias∈{MustAlias,PartialAlias} then
13: insert load_op to alias_list
14: end if
15: if alias ∈ {MayAlias} then
16: insert load_op to mayalias_list
17: end if
18: end if
19: end for
20: end if
21: end for

17

	Introduction
	Background & Releated Work
	Design Goals and Choices
	Sound Analysis Methodology
	Platform-(In)dependent Analysis
	Usability and Maintenance
	Transparency
	Summary of Design Choices

	LLVM Features for CT Analysis
	LLVM's Static Single Assignment
	LLVM's Def-Use Chain
	LLVM's Alias Analysis
	LLVM's Reachability Analysis

	CT-LLVM
	CT Analysis Mechanism
	Type System
	Proof Mode
	Violation Finding Mode

	Reliability Evaluation
	Benchmark Suite and Tool Selection
	Evaluation Results
	Summary of Reliability Evaluation

	Proving Kyber Constant-Time
	Proof Procedure
	Proof Results

	Large-Scale Analysis
	Analysis Setup
	Analysis Results
	Reasons for Unprovable Functions
	Report CT Violations

	Detect Compiler-Introduced CT Violations
	Select Instruction In the Wild
	Report CT Violations
	Discussion

	Conclusion
	Responsible Disclosure
	False Positive in Proving Kyber CT
	Full List of Provable Kyber512 Functions

