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Preface

This survey, mostly written in the years 2022-2023, is meant as an as short
as possible description of the current state-of-the-art lattice attacks on lattice-
based cryptosystems, without losing the essence of the matter.

The main focus is the security of the NIST finalists and alternatives that are
based on lattices, namely CRYSTALS-Kyber, CRYSTALS-Dilithium and Falcon
(see Table 1). Instead of going through these cryptosystems case by case, this
survey considers attacks on the underlying hardness assumptions: in the case
of the mentioned lattice-based schemes, these are (variants of) LWE (Learning
With Errors) and NTRU.

NIST: selected algorithms for standardization Assumption

CRYSTALS-Kyber Module-LWE
CRYSTALS-Dilithium Module-LWE
Falcon NTRU
SPHINCS+ Hash-based

NIST: candidates moved to the fourth round Assumption

BIKE QC-MDPC code-based
Classic McEliece Code-based
HQC QC-MDPC code-based
SIKE Isogeny-based

Table 1: The NIST algorithms, selected for standardization and fourth round
finalists, and their underlying cryptographic assumptions. In this survey we will
consider only the first three, as those are based on lattices.

Overview of this survey

As fields of expertise differ from reader to reader, we would like to give a quick
overview of the topics that are treated in this survey. Additionally this overview
is also meant to navigate within the survey; it allows to skim certain parts and
to concentrate more actively on other parts.
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Chapter 1 is an introduction that gives a rough, intuitive idea how lattice-based
cryptography works and where it is built on.

Part I In Chapter 2, Sections 2.1 to 2.3 are about lattices, bases, fundamental
domains, relevant computational problems, projection and orthogonalization.
These sections can be considered as preliminaries.

Sections 2.5 to 2.9 are about so-called basis reduction algorithms, whose,
given a basis of a lattice, attempt to find a new basis of such lattice with better
qualities. Finding such a good quality basis is one of the ingredients for attacks
on lattice-based cryptosystems.

These basis-reduction algorithms in a rather large-dimensional basis of a
lattice require the ability to find exact short vectors in lower dimensional lattices.
How to find such short vectors is treated in Sections 2.10 to 2.12. To summarize,
in Chapter 2 essentially all attacks on lattice-based cryptography are roughly
treated.

Chapter 3 is about structured lattices, which are lattices based on number
rings. These number rings are succinctly treated in Section 3.2 and ideal lattices
and module lattices are defined in Sections 3.3 and 3.4.

Next, in Chapter 4, the computational problems NTRU and LWE are in-
troduced. The ‘plain’ variants of these are explained in Section 4.2 (LWE) and
Section 4.4 (NTRU), where the precise definitions are in Sections 4.2.5 and 4.4.5.
The other sections (Sections 4.3 and 4.5) show the structured variants of LWE
and the ‘unstructured’ variant of NTRU; and shows how to transform structured
LWE into unstructured LWE.

Part II: Unstructured Attacks In Chapter 5 we concentrate on asymptotic
estimates of the most efficient attacks on cryptosystems. We start by showing
that LWE and NTRU can indeed be adequately phrased as lattice problems
(Section 5.1) and proceed by describing the variety of attacks in Section 5.2:
the primal, dual and hybrid attack; and the dense sublattice attack. Various
estimates and quick summaries are given. A small text about Arora-Ge and
BKZ is added as well (Section 5.2.5). We finish this chapter with showing how
the NIST candidates get their ‘beta’ estimate (Section 5.3).

In Chapter 6 is zoomed in on the concrete costs of the attacks, how (non-
asymptotic) costs are generally measured on hardware and quantum computers,
the concrete costs of enumeration, sieving and BKZ (Sections 6.1 to 6.3). We fin-
ish by a text about the concrete estimates of the NIST candidates (Section 6.4).

Part III: Structured Attacks In Chapter 7 an explanation is given of an
attack on ideal lattices and a reduction for module lattices. The attack on ideal
lattices is first explained for cyclotomic fields (Section 7.3), and later for general
fields (Section 7.4). In the last section, Section 7.5, is shown what role quantum
computation plays in this attack. In Chapter 8, a reduction from higher rank
modules to rank-2 modules is treated. For module lattices, no attacks better
than the ‘generic’ attacks are known.
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Chapter 2:
Overview of lattice
terminology and

techniques

Chapter 4:
NTRU & LWE

Chapter 5:
Attacks on General Lattices

Chapter 6:
The fine-grained costs

of BKZ and SVP

Chapter 3:
Structured Lattices

Chapter 7:
Structured Attacks

Figure 1: In this diagram is depicted which two main reading routes can be
followed; the left part is the ‘unstructured route’ which mainly treats general
lattices and attacks thereof. The right part is the ‘structured route’, which
is more focused on structured lattices (module and ideal lattices) and specific
structured attacks.

Appendix In the appendix, a short explanation is given about how to use
the state-of-the-art scripts that estimate the bit security of lattice-based cryp-
tosystems by considering all known unstructured attacks.
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Chapter 1

Introduction

Lattices are, among others, one of the most promising mathematical objects to
base cryptography on. Indeed, some of the NIST candidates for standardization
for post-quantum cryptography are based on lattices.

In this introduction we wish to give you an intuition on how lattice-based
cryptography works and what the underlying assumptions are. For simplicity,
we choose to explain a simple public-key cryptosystem based on lattices.

Public-key cryptosystem

A public-key cryptosystem allows for an individual, say Alice, to securely send
a message over an untrusted channel to another individual, say, Bob, in such a
way that only Bob can read the message.

The message Alice wants to send is encrypted using a public key (pk) that
Bob had announced publicly before. She then sends the encrypted message
Encpk(message) over the insecure channel to Bob, who then decrypts the en-
crypted message using his secret key (sk), see Figure 1.1.

Ignoring for the moment the inner workings of the encryption and decryption
algorithms, it is of fundamental importance for the security of the cryptosystem

Figure 1.1: A public-key cryptosystem allows Alice to securely send a message
to Bob over a untrusted channel which has a possible eavesdropper Eve.
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Figure 1.2: A good basis of a lattice is short and somewhat orthogonal, which
allows to round a point nearby a lattice point successfully. A bad basis has long
vectors that are not orthogonal and does not allow for rounding successfully.

that the secret key is known only to Bob and that it cannot be (computationally)
recovered from the information that has been transported over the channel, e.g.,
the public key.

Good basis and bad basis

In the lattice-based public-key toy cryptosystem that is explained here, the
public key will consist of a bad basis of a lattice, whereas the secret key will
consist of a good basis of the same lattice.

Fundamental to the cryptosystem will be the fact that with a good basis
one can ‘round’ a point nearby a lattice point successfully to that lattice point,
whereas with a bad basis one cannot. More specifically, any point in a green
square of the leftmost picture of Figure 1.2 (with the good basis) will be rounded
successfully to the associated lattice point. Using the same rounding algorithm
with a bad basis will round a point near a lattice point mostly to a far away
lattice point; as the red squares in the rightmost picture of Figure 1.2 indicate.

Encryption

The fact that only a good basis allows for efficient and successful rounding
suggests an encryption mechanism. Suppose Alice’s message can be encoded in
a lattice point1; then adding a small error to this lattice point hides this original
lattice point, see Figure 1.3.

Decryption

As only a good basis can ‘round’ well, and Bob is the only one that knows the
good basis, he can efficiently and successfully recover the original lattice point
Alice intended to sent, see Figure 1.4.

1One can, for example, publicly agree beforehand to label some lattice points with letters
and repeat the procedure to transfer a sentence.
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Figure 1.3: Using the public key, Alice can choose a lattice point to send to
Bob, and adds a small error to hide the lattice point for eavesdroppers.

Figure 1.4: Using the secret key, the good basis, Bob can efficiently round the
disturbed point to its original lattice point, and recovers the message Alice
intended to sent. A bad basis does not allow to round successfully and thus
someone other than Bob cannot recover Alice’s message.

Underlying hardness assumption

As already noted, the security of this public-key cryptosystem relies on the
hardness of recovering the secret key (i.e., the good basis) from the public key
(i.e., the bad basis). In other words, in order for this cryptosystem to be secure,
computing a short good basis of a lattice from a bad basis of a lattice should be
hard. More generally, rounding successfully should be hard given only the bad
basis.

We have not yet explained how one obtains such a key-pair. This is precisely
where common hardness assumptions such as LWE and NTRU come in. Intu-
itively, these assumptions allow one to randomly create a lattice along with a
(partial) good basis. The randomness of the lattice is required as otherwise an
attacker could just repeat the generation procedure to obtain the good basis.

11



Chapter 2

Overview of lattice
terminology and techniques

2.1 Notation

We denote by N,Z,Q,R,C the natural numbers, the integers, the rationals, the
real numbers and the complex numbers respectively. For k ∈ N we will denote
[k] = {1, . . . , k}. We denote a vector space V in uppercase. Vectors v in V
are always considered column-wise and denoted in lowercase bold, and matrices
M = (m1, . . . ,mn) in uppercase bold with columns mi. We will consistently
denote n for the lattice dimension, r for the module-lattice rank and t for the
number field degree.

We use the standard Landau-notation O(·), Ω(·) and Θ(·) for asymptotic
behavior of functions, and occasionally the ‘soft version’ Õ(·) of the Big O, in
which polylogarithmic factors of the argument are hidden.

2.2 Lattices

2.2.1 Introduction

Intuitively, lattices can be considered as ‘discrete’ analogues of vector spaces1.
So, as real vector spaces V can be seen as the R-span of certain basis vectors
{bj | j ∈ [n]},

V =
{ n∑

j=1

cjbj | cj ∈ R for all j ∈ [n]
}
,

lattices L ⊆ V can be considered as the Z-span of such basis vectors:

L =
{ n∑

j=1

cjbj | cj ∈ Z for all j ∈ [n]
}
. (2.1)

1Throughout this survey, we will only consider finite-dimensional vector spaces.
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Mostly (especially in cryptography) one is particularly interested in certain geo-
metric properties of the lattice, for example the length of the shortest non-zero
vector in L. For this reason, one requires a well-behaved length notion on the
vector space V , which is then to be inherited by the lattice L. More precisely,
one would like the vector space to have an inner product ; such vector spaces of
finite dimension over the real numbers enriched with a inner product are called
Euclidean vector spaces.

2.2.2 Lattices and Euclidean vector spaces

So, before we introduce lattices, we need to define their ambient space, which
is a Euclidean vector space.

Definition 1 (Euclidean space). A Euclidean vector space V is a finite-dimensional
inner product space over the real numbers together with an inner product ⟨·, ·⟩,
i.e., a positive definite symmetric bi-linear form.

Such an inner product space has an induced norm, given by ∥v∥ :=
√
⟨v,v⟩,

which gives a length notion on V . Throughout this text we will always denote
V for the Euclidean vector space where the lattices live in, and its associated
norm with ∥·∥.

The norm on V defines a metric (a length notion) on V , in which we can
speak of discreteness. A subset S ⊆ V is called uniformly discrete if there exists
some distance δ > 0 so that every two different points s, s′ ∈ S have at least
this distance δ away from each other. More formally,

inf{∥s− s′∥ | s, s′ ∈ S, s ̸= s′} > δ > 0.

In other words, a uniformly discrete set in V has a notion of ‘minimum distance’.
Later, this notion comes back for lattices in the form of the ‘minimum length’.

Definition 2 (Lattice). A lattice L is a (uniformly) discrete2 additive subgroup
of a Euclidean vector space V .

To elaborate on this definition, a lattice L ⊆ V is thus a uniformly discrete
subset of V (i.e., has a ‘minimum distance’). Moreover, since the vector space
V has an addition operation (adding vectors), we require L to be a subgroup of
V with respect to this inherited addition. Concretely, we demand x,y ∈ L ⇒
x− y ∈ L (and thus 0 ∈ L).

2.2.3 Lattice Bases

A lattice L is free3 as a Z-module; this precisely means that it has a Z-basis,
exactly as in Equation (2.1). More precisely:

2For a subgroup of V , uniformly discrete and discrete are equivalent, by the homogeneity
of the space V .

3This follows from the fact that lattices have no torsion: there are no elements v ∈ L or
n ∈ N>0 such that v + . . .+ v︸ ︷︷ ︸

n times

= 0.
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Lemma 1 (Basis). Every lattice L is a free module over Z, and therefore has
a Z-basis B = (b1, . . . ,bn). In other words,

L =

{
n∑

i=1

cibi | ci ∈ Z

}
.

In particular, due to the discreteness of the lattice L, the vectors (b1, . . . ,bn)
are R-linearly independent. The number of basis vectors n is called the rank
rk(L) of the lattice.

We call a lattice L ⊂ V full-rank if its rank rk(L) equals the dimension of
the Euclidean space V .

Lemma 1 implies that we could alternatively define lattices by means of a
basis. Bases play a central role in lattice algorithms, as they are the main tool to
compute with. So, from now on, we always describe lattices in terms of a basis.
A basis of a lattice is not unique; in fact, if B is a basis of L, then also BU is
a basis of L, for any unimodular U ∈ GLn(Z) = {U ∈ Zn×n | det(U) = ±1}.

Given a basis B of a lattice L, many algorithms on lattices attempt to find
‘better’ bases in the set {B · U | U ∈ GLn(Z)} of all bases of the lattice L.
These algorithms are called ‘basis reduction algorithms’ and will be treated in
Section 2.6 and later sections.

2.2.4 Fundamental domains

Any basis B defines a fundamental domain

P(B) =

{
n∑

i=1

xibi

∣∣ xi ∈ [−1/2, 1/2)
}
,

also called the ‘centered parallelepiped’ of the basis B. An example of such a
fundamental domain for two bases of the same lattice can be seen in Figure 2.1.

This centered parallelepiped P(B) is a set of representatives of the quotient
group spanR(L)/L. Concretely, this means that one can uniquely decompose
any x ∈ spanR(L) into x = v + f , where v ∈ L and f ∈ P(B).

As will be made precise later, the shape of this fundamental domain P(B)
gives an intuitive measure on the ‘quality’ of the basis B. A basis B for which
P(B) is reasonably concentrated around the origin and whose shape is not
skewed is considered ‘good’, like the green basis in Figure 2.1.

Covolume of a Lattice

The volume Vol(P(B)) = Vol(span(L)/L) of the fundamental domain P(B)
does not depend on the basis B of L, and is called the covolume VolL of L.
This is a rough measure of the ‘sparsity’ of the lattice L.
Definition 3 (Covolume). The covolume VolL of a lattice L is defined as

VolL := Vol(span(L)/L) = |det(⟨bi,bj⟩ij)|1/2,

14



b1

b2 b1

b2

Figure 2.1: In this picture two bases (green, red) of the same lattice is given,
in combination with their respective fundamental domains P(B) (the red and
green parallelepiped).

which is independent of the basis B = (b1, . . . ,bn) of L. Here, we mean by
⟨bi,bj⟩ij the matrix whose ij-th coordinate is given by ⟨bi,bj⟩.

The First Minimum

The covolume is a measure of sparseness of a lattice, and therefore arises in
many inequalities regarding geometric quantities of lattices. We will later see
such an inequality (Minkowski’s inequality, Equation (2.2)) for one of the most
important geometric invariants of a lattice L, the first minimum λ1(L). This is
also known as the minimum distance or as the first successive minimum of L.
Definition 4 (First minimum). The first minimum λ1(L) ∈ R>0 of the lattice
L is defined as follows

λ1(L) = min{∥y∥ | y ∈ L\{0}}. (2.2)

This first minimum λ1(L) equals the length of a shortest non-zero vector of
L, and is well-defined by the discreteness of the lattice L. Equivalently, it is the
minimum distance between any two distinct lattice points. Minkowski proved
in 1889 that the minimum distance and the covolume of a lattice are related in
the following way.

Theorem 1 (Minkowski’s theorem). For every lattice L of rank n we have the
following bound on the first minimum.

λ1(L) ≤ 2 · Vol(L)1/n
Vol(Bn)1/n

≤ √n ·Vol(L)1/n,

where Vol(Bn) = πn/2

Γ(n
2 +1) is the volume of an n-dimensional unit R-ball, and Γ

denotes the standard Gamma function.
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Intuitively, one can think about Minkowski’s inequality in the following way.
A lattice L whose shortest (non-zero) vector is long (i.e., λ1(L) is large), cannot
have a small covolume (Vol(L)). In other words, the two numbers λ1(L) and
Vol(L) both give a measure for the sparsity of a lattice. The notion Vol(L) is
more rough and more ‘average’, so that a large covolume can still mean that a
lattice has a small first minimum λ1(L).

Occasionally, Vol(L) is considered as a measure for ‘global sparsity’ whereas
λ1(L) is considered as a measure for ‘local sparsity’ of the lattice L. The reason
for these notions is the difference in scale where Vol(L) and λ1(L) have impact:
For a very large box B inside V , the number of lattice points in B ∩ L ≈
Vol(B)/Vol(L) depends on the covolume of the lattice. For a small box B
inside V the number of points B ∩L depends heavily on the smallest vectors in
V and hence on λ1(L).

2.2.5 Computational problems

In lattice-based cryptography, (among many others) the following computa-
tional problems are of fundamental importance. Lattice-based cryptographic
protocols rely on the hardness of these problems.

These computational problems occur so often that they are often denoted by
their acronym: the Shortest Vector Problem (SVP), the Closest Vector Problem
(CVP) and Bounded Distance Decoding (BDD) (see Figure 2.2).

The Shortest Vector Problem

Problem 1 (Shortest Vector Problem (SVPγ)). Given as input a basis B of
a lattice L and a γ ∈ R≥1, the γ-shortest vector problem is the computational
task of finding a non-zero lattice vector x ∈ L that satisfies ∥x∥ ≤ γ · λ1(L).

The task of finding a short vector in a lattice (given by a ‘bad’ basis B), as
we will elaborate on later, seems to be very hard to solve, even for quantum
computers. For this problem to be hard, it is of essential importance that the
dimension (or rank) rk(L) of the lattice is large; for cryptographic purposes,
lattices of rank well over 300 are the rule. For lattices of smaller dimensions
(below 80) the shortest vector problem is considered easy.

Remark 1. Note that for γ = 1, one gets the ‘original’ shortest vector prob-
lem; the output must then be a shortest vector of the lattice L. This γ in above
definition, generally called the approximation factor, is often written as a func-
tion in the dimension n of the lattice. In the context of cryptography, it is
mostly sufficient to find a ‘really short’ vector, but not a shortest vector per se.
For example, for cryptographic purposes, γ =

√
n is considered very short, and

γ = poly(n) is considered very interesting. We will see that the shortest vector
problem for γ = 2n can be solved efficiently by means of the LLL-algorithm, and
is therefore considered ‘easy’.

In the literature, actually another variant of the shortest vector problem is
used, called the Hermite variant. In this variant, the quantity λ1(L) is replaced
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by the root determinant det(L)1/n, where n is the dimension of the lattice. In
this text, we will use SVP and ‘the shortest vector problem’ for both versions,
where it depends on the context which one we mean.

Problem 2 (Hermite Shortest Vector Problem (SVPγ)). Given as input a basis
B of an n-dimensional lattice L and a γ ∈ R>0, the γ-Hermite shortest vector
problem is the computational task of finding a non-zero lattice vector x ∈ L that
satisfies ∥x∥ ≤ γ · det(L)1/n.

The Closest Vector Problem

The closest vector problem is of a slightly different flavor than SVP; instead of
just a basis B as input, also an additional vector t ∈ span(L) is given, often
called the target (which is generally not a lattice vector). The task is to ‘round’
the target t to the nearest lattice vector v ∈ L, see the right panel of Figure 2.2.
This problem can be formally phrased as follows.

Problem 3 (Closest Vector Problem (CVPγ)). Given as input a basis B of a
lattice L, a target vector t ∈ span(L) and γ ∈ R>0, the closest vector problem is
the computational task of finding a lattice vector x ∈ L that satisfies ∥x−t∥ ≤ γ.
Remark 2. By putting γ = minx∈L ∥x − t∥, one obtains the ‘original’ closest
vector problem, as the computational task is then to find x ∈ L that minimizes
the distance ∥x− t∥.

Note that if γ ∈ R>0 is too small, there might not even exist a x ∈ L such that
∥x−t∥ ≤ γ. In real-life settings, often is assumed that γ ≥ minx∈L ∥t−x∥, which
implies that the problem always has a solution. The ratio γ/minx∈L ∥t− x∥ is
(also) often called the approximation factor, and within cryptography this is
usually polynomial in the dimension of the lattice.

As with SVP, this problem, with polynomial approximation factors, also
seems to be hard to solve for (quantum) computers, and likewise, lattices of
rank well over 300 are the rule.

Bounded Distance Decoding

The following computational problem, Bounded Distance Decoding, is a variant
on the closest vector problem, with the difference that it only considers target
vectors t ∈ span(L) sufficiently close to the lattice L.
Problem 4 (Bounded distance decoding (BDD)). Given as input a basis B
of a lattice L, an error ϵ < λ1(L)/2 and a target vector t ∈ span(L) satisfying
dist(L, t) ≤ ϵ, the bounded distance decoding problem is the computational
task of finding the (unique) closest lattice vector x ∈ L to t ∈ span(L), i.e., the
lattice vector x ∈ L minimizing ∥x− t∥.

Due to the ‘promise’ that t is sufficiently close to L, BDD is sometimes seen
as a promise-problem version of CVP.

Remark 3. Note that for increasing γ, (Hermite)-SVPγ and CVPγ becomes
easier, whereas for increasing ϵ, BDDϵ becomes harder.
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λ1(L)

v

‖v‖ = λ1(L)

0

t

v

‖t− v‖ ≤ ρ < λ1(L)/2

Shortest Vector Problem (SVP) Bounded Distance Decoding (BDD)

Figure 2.2: A two-dimensional visualization of the most important lattice prob-
lems for cryptography.

2.3 Projections and orthogonalization

Introduction

Among the most important lattice algorithms are basis reduction algorithms,
like LLL, BKZ and HKZ, which attempt to improve the quality of a basis B of
a lattice L by multiplying it by a suitable U ∈ GLn(Z), yielding a better basis
BU. This multiplication by U is precisely the same as replacing the basis B
by a new basis B′ where each new basis vector is an adequate integer linear
combination of the former basis vectors.

A key idea that is almost universal in lattice reduction techniques is that
most lattice problems are generally much easier to solve in lower dimensions.
So, many lattice reduction techniques (LLL, BKZ) improve the quality of the
input basisB by solving lattice problems (SVP, CVP) in low-dimensional lattices
derived from B.

One way of obtaining low-dimensional lattices in L = L(B) is by taking
sublattices, for example, those generated by only a few columns of B. Another
way of obtaining low-dimensional lattice in L = L(B) is by projecting the lattice
onto a lower-dimensional subspace of span(L).

Gram-Schmidt orthogonalization

Let V be a Euclidean vector space andW ⊆ V a linear subspace. We can define
the orthogonal complement W⊥ of W :

W⊥ = {v ∈ V | ⟨v,w⟩ = 0 for all w ∈W}
The projection map πW : V → V is the unique linear map that is equal to the
identity map idW on W and sends W⊥ to 0. When a basis (w1, . . . ,wk) of W
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is given, the space W⊥ is sometimes written as (w1, . . . ,wk)
⊥.

This map πW : V → V then projects the space V onto W . It is not gen-
erally true that πW (L) ⊆ W is a lattice if L ⊆ V is a lattice. For this, W is
required to be compatible with the lattice in some sense; this will be answered
in Definition 6. To identify what is required from W , we need the notion of
Gram-Schmidt orthogonalization of a basis B.

Example 1. Take the projection map π1 : R2 → R where (x, y) 7→ x. In terms
of the discussion above, this corresponds to taking V = R2 and W = R × {0}.
Note that

L =
{
n1 ·

[
1
1

]
+ n2 ·

[√
2
0

] ∣∣∣ n1, n2 ∈ Z
}

is a lattice in R2, but that π1(L) = {n1 + n2
√
2 | n1, n2 ∈ Z} is not a lattice in

R because it is not (uniformly) discrete; we can get the number n1+n2
√
2 to be

arbitrarily close to 0.

Definition 5 (Gram-Schmidt orthogonalization). For a basis B = (b1, . . . ,bn)
of the lattice Λ, we define the Gram-Schmidt orthogonalization B∗ = (b∗

1, . . . ,b
∗
n)

of B as follows: b∗
i = πi(bi), where πi = π(b1,...,bi−1)⊥ . In other words, the

projection map πi projects to the orthogonal complement of the space generated
by (b1, . . . ,bi−1).

A different way of defining the Gram-Schmidt orthogonalization is by means
of matrix decomposition; B is decomposed as a matrix product B∗ · µ, where
B∗ is orthogonal and µ is upper triangular with ones on the diagonal. One can
compute µ and B∗ inductively by the following formulae:

µij =
⟨b∗

i ,bj⟩
⟨b∗

i ,b
∗
i ⟩
;

b∗
i = bi −

i−1∑

j=1

µjib
∗
j .

Projections

It turns out that the only good way to project lattices L = L(B) in such a way
that its projected image is also a lattice, is by projecting it orthogonally to a
vector space spanned by some of the basis vectors4.

Definition 6 (Projected lattices). Let L be a lattice with basis B. The projected
lattices Li with respect to the basis B are defined as follows.

Li = πi(L) ⊆ (b1, . . . ,bi−1)
⊥,

where πi = π(b1,...,bi−1)⊥ projects to the orthogonal complement of the space
generated by (b1, . . . ,bi−1)

4More specifically, for a given lattice L ⊆ V and W ⊆ V , the projected image πW (L) is a
lattice in W if and only if W = (b1, . . . ,bj)

⊥ where bk are vectors in some basis B of L.
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One can see that Li is indeed a lattice because it has (πi(bi), . . . , πi(bn)) as
a basis. This gives rise to the definition of a projected basis.

Definition 7 (Projected bases). Let B be a basis of a lattice L. We denote by
B[i:j] the projected basis

B[i:j] := (πi(bi), . . . , πi(bj)),

where πi = π(b1,...,bi−1)⊥ .

It is clear that B[i:n] is a basis of the lattice πi(L). These bases will play an
important role in BKZ and HKZ, two important reduction algorithms.

The Profile of a Basis

Another measure for the quality of the basis B of a lattice is called the profile
of the basis. This is a vector consisting of the lengths of the Gram-Schmidt
vectors b∗

i for i ∈ [n].

Definition 8. The profile of a basis B is defined as n-tuple consisting of the
Gram-Schmidt norms

(∥b∗
1∥, . . . , ∥b∗

n∥).

A basis is generally considered to be good if ∥b∗
j∥ does not decrease too

quickly for increasing j. By plotting the logarithms of the Gram-Schmidt norms
(log∥b∗

j∥)j∈[d] one often gets a quick insight on this decrease (and hence of the
quality of the basis). For an example of different profiles see Figs. 2.7 and 2.8.
Generally, a very negative slope (say −0.02 per step) indicates a bad basis,
whereas an only slightly negative slope (say −.003 per step) indicates a better
basis.

The profile of the projected basis B[i:j] is given by (∥b∗
i ∥, . . . , ∥b∗

j∥).

2.4 Babai’s fundamental domain

Given a basis B of the lattice L, and let B∗ be its Gram-Schmidt orthogo-
nalization. Then we define Babai’s fundamental domain as the parallelepiped
P(B∗) = {∑n

i=1 xib
∗
i | xi ∈ [−1/2, 1/2)}.

This fundamental domain occurs in Babai’s nearest-plane algorithm, that
uniquely decomposes any target t ∈ span(L) into t = v + e, where v ∈ L and
e ∈ P(B∗) lies in the fundamental domain (see Figure 2.3).

The fact that P(B∗) is a fundamental domain of L, gives us the following
important identity.

Vol(L) = Vol(P(B∗)) =
n∏

j=1

∥b∗
j∥. (2.3)
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Algorithm 1: The Babai nearest-plane algorithm

Input :

� A basis B = (b1, . . . ,bn) of a lattice L with Gram-Schmidt
orthogonalization B∗ = (b∗

1, . . . ,b
∗
n),

� a target t ∈ span(L).

Output: (v, e) such that v + e = t, with v ∈ L and e ∈ P(B∗).

e := t
v := 0
for i = n down to 1 do

k := ⌈ ⟨e,b
∗
i ⟩

∥b∗
i ∥2 ⌋

e := e− kbi

v := v + kbi

end
return (v, e)

0 b̃0 = b0

b1b̃1

0

b̃0 = b0

b1

b̃1

Figure 2.3: Babai’s fundamental domain for a good (left) and a bad basis (right)
of the same lattice.
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Basis Quality

Given a target t ∈ span(L) the close vector v that Babai’s nearest plane al-
gorithm returns depends on the basis. Preferably, one would like the error
e = t − v ∈ P(B∗) to be as short as possible, so what properties should
a basis have to minimize this? For any e ∈ P(B∗) we have the worst-case
bound ∥e∥2 ≤ 1

4

∑n
i=1∥b∗

i ∥2. Furthermore, if the target t is uniform over the
cosets span(L)/L, then in particular e is uniform over P(B∗). Its expected
squared length E[∥e∥2] is then given by 1

12

∑n
i=1∥b∗

i ∥2. Given the identity∏n
i=1∥b∗

i ∥ = det(L) the worst-case and expected squared length is thus mini-
mized when ∥b∗

1∥ = . . . = ∥b∗
n∥, i.e., Babai’s nearest plane algorithm finds a

closer vector on average if the basis has a well balanced Gram-Schmidt profile.
Note that a perfect balanced basis with equal Gram-Schmidt norms might not
always exist, but we can still use a basis that have a somewhat balanced profile,
whose Gram-Schmidt norms do not differ too much. Informally we call such a
basis ‘good’, and a basis with a very unbalanced profile ‘bad’.

Secondly, for a bounded distance decoding problem Babai’s nearest plane
algorithm provably returns the unique closest vector if the target t lies at dis-
tance at most 1

2 mini∥b∗
i ∥ from the lattice. Again this quantity is maximized

when ∥b∗
1∥ = . . . = ∥b∗

n∥, or, more generally, we expect it to be higher when
the basis profile is more balanced. Summarizing, both problems CVP and BDD
are easier to solve whenever the basis is balanced.

Size reduction

Babai’s nearest-plane algorithm can in principle also be applied to targets t /∈
span(L) that do not lie in the span of the lattice L. In that case, t = v + e
is uniquely decomposed into v ∈ L and e ∈ P(B∗) + span(L)⊥. One can
interpret Babai’s nearest-plane algorithm as an attempt to reduce the target
t optimally using the basis B. If the target t were already reduced, i.e., if
π(b1,...,bn)(t) ∈ P(B∗), we call t size reduced. This notion of size-reducedness
can then be extended to an entire basis.

Definition 9 (Size reduced basis). A basis B = (b1, . . . ,bn) is said to be size
reduced if for all j ∈ {2, . . . , n},

π(b∗
1 ,...,b

∗
j−1)

(bj) ∈ P(b∗
1, . . . ,b

∗
j−1).

That is, if each basis element is size-reduced with respect to the previous basis
vectors.

By applying Babai’s nearest plane algorithm progressively on a given basis
B of L, one can always obtain a size-reduced basis of L efficiently.

This notion of size-reducedness is important during computations on bases,
as it avoids a phenomenon called coefficient explosion. During repeated basis
operations on rational bases (i.e., with entries in Q) the numerators and de-
nominators of the rational entries might increase drastically, if no care is taken.
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These numbers can grow so large that they prevent an algorithm to be effi-
ciently computable. Applying size-reduction sufficiently often in between these
basis operations keeps the rational numbers ‘small’, and avoids this potential
explosive growth of coefficients.

2.5 Lagrange Reduction Algorithm

In this section, we will explain an algorithm that finds a basis of a two-dimensional
lattice consisting of vectors that attain the respective successive minima. Thus,
the Lagrange reduction algorithm finds a shortest basis of a two-dimensional
lattice.

Theorem 2 (‘Wristwatch lemma’). Let L be a two-dimensional lattice. Then
there exists a basis B = (b1,b2) of L such that

� b1 is a shortest vector of L, i.e., ∥b1∥ = λ1(L).

� |⟨b1,b2⟩| ≤ 1
2∥b1∥2.

Furthermore, one can efficiently compute such a basis using Algorithm 2.

Proof. The proof of this theorem is ‘by algorithm’, as we will show that Algo-
rithm 2 always computes a basis B satisfying the conditions in Theorem 2.

The output vectors (b1,b2) of Algorithm 2 must form a basis of the lattice
L, as every occurring basis operation (swap, row-addition) is a unimodular
transformation of the basis. The algorithm terminates because the norm b1

strictly decreases by a constant every repeat-loop, and has λ1(Λ) as a minimum.
It remains to prove that the output satisfies the conditions of Theorem 2.

Write b1,b2 for the output basis, and write bold
2 = b2 + kb1 for the previous

version of b2 in the algorithm. Then

⟨b1,b2⟩ = ⟨b1,b
old
2 − kb1⟩ = ⟨b1,b

old
2 ⟩ − k∥b1∥2

=

( ⟨b1,b
old
2 ⟩

∥b1∥2
− k
)
∥b1∥

Since k ∈ Z is the rounded version of
⟨b1,b

old
2 ⟩

∥b1∥2 , it follows that |⟨b1,b2⟩| ≤
1
2∥b1∥2.

To show that ∥b1∥ = λ1(L), we pick any vector v ∈ L, and write it as
v = ℓb1 + kb2 with k, ℓ ∈ Z. Then, using |⟨b1,b2⟩| ≤ 1

2∥b1∥2,

∥v∥2 = ⟨ℓb1 + kb2, ℓb1 + kb2⟩ = ℓ2∥b1∥2 + 2kℓ⟨b1,b2⟩+ k2∥b2∥2

≥ (ℓ2 + k2 − kℓ)∥b1∥2 ≥ ∥b1∥2,

as ℓ2 + k2 − kℓ ≥ 1 for all k, ℓ ∈ Z.
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Algorithm 2: Lagrange’s reduction algorithm

Input : A basis (b1,b2) of a lattice L.
Output: A basis (b1,b2) such that ∥b1∥ = λ1(L) and

|⟨b1,b2⟩| ≤ 1
2∥b1∥2, as in Theorem 2.

repeat
swap b1 ↔ b2

k ← ⌈ ⟨b1,b2⟩
∥b1∥2 ⌋

b2 ← b2 − kb1

until ∥b1∥ ≤ ∥b2∥

x

y

b1

b2

− 1
2

1
2

Figure 2.4: The ‘wristwatch lemma’ visualized. Given a basis vector b1, it is
always possible to reduce another basis vector b2 with it, so that the reduction
b2 − kb1 lands into the gray area (the wristwatch band).
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2.6 The LLL algorithm

The LLL-algorithm, invented by Lenstra, Lenstra and Lovász [LLL82], is a
basis reduction algorithm achieving an exponential approximation factor in the
degree, while running in polynomial time. It is one of the most fundamental
basis reduction algorithms.

The LLL-algorithm consists mainly of two ingredients. The first ingredient
consists of locally Lagrange-reducing the basis at every point. In other words,
we want every projected basis pair B[i:i+1] = (πi(bi), πi(bi+1)) to be Lagrange
reduced. This has as a consequence that the Gram Schmidt norm sequence
(b∗

i )i does not decrease too quickly. The second ingredient consists of keeping
the basis size-reduced in order to avoid coefficient explosion, which is needed
for efficiency.

Algorithm 3: LLL-reduction algorithm

Input : A basis B = (b1, . . . ,bn) of a lattice Λ, δ ∈ ( 14 , 1].
Output: An LLL-reduced basis B

Size-reduce the basis B
while ∃i such that ∥b∗

i ∥ > δ∥πi(bi+1)∥ do
Find a unimodular matrix U ∈ Z2×2 such that B[i:i+1]U is
Lagrange reduced
Put (b′

i,b
′
i+1) = (bi,bi+1)U

Put B = (b1, . . . ,bi−1,b
′
i,b

′
i+1,bi+2, . . . ,bn)

Size-reduce the new basis B.
Put πi = π(b1,...,bi−1)⊥ .

end
Return B

Theorem 3. The LLL-reduction algorithm as in Algorithm 3 applied on an
integral basis (b1, . . . ,bm) = B ∈ Zm×n with δ ∈ ( 14 , 1], terminates within
O(n2 log(maxi∥bi∥)/ log(δ)) iterations.

Proof. The standard approach is to define the potential PB =
∏n

j=1 det(L(B[1:j]))
of the current basis. In order to prove that the number of iterations in Algo-
rithm 3 is bounded by O(n2 log(maxi∥bi∥)), we show that the potential is upper

bounded by (maxi∥bi∥)
n(n+1)

2 , lower bounded by 1 and decreases with a multi-
plicative constant each iteration.

As det(L(B[1:j])) =
∏j

i=1∥b∗
i ∥ ≤

∏j
i=1∥bi∥, we have

PB ≤
n∏

i=1

∥bi∥n−i ≤ (max
i
∥bi∥)

n(n+1)
2 ,

which proves the upper bound. As det(L(B[1:j])) = Vol(L(b1, . . . ,bj)) is the
covolume of an integer lattice, it must be lower bounded by 1.
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For the decrease of the potential, observe that size reduction does not change
the Gram Schmidt norms, so it remains to concentrate on the Lagrange re-
duction step only. A single Lagrange reduction changes B = (b1, . . . ,bn)
into B′ = (b1, . . . ,bj0−1,b

′
j0
,b′

j0+1, . . . ,bn), which only changes the value
det(L(B[1:j0])) among those of the det(L(B[1:j])) in the definition of the po-
tential PB. This implies

PB′ =
det(L(B′

[1:j0]
))

det(L(B[1:j0]))
· PB =

∥b′∗
j0∥

∥b∗
j0
∥ · PB <

√
δ · PB.

The last inequality follows from the fact that B at j0 was not Lagrange reduced
before the loop, i.e.,

δ∥b∗
j0∥2 = δ∥πj0(bj0)∥ > ∥πj0(bj0+1)∥2,

together with the fact that B′ at j0 is actually Lagrange reduced, which means
that πj0(b

′
j0
) is the shortest vector in L(B)j0:j0+1, i.e.,

∥πj0(bj0+1)∥2 ≥ ∥πj0(b′
j0)∥2 = ∥b′∗

j0∥2.

The LLL-algorithm always produces a basis that is LLL-reduced, which
means that it satisfies the Lovász condition and that it is size-reduced.

Definition 10 (LLL reduced basis). A lattice basis B = (b1, . . . ,bn) is called
δ-LLL reduced, for δ ∈ ( 14 , 1], if

(i) δ∥πi(bi)∥2 ≤ ∥πi(bi+1)∥2 for all 1 ≤ i ≤ n, and (Lovász Condition)

(ii) it is size-reduced.

The parameter δ ∈ ( 14 , 1] is known as the reduction parameter. Taking δ = 1
corresponds with applying exact Lagrange reduction in the LLL-algorithm, but
for this value we cannot show that the algorithm terminates in polynomial many
iterations.

The intuition is that the Gram Schmidt norms of a δ-LLL reduced basis do
not decrease too steeply, i.e.,

∥b∗
i+1∥ ≥

√
δ − 1

4
· ∥b∗

i ∥,

for all i ∈ {1, . . . , n}. The basis being size-reduced implies bounds on the length
of the basis vectors.

Corollary 1 (LLL bounds on basis vectors). Let B = (b1, . . . ,bn) be a δ-LLL
reduced basis of the lattice L, with δ ∈ ( 14 , 1]. Writing γ = (δ − 1

4 )
−1 ∈ ( 43 ,∞)

we have

∥b1∥ ≤ γ(n−1)/2 · λ1(L)
∥b1∥ ≤ γ(n−1)/4 · (Vol(L))1/n
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Proof. By combining (i) and (ii) of Definition 10, and writing πj(bj+1) = b∗
j+1+

cjb∗
j , with cj ∈ [−1/2, 1/2) (by size-reducedness), we obtain

δ∥b∗
j∥2 ≤ ∥πj(bj+1)∥2 = ∥b∗

j+1∥2 + c2j∥b∗
j∥2.

Hence, ∥b∗
j∥ ≤ (δ − 1

4 )
−1/2 · ∥b∗

j+1∥ = γ1/2 · ∥b∗
j+1∥. Therefore,

∥b1∥ = ∥b∗
1∥ ≤ γ1/2 · ∥b∗

2∥ ≤ . . . ≤ γ
n−1
2 · ∥b∗

n∥.

In particular we have ∥b1∥ ≤ γ
n−1
2 ·mini∥b∗

i ∥, and the first statement follows
from the fact that mini∥b∗

i ∥ ≤ λ1(L). For the second statement we compute

det(L)1/n =

(
n∏

i=1

∥b∗
i ∥
)1/n

≥
(

n∏

i=1

∥b∗
1∥ · γ

i−1
2

)1/n

= ∥b1∥ · γ(n−1)/4.

2.7 The HKZ algorithm

One of the strongest notion of reducedness of a lattice basis is being Hermite-
Korkine-Zolotarev-reduced (HKZ-reduced). This notion follows in a natural
way from trying to optimize the the so-called ‘basis profile’ (∥b∗

1∥, . . . , ∥b∗
n∥),

by greedily demanding ∥b∗
1∥ = ∥b1∥ = λ1(L(B)) and proceeding recursively

in the projected lattice L(B[2:n]). That is, demanding ∥b∗
2∥ = λ1(L(B[2:n])),

∥b∗
3∥ = λ1(L(B[3:n])) and so on. The result of such a process (if one includes

size-reduction as well) is called a HKZ-reduced basis.

Definition 11 (Hermite-Korkine-Zolotarev reduced basis). A basis B = (b1,
. . . ,bn) is called Hermite-Korkine-Zolotarev (HKZ) reduced if it is size-reduced
and

∥b∗
i ∥ = λ1(L(B[i:n])) for all i = 1, . . . , n.

Any lattice has an HKZ-reduced basis; this follows from the fact that any
shortest vector of L(B[i:n]) is primitive5in L(B[i:n]).

An alternative, recursive, definition would be as follows: a basis (b1, . . . ,bn)
is HKZ reduced if ∥b1∥ = λ1(L), andB[2:n] is HKZ reduced (or equals {0}). The
formal algorithmic analogue of this recursive definition is given in Algorithm 4.
This algorithm indeed obtains an HKZ reduced basis, as it computes a shortest
vector, projects away from it, and repeats on the projected lattice.

As HKZ reduction is very strong, it could be interpreted as (close to) optimal
for many purposes. For example, an HKZ reduction oracle would break almost
all lattice-based cryptography. In reality, though, the HKZ reduction algorithm
is very expensive, as it requires to solve an exact SVP instance in dimension n,
which becomes unfeasible quickly for larger n.

5A vector b ∈ L is called primitive if it can be extended to a basis of L. I.e., b ∈ L is
called primitive if there exists b2, . . . ,bn such that (b,b2, . . . ,bn) is a basis of L. It can be
shown that b ∈ L satisfying ∥b∥ = λ1(Λ) are always primitive.
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Algorithm 4: The HKZ algorithm.

Input : A rank n lattice L (represented by any basis B).
Output: An HKZ-reduced basis B

for i = 1, . . . , n do
πi := π(b1,...,bi−1)⊥

w← a shortest vector in πi(L)
Lift w to a lattice vector bi ∈ L such that πi(bi) = w
Size-reduce bi with respect to (b1, . . . ,bi−1)

end
return B = (b1, . . . ,bn)

2.8 The BKZ algorithm

The two reduction algorithms in this text so far, the LLL-reduction and the
HKZ-reduction algorithm, can be seen as the extreme cases of basis reduction.
The HKZ-reduction algorithm gives an optimal reduced basis with the very high
costs of solving exact SVP in lattices, whereas the LLL-reduction algorithm gives
only a ‘somewhat’ reduced basis achieving exponential approximation factors
while running in polynomial time.

The BKZ algorithm is a generalization of these two algorithms, and allows for
a trade-off: by paying more computation power, one achieves a better reduction
quality of a basis (see Figure 2.6).

A common trait of the HKZ and the LLL algorithm is that they both require
a short vector in a projected sublattice. The HKZ algorithm needs an SVP oracle
of dimension n, whereas the LLL-algorithm only needs such oracle for dimension
2. More specifically, the HKZ-algorithm asks for a shortest vector in ‘blocks’
L(B[i:n]) of rank at most n, while the LLL does so for ‘blocks’ L(B[i:i+1]) of
rank 2, which can be solved efficiently by Lagrange reduction.

A natural generalization is an algorithm that asks for short vectors in ‘blocks’
L(B[i:i+β−1]) of rank at most β. This is precisely what the Block-Korkine-
Zolotarev [Sch87] reduction algorithm does; the parameter β, here, is called the
blocksize.

Definition 12 (BKZ). A basis B = [b0, . . . ,bn−1] is called BKZ-β reduced if
it is size-reduced and

∥b∗
i ∥ = λ1(L(B[i:min (i+β−1,n)])) for all i = 1, . . . , n. (2.4)

One sees that the BKZ algorithm is indeed truly a generalization of both the
HKZ and the LLL algorithm, as the parameter instantiation β = 2 recovers the
LLL algorithm (for δ = 1), whereas putting β = n reveals the HKZ algorithm.
In the literature Equation (2.4) is often slightly relaxed by a small constant > 1,
having a similar role as δ in the LLL algorithm (see Algorithm 3).
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Figure 2.5: The BKZ algorithm repeatedly replaces the basis vector bj by a lift
of a shortest vector in the projected sublattice L(B[j:j+β−1]).

2.8.1 BKZ algorithm

The BKZ algorithm (Algorithm 5) transforms any given basis into a BKZ-
reduced basis. The algorithm, similarly to the HKZ algorithm, greedily attempts
to satisfy the BKZ condition (Equation (2.4)) at each position i by replacing the
basis vector bi by a shortest vector in the block L(B[i:min (i+β−1,n)]). Though
this has as a consequence that the basis is BKZ-β reduced at position i, it might
also invalidate the BKZ-condition at other positions. This is the reason why just
one loop of i ∈ {1, . . . , n− 1}, which is called a ‘tour’, is usually not enough to
fully BKZ-β reduce a basis. The BKZ algorithm instead repeats such tours until
the basis remains unchanged, which means that this resulting basis is BKZ-β
reduced.

Algorithm 5: The BKZ algorithm.

Data: A lattice basis B, blocksize β.
LLL reduce B;
while B is not BKZ-β reduced do

for i = 1, . . . , n− 1 do // A single BKZ-β tour

w← a shortest vector in L
(
B[i:min (i+β−1,n)]

)
;

Lift w to a vector v ∈ L (B) such that πi(v) = w;
Insert v in B at position i ;
Apply LLL on B to size-reduce and resolve linear dependencies;

end

end

The BKZ-β algorithm outputs a basis that is ‘close to’ BKZ-β reduced after
O(n2 log(n)/β2) tours [HPS11; LN20b]. In practice, after a few dozen tours,
the basis does not improve much in quality anymore. The cost of BKZ is thus
mainly dominated by the exponential (in β) cost of finding a shortest vector in
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a β-dimensional lattice.

2.8.2 Progressive BKZ

The cost of a BKZ-β tour (i.e., a single loop over i ∈ {1, . . . , n−1} in Algorithm
5) grows quickly with increasing β. It is a fact of experience that an already
quite well-reduced basis requires less tours to reach a BKZ-β reduced basis.
This suggests that first BKZ-reducing a basis with a smaller block size β′ < β
will reduce the run time of expensive β-BKZ reduction afterwards. Apart from
limiting the most expensive tours, using this ‘mild BKZ reduction’ beforehand
also lowers the costs of the SVP call required for BKZ, since the basis has a
better quality.

The idea of progressive BKZ is to apply this idea recursively, by running
only a small number of tours (say 1 or 2) first for β′ = 2, then β′ = 3 up to
β′ = β.
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Figure 2.6: The BKZ-algorithm allows for a trade-off between basis quality (or
equivalently, shorter vectors) and computation time. Paying more time allows
for shorter vectors; specifically, one can achieve approximations to the shortest
vector within a factor exp(Θ̃(nc)) within time exp(Θ̃(n1−c)), where n is the
lattice dimension.

2.9 The basis quality of the reduction algorithms

In cryptographic context, one usually deals with high-dimensional lattices in
which finding short vectors or even applying a good basis reduction algorithm is
unfeasible. Of course, these lattices are constructed in such a way that finding
short vectors, and thus breaking the cryptosystem, is hard.
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Due to this general computational unfeasability of these algorithms in high-
dimensional lattices it is nearly impossible to conduct real-life timing experi-
ments on lattice reduction algorithms for these lattices. Hence, there is a lack
of experimental evidence on the practical behavior of lattice reduction algo-
rithms in high dimensions, that are so relevant for cryptography. Instead, one
turns to more heuristic models to predict the behavior of the reduction algo-
rithms LLL, BKZ and HKZ. These models are mostly founded on the Gaussian
heuristic and extensive experiments in lower, feasible dimensions.

2.9.1 Gaussian Heuristic

The most commonly used heuristic for lattice algorithms is the so-called Gaus-
sian Heuristic, which is heavily verified by experiments.

Heuristic 1 (Gaussian Heuristic). For a rank n lattice L and a measurable set
S ⊂ spanL, the Gaussian Heuristic states that

|(L \ {0}) ∩ S| ≈ Voln S

VolL .

Furthermore, the non-zero lattice vectors in L∩S are uniformly distributed over
S.

The Gaussian heuristic forgets about all structure and properties of the
lattice, except the dimension and the covolume (and the 0-vector). As a con-
sequence, the lattice is then viewed as a uniformly distributed set of points in
space with density 1/Vol(L). So, we would expect about Vol(S)/Vol(L) non-
zero lattice points in a reasonable volume S. In applications, the set S takes
the shape of a (linear transformed) hypercube or ball. Applying the Gaussian
heuristic to a ball, we obtain an often-used estimate for the first successive
minimum λ1(L) of a lattice.

Heuristic Claim 1. Let L be a rank n lattice with volume Vol(L). The expec-
tation of the first minimum λ1(L) under the Gaussian Heuristic is given by

gh(L) := Vol(L)1/n
Vol(Bn)1/n

≈
√
n/(2πe) ·Vol(L)1/n,

where Bn is the n-dimensional unit ball. We also denote gh(n) = Vol(Bn)−1/n ≈√
n/(2πe) for the expected first minimum of a rank n lattice with volume 1.

2.9.2 HKZ shape

The typical log-profile (log∥b∗
j∥)j of an HKZ reduced basis of a random lattice is

somewhat concave, see Figure 2.7. This shape is correctly predicted by applying
the Gaussian heuristic to the HKZ definition.
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Figure 2.7: A typical HKZ reduced basis of a rank 100 lattice compared to the
heuristic HKZ shape of Definition 13, with and without adjustments for the tail
part.

Definition 13. We define the HKZ shape (ℓ1, . . . , ℓn) of rank n recursively as
follows

ℓi = gh(n− i+ 1) ·




i−1∏

j=1

ℓj




1/(n−i+1)

.

The above profile shape should be thought of as a Gram-Schmidt basis profile
of a HKZ reduced basis of a random lattice with volume 1. For a lattice of
covolume det(L), the HKZ reduced basis of rank n has basis profile log∥b∗

i ∥ ≈
log ℓi +

1
n log(detL), according to the Gaussian heuristic. As can be seen in

Figure 2.7, this estimate is quite accurate, especially for i≪ n (say, i < n−50).
Observe that the rightmost part of the HKZ shape does not correspond

with the experiment, which can be explained by the fact that the Gaussian
heuristic generally only applies well in higher dimensions. This issue is solved by
experimentally computing an actual HKZ profile (∥b∗

i ∥)i for an average lattice
of rank 50 and replace the inaccurate rightmost part of the Gaussian heuristic
predicted HKZ shape by this experimentally computed profile. This adjusted
estimate, predicts an actual HKZ profile quite well, as can be seen in Figure 2.7.

2.9.3 Geometric Series Assumption

A typical log-profile (log∥b∗
i ∥)i of an LLL or BKZ-β reduced basis for a block

size β ≪ n resembles a straight line. This can be modeled by the statement
∥b∗

i+1∥/∥b∗
i ∥ = αβ , where αβ > 1 is some constant that only depends on β

(where β = 2 for LLL). This model is also called the Geometric Series As-
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sumption (GSA). Using the Gaussian heuristic, one can predict this constant
for various instantiations of BKZ (and LLL).

Heuristic 2 (Profile under the Geometric Series Assumption (GSA)). Let B
be a BKZ-β reduced basis, then under the Geometric Series Assumption and the
Gaussian heuristic the profile satisfies

log(∥b∗
i ∥) =

n+ 1− 2i

2
· log(αβ) +

log(det(B))

n
,

where αβ = gh(β)2/(β−1).

Justification. The above profile follows if we assume that ∥b∗
i+1∥/∥b∗

i ∥ = αβ

for all 1 ≤ i < n, and from the invariant
∑

log(∥b∗
i ∥) = log(det(B)). We

now give a justification why αβ = gh(β)2/(β−1) by using the Gaussian heuristic.
Because αβ only depends on the blocksize β, we can focus on a single BKZ
block to determine this constant. We thus assume without loss of generality
that our lattice L has dimension β and covolume 1. By the properties of BKZ
we furthermore know that ∥b∗

1∥ = ∥b1∥ = λ1(L). By the Gaussian heuristic,
we thus have ∥b∗

1∥ = λ1(L) = gh(β). Additionally, we have

log∥b∗
j∥ = log∥b∗

1∥ − (j − 1) log(αβ) = log(gh(β))− (j − 1) log(αβ),

for all 1 ≤ j ≤ n. By the fact that we assumed the covolume of L to be one, we
have

0 =
1

β

β∑

j=1

log(∥b∗
j∥) = log(gh(β))− 1

2
(β − 1) log(αβ),

where we used that 1
β

∑β
j=1(j − 1) = 1

2 (β − 1). Solving for αβ gives αβ =

gh(β)2/(β−1) as in the statement.
For block sizes exceeding 50 and reasonably small compared to the lattice

rank (i.e., β ≪ n), the GSA is quite precise. For accurate estimates for small
β < 50 an experimentally computed value of αβ is used instead.

The Geometric Series Assumption should be used with care, especially for
the start and the end of the basis profile. Namely, by the concavity of HKZ-
reduced basis profiles in combination with the fact that the Gaussian heuristic
is inherently an average-case heuristic, the profiles of BKZ tend to be slightly
concave as well close to the start and end.

2.10 Algorithms for the Shortest Vector Prob-
lem

The BKZ algorithm requires an SVP oracle to reduce lattices. In this section
we discuss the two most important heuristic algorithms for SVP: enumeration
and sieving.
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Figure 2.8: Typical basis profiles of LLL and BKZ compared with the predictions
computed by the Geometric Series Assumption.

2.11 Enumeration

Enumeration algorithms can be seen as a generalization of Babai’s nearest plane
algorithm (Algorithm 1). Instead of making a greedy choice at each iteration
to minimize ⟨e,b∗

i ⟩, enumeration algorithms take multiple choices and recurse
on those. A simple enumeration algorithm is presented in Algorithm 6. The
complexity of enumeration heavily depends on how reduced the basis is. For ex-
ample in the initial call there are already about 2R/∥b∗

n∥ choices, each of which
starts a new enumeration call on a lattice of dimension n − 1. For a badly re-
duced basis ∥b∗

n∥−1 can be very large, while for a well-reduced basis it is smaller.
Due to the recursion the other Gram-Schmidt norms ∥b∗

n−1∥, ∥b∗
n−2∥, . . . , ∥b∗

1∥
are just as important, each leading to a multiplicative increase.

For an LLL reduced basis the cost of enumeration for R = λ1(L) is of order
2O(n2). For a HKZ-reduced basis the cost decreases to about nO(n). Enumera-
tion algorithms are trivially parallelizable and use only a polynomial amount of
memory. But their time-complexity is sub-optimal.

2.12 Sieving

Lattice sieving algorithms solve SVP in single-exponential time, making them
asymptotically superior to enumeration techniques running in super-exponential
time, at the cost of also using single-exponential space. The central idea of
sieving algorithms is that given two lattice vectors v,w ∈ L, their difference
v−w ∈ L might be shorter. While in general this is not the case, given enough
lattice vectors we can find enough of such pairs. Lattice sieving algorithms thus
start with a large list of long lattice vectors, and try to find pairs of vectors
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Algorithm 6: Standard enumeration algorithm.

Input :

� A basis B = (b1, . . . ,bn) of a lattice L with Gram-Schmidt
orthogonalization B∗ = (b∗

1, . . . ,b
∗
n),

� a target t ∈ span(L) and a radius R > 0.

Output: A set S of all lattice points v ∈ L at distance ∥v − t∥ at most
R from t.

Enum(B, t, R):

c← ⟨t,b∗
n

∥b∗
n∥

S ← ∅
for x ∈ Z such that (c− x∥b∗

n∥)2 ≤ R2 do
S′ ← Enum((b1, . . . ,bn−1), π(b1,...,bn−1)(t−
zbn),

√
R2 − (c− x∥b∗

n∥)2)
S ← S ∪ {x · bn + s : s ∈ S′}

end
return S

that are close to each other. For each such pair the short difference vector is
then inserted back into this list, possibly replacing longer vectors. This process
is repeated until the list contains many short vectors, among which are the
shortest ones.

Heuristically we need about N = (4/3)n/2+o(n) vectors to find enough close
pairs. Naively this leads to an algorithm with running time ofN2 = 20.415n+o(n).
Using ‘nearest-neighbor’ techniques this can be reduced to an asymptotic run-
time of 20.292n+o(n). Asymptotically the cost of running the BKZ algorithm
with blocksize β is thus 20.292β+o(β).

The concrete performance of sieving algorithms is still an active field of
research, and in the last years several polynomial and even sub-exponential
speed-ups were discovered. As a result, sieving went from an asymptotic superior
algorithm to a practical superior algorithm to enumeration. Recently, the cross-
over between the best enumeration and sieving algorithms was pushed as low
as dimension 80. In Chapter 6 we will dive deeper into the concrete cost of the
best sieving algorithm.
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Chapter 3

Structured lattices

3.1 Introduction

3.1.1 Efficiency

In cryptography, one strives for security in the first place, but another property
of a cryptographic protocol is also very important: efficiency. An inefficient
cryptosystem that takes ages to encrypt will be competed away by their more
efficient counterparts based, for example, on other hardness assumptions.

In lattice-based cryptography that uses general (unstructured) lattices, the
largest inefficiency issue is mainly due to the size of the key, which consists
of the basis of the lattice and requires about n2 rather large numbers to store
and transmit (this is not the full story, for a more in-depth explanation, see
Section 4.3.1).

To circumvent this issue, so-called structured lattices were invented, whose
bases have an specific shape so that the entire basis can be reconstructed from
only partial information of this basis. For example, in so-called ideal lattices the
entire basis can be reconstructed by giving just one single vector of the basis.

The main idea of structured lattices is that there is, apart from the additive
lattice structure, another multiplicative ring-like structure. These lattices with
this extra multiplicative structure arise naturally in the field of algebraic number
theory, where they can be constructed out of ideals and modules.

3.1.2 Structure vs. Security

Intuitively, one might think that adding more structure to a certain cryptosys-
tem allows for attacks that exploit this structure. Indeed, a vital part of the
challenges in current cryptography is to add structure that does improve en-
cryption and decryption efficiency, but does not decrease security.
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Ideal lattices

The line of work of [CGS14; Cra+16; CDW17; Eis+14; PHS19] show that
cryptosystems based on lattices with too much structure, namely ideal lattices,
are potentially weaker than those based on generic lattices. This is because
there exists a quantum algorithm that allows to find mildly short vectors in

ideal lattices; those are lattice vectors within the bound 2Õ(
√
t) det(I)1/t of an

ideal lattice I of a t-dimensional number field.
Though no candidates for standardization were based on ideal lattices, this

line of work showed that, in cryptography, too much structure in lattices is to
be avoided. A kind of structured lattice that is generally considered (much)
better for cryptography purposes are module lattices.

Module lattices

Module lattices can be seen as higher-rank generalizations of ideal lattices, in the
same way that matrices can be seen as higher-‘rank’ generalizations of numbers
(the ordinary numbers are then the diagonal matrices).

Ideal lattices are a very special case of module lattices, they namely have rank
one. The line of research described above seems not to generalize to module
lattices of higher rank; it is believed among cryptographers that there is a
computational barrier in between rank-one module lattices (ideal lattices) and
rank-two (and higher) module lattices.

The belief in this computational barrier is partially because of a reduction
for SVP in higher rank modules to SVP in rank 2 modules [Lee+19; MS19].

3.1.3 Module lattices in NIST candidates

For this reason, structured lattice-based cryptosystems are often based on mod-
ule lattices of rank 2 or higher. All ModuleLWE-based cryptosystems have their
ground in SVP in rank> 1 module lattices. RingLWE-based cryptosystems have
a hardness that is somewhere ‘in between’ SVP in rank 1 and higher rank mod-
ules, as there is a reduction from IdealSVP to RingLWE [LS15], but RingLWE
is also a rank one version of Module-LWE. For NTRU, recent work [PS21] shows
that a similar ‘sandwich’ situation happens: a reduction from IdealSVP to the
worst-case NTRU, and a reduction from NTRU to search-RingLWE. A recent
work [FPS22] shows that NTRU is at least as hard as unique module-SVP in
rank 2.

3.2 Number fields and number rings

In this section, we will quickly address algebraic number theory; for a more
extensive treatment, we find Neukrich [NS13] a good reference. A number field
K is a finite-dimensional field extension of the rational numbers Q. In other
words, K ≃ Q[X]/(f(X)) for some irreducible polynomial f(X) ∈ Q[X]. The
dimension of K as a Q-vector space is called the degree t of the number field.
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Every number field element α ∈ K has a minimal polynomial, the unique
monic, irreducible polynomial m(X) ∈ Q[X] that satisfies m(α) = 0. If, addi-
tionally, this minimal polynomial of α lies in Z[X] (i.e., has integral coefficients)
we call α an integral element of K. The integral elements in K together form
a ring OK , which is called the ring of integers of K. Subrings of such a ring of
integers of some number field K are called number rings.

The most commonly used number rings in cryptography are of the shape R =
Z[x]/(ψ(x)), where ψ(x) ∈ Z[x] is an irreducible polynomial. A typical example
is the power of two cyclotomic ring, which is obtained by putting ψ(x) = xt +1
with t = 2k for some k > 0.

For example, by taking t = 256, one obtains the number ring of CRYSTALS-
Kyber; this cryptosystem uses module LWE of rank r = 2, 3 or 4 over this ring
[Bos+18; Alb+18] with m = 2r samples (or equivalently m = r samples and a
short secret). We will see in Chapter 5 that attacks on these cryptosystems can
be seen as BDD instances in module-lattices of rank m = 4, 6, 8.

3.2.1 The Minkowski embedding

Let K = Q[X]/(ψ(X)) be a number field defined by the irreducible polynomial
ψ(X) ∈ Q[X]. This polynomial ψ(X) has deg(ψ) distinct roots in the complex
numbers C. This gives deg(ψ) different field embeddings K ↪→ C, respectively,
by sending X̄ ∈ K = Q[X]/(ψ(X)) to any of the roots of ψ in C. Those are all
possible field embeddings of K into C.

By concatenating these field embeddings next to each other, one obtains
the Minkowski embedding K → ⊕

σ:K→C C, α 7−→ (σ(α))σ. In most of the
literature, the codomain of this Minkowski embedding is restricted to KR =
{xσ ∈

⊕
σ:K→C C | xσ = xσ̄}, where σ̄ is the embedding σ̄ : K ↪→ C obtained

by applying first σ and then complex conjugation in C. By component-wise
addition and multiplication, KR is an R-algebra (and thus in particular an R-
vector space).

3.3 Ideal Lattices

Ideals

The image of a full-rank number ring R under the Minkowski embedding is a
discrete subgroup in KR (only considering the additive structure) [NS13, Ch. 1,
§ 4]. In other words, the number ring R forms a lattice under this embedding
(see Figure 3.1). The same is true for any non-zero ideal of R. Recall that an
ideal of R is a subgroup I ⊆ R of the additive group of R that is stable under
multiplication with elements in R, i.e., R · I ⊆ I.

Ideal lattices

The image of an ideal I ⊆ R under the Minkowski embedding is an example
of an ideal lattice; it has the additive structure of a lattice and the ring-like
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Figure 3.1: The number ring Z[
√
2] visualized on the real plane, using the

Minkowski embedding, sending
√
2 7→ (

√
2,−
√
2) and 1 7→ (1, 1).

structure of an ideal. More generally, an ideal lattice is defined as any non-
zero lattice L ⊆ KR that satisfies R · L ⊆ L, where the action of R happens
component-wise after the Minkowski embedding. Equivalently, considering KR
as an R-algebra, ideal lattices are discrete (rank 1) R-submodules of KR.

One can show that these lattices can be written as x · I, where I ⊆ R is a
lattice, and where x = (xσ)σ ∈ KR. Here we mean by x · I ⊆ KR the lattice

x · I = {(xσ · σ(α))σ | α ∈ I}.

3.4 Module Lattices

Module lattices are generalizations of an ideal lattice, in the sense that they are
discrete R-submodules of Kr′

R for some r′ ≥ 1. Concretely, a module lattice is

any non-zero lattice L ⊆ Kr′

R that satisfies R · L ⊆ L.
One can show that any such module lattice is of the shape

L = b1 · a1 + . . .+ bk · ak (3.1)

for suitable R-linearly independent b1, . . . ,bk ∈ Kr
R and ideals a1, . . . , ak ⊆ R.

The set (bj , aj)j is called a pseudo-basis of the module lattice L. A full treat-
ment of pseudo-bases is beyond the scope of this text; we refer to Cohen’s book
[Coh12] for a more extensive treatment. An alternative view on modules-lattices
is by using module filtrations, as in the paper of Mukherjee and Stephens-
Davidowitz [MS19].

In this survey we will only treat free module lattices, which are modules of
the shape as in Equation (3.1), where all ideals ai = OK are equal to the ring of

39



integers. In that case, one can write the module lattice by an ‘ordinary’ basis,
by putting B := (b1, . . . ,bk), by which we then mean the module lattice

L = b1 · OK + . . .+ bk · OK (module lattice).

Note the analogy with ‘ordinary’ lattice bases, where the OK is replaced by Z:

L = b1 · Z+ . . .+ bk · Z (ordinary lattice).

As we will see in Chapter 8, many of the operations (row/column operations and
Gram-Schmidt orthogonalization) on ordinary lattices have their generalizations
to module lattices. With these generalizations it is then possible to phrase a
module version of LLL (and BKZ), though these are not more powerful (in the
pure lattice reduction sense) than the ordinary versions of these algorithms.
This is the subject of Chapter 8.
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Chapter 4

NTRU & LWE

4.1 Introduction

To do lattice-based cryptography, one needs hardness assumptions for concrete
and computable lattices that can be easily constructed and amended by com-
puters. Additionally, such a hardness assumption must allow for trapdoors, so
that it is usable in a cryptographic context.

For example, the lattices considered must only involve integer arithmetic
and preferably fast operations, whereas the hardness assumptions must have a
tight relation with the ‘natural’ hard problems in lattices, like the Closest and
the Shortest Vector Problem.

The two most famous of such cryptographic hardness assumptions for lat-
tices are Learning With Errors, originating from Regev [Reg09], and NTRU,
originating from Hoffstein, Pipher and Silverman [HPS98].

4.2 LWE

4.2.1 Introduction

In this subsection, we will explain at a high level about Learning With Errors
(LWE), a lattice-based cryptography framework. To keep things simple, pa-
rameters are not yet instantiated and certain distributions are not yet made
explicit.

Later on, whenever we discuss the specific variants of LWE, we will focus
more on the precise instantiations and also focus on what instantiations are used
in the NIST candidates.

4.2.2 The LWE setup

Learning with errors always works with modular arithmetic modulo some num-
ber q ∈ N>1, which is called the modulus and is often chosen to be prime or a
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prime power.
The secret key s in LWE is a vector s ∈ (Z/qZ)n, i.e., si ∈ Z/qZ for i ∈

{1, . . . , n}. This secret vector s is sampled uniformly beforehand.
The public information consists of m slightly perturbed random inner prod-

ucts with s. That is, the public information consists of m pairs of the shape
(a, b) such that b = a · s + e ∈ Z/qZ, where, in each pair (a, b), the vector a
is drawn uniformly random from (Z/qZ)n and e is drawn from a specific dis-
tribution over Z/qZ close to zero. For intuition, it suffices to think of e to be
uniformly drawn from {−2,−1, 0, 1, 2} (mod q) for each pair. The dot in a · s
denotes the inner product of the two vectors in (Z/qZ)n and results in a number
in Z/qZ.

For each of the m public pairs (a, b), the associated errors e are unknown to
the public. Also, this error is sampled again for each pair. Both these facts are
important to understand the hardness of the LWE assumption.

4.2.3 The LWE assumption

Recall that the public observer in the LWE setup gets to know m pairs of the
shape (a, b), where a ∈ (Z/qZ)n and b ∈ Z/qZ. Here, the public observer knows
that there exists some secret s such that b = a · s + e, but does not know the
value of s.

The search-LWE assumption

The search-LWE assumption can be phrased as follows: given m such pairs of
the shape (a, b) as in the LWE setup, it is hard to find the secret s.

Different authors have different assumptions on this particular hardness,
and this hardness also relies on the various parameters of the LWE setup: the
modulus q, the dimension n, the number of samplesm and the error distribution
of the e.

The distinguishing-LWE assumption

The distinguishing-LWE assumption essentially states that the m samples of
the shape (a, b) look very much like uniform samples. In other words, this as-
sumption states that it is hard to algorithmically distinguish betweenm samples
(a, b) from the LWE setup, and m uniform samples (ã, b̃), i.e., where ã is uni-
formly random distributed over (Z/qZ)n and b̃ is uniformly random distributed
over Z/qZ (and where each of the m uniform samples are independent of each
other).

Difference between the two assumptions

In the search-LWE assumption the public observer is promised that the samples
are from the LWE setup. That means that the public observer is given the
(true) promise that the samples (a, b) are of the shape b = a · s + e for some
secret s and some given distribution of the errors e.
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In the decision-LWE assumption the public observer is given no such promise.
In fact, deciding whether there exists such secret s (in the LWE setup) or not
(in the uniform setup) is the computational task that is assumed to be hard.

Regev showed that these two assumptions are essentially equivalent, when-
ever q is bounded by a polynomial in n [Reg09; Pei09].

4.2.4 Encryption and decryption

Encryption in LWE relies on the fact that the public observer (which has m
samples of the shape (a, b)) is capable of making a new LWE sample with a
slightly worse ’disturbance error’. Recall, an LWE sample is a pair (a, b) for
which b = a · s+ e.

Indexing the m public samples as follows: (a(1), b(1)), . . . , (a(m), b(m)) (sat-
isfying b(j) = a(j) · s + e(j) for all j), generating this new LWE sample by the
public observer proceeds by taking a small linear combination of these samples:

(anew, bnew) =

m∑

j=1

cj · (a(j), b(j)) = (

m∑

j=1

cja
(j),

m∑

j=1

cjb
(j)), (4.1)

where the cj ∈ Z are all small (say, −1, 0 or 1) and all arithmetic is modulo q.
Indeed, this looks like an LWE sample, as it satisfies

bnew =

m∑

j=1

cjb
(j) =

m∑

j=1

cj(a
(j) · s+ e(j)) =

m∑

j=1

cja
(j)

︸ ︷︷ ︸
anew

·s+
m∑

j=1

cje
(j)

︸ ︷︷ ︸
enew

(4.2)

= anew · s+ enew. (4.3)

Here enew is defined as the small linear combination of errors
∑m

j=1 cje
(j), which

must in general be of a larger size than the e(j) themselves. So the ‘quality’,
say, of such a sample is worse than the ‘real’ LWE samples (a(j), b(j)).

Encryption

Encryption (by the public observer) of a single bit B ∈ {0, 1} now happens
by generating such a new (worse quality) random LWE sample (anew, bnew) by
taking a random small linear combination of the public LWE samples (a(j), b(j)).
By subsequently adding B · ⌊q/2⌉ to bnew, one obtains the encryption1. That
is, generate random small ci ∈ Z and put

Enc(B) = (

m∑

j=1

cja
(j),

m∑

j=1

cjb
(j) +B · ⌊q/2⌉) = (anew, bnew +B · ⌊q/2⌉)

1Here, ⌊q/2⌉ means rounding q/2 to the nearest integer
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Decryption

As the receiver of the message is in possession of the secret s, it is possible
to compute anew · s and subtract it from bnew + B · ⌊q/2⌉, which yields, by
Equation (4.3),

bnew +B · ⌊q/2⌉ − anew · s = bnew − anew · s︸ ︷︷ ︸
enew

+B · ⌊q/2⌉ = enew +B · ⌊q/2⌉

≈ B · ⌊q/2⌉.

Where the last approximate equation follows from the fact that enew is reason-
ably small with respect to q. Therefore, the receiver is capable to retrieve B;
the receiver simply deduces that B must be equal to zero if enew +B · ⌊q/2⌉ is
small, and equal to one otherwise.

Idea of security

The rough, intuitive idea for the security of this scheme stems from the distinguishing-
LWE assumption. As the pair (anew, bnew) is an LWE sample, the distinguishing-
LWE assumption implies that this is algorithmically indistinguishable from a
uniform sample in (Z/qZ)m × (Z/qZ).

The reasoning why an attacker is then never able to retrieve the message bit
B (without the secret key), generally happens by a proof by contradiction as
follows. Suppose (as to obtain a contradiction) that an attacker has an algorithm
A that does allow to retrieve the message bit B from the encryption Enc(B).
Then, this algorithmA essentially can distinguish between LWE-samples (a B =
0 encryption) and non-LWE-samples (a B = 1 encryption). This distinguishing
power can then also be used to (at least partially) distinguish between random
samples and LWE samples (in some quantified sense), contradicting the hardness
assumption.

4.2.5 Formal definition of ‘plain’ LWE

In the preceding text, we informally explained ‘plain’ LWE. For the purposes
of phrasing this problem as a lattice problem, it will be useful to stack the m
samples (a(j), b(j) = a(j) · s+ e(j)) together in matrix notation. By putting the
vectors a(j) ∈ (Z/qZ)n as the rows of a matrix that we will name A, putting b(j)

into a column vector b ∈ (Z/qZ)m and e(j) into a column vector e ∈ (Z/qZ)m,
we obtain

b = A · s+ e.

This leads to the following general definition of the LWE distribution.

Definition 14 (LWE, [Reg09]). Let n,m and q be positive integers, let χ be a
probability distribution on Zm and let s ∈ (Z/qZ)n be a ‘secret vector’.

We denote Ln,m,q,χ for the distribution on (Z/qZ)m×n × (Z/qZ)m given
by choosing A ∈ (Z/qZ)m×n uniformly at random, e ← χ (from Zm), and
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outputting
(A, b = A · s+ e mod q)

We will call such a pair (A, b = A · s + e mod q) an LWE instance with
parameters (q, n,m, χ).

The number n is called the dimension, the number m the sample size, the
number q is generally referred to as the modulus of the LWE problem, and the
distribution χ over Zm is called the error distribution.

Definition 15 (Search-LWE, Decision-LWE). Search-LWE is the problem of
recovering the secret vector s from a sample (A,b)← Ln,m,q,χ.
Decision-LWE is the problem of distinguishing between samples from Ln,m,q,χ

and from the uniform distribution Un,m,q over (Z/qZ)n×m × (Z/qZ)m.

Note that we left the distribution of the original secret vector open in
these definitions. Originally, the secret s is sampled uniformly at random from
(Z/qZ)n, and unless otherwise stated we assume that this is the case. For effi-
ciency reasons concrete schemes often deviate from this however, for example,
by sampling small secrets. Often this means that the secret coefficients are sam-
pled from the same distribution as the error coefficients. This does not hurt the
security as the uniform and small secret variant are actually equivalent up to the
number of samples one gets. In particular, a small secret LWE instance with m
samples can be turned into a uniform LWE instance with m′ = m+ n samples,
and the reverse reduction also applies [App+09]. The small secret variant can
thus be seen as compressing m+n samples in only m samples, thereby reducing
the amount of information that has to be send. This is precisely what makes
small secrets useful for concrete schemes.

Summary 1 (LWE assumption). The LWE assumption states that, for ad-
equate parameters (q, n,m, χ), ‘noisy’ linear combinations b = A · s+ e mod q
are computationally indistinguishable from uniform vectors mod q, for a random
A.

4.3 Variants of LWE

Though there are many variants of LWE [PP19], they can be roughly divided
into three categories: Ring-LWE, Module-LWE and the original ‘plain’ LWE.
This ordinary ‘plain’ LWE is essentially what is explained and formally defined
in the previous section.

The first two categories, Ring-LWE and Module-LWE differ from this plain
LWE in the sense that (part of) the inner product (a · s) is replaced by mul-
tiplication in a ring. For Ring-LWE the inner product is fully replaced by a
ring multiplication, whereas in Module-LWE this inner product is only (in some
sense) partially replaced by ring multiplication. This is primarily done to de-
crease the key size and ciphertext size of the cryptosystem (see Section 4.3.1).

To summarize, the Ring-LWE variant is the ‘most structured’ one, the
Module-LWE variant slightly less structured, and the original ‘plain’ LWE is
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what one could call ‘unstructured’, in the sense that its arithmetic is not tied
to a ring other than Z or quotient groups thereof.

Remark 4. Among the early NIST candidates, there are also other variants on
LWE, most notably, Polynomial-LWE (PLWE), Order-LWE (OLWE), Middle-
Product LWE (MPLWE) and Integer (Module) LWE (I(M)LWE). The first three
are more or less equivalent to Ring-LWE [PP19], whereas the situation for In-
teger (Module) LWE’s is less clear. Gu [Gu19] shows that there is a relation
between Ring-LWE and Integer Ring LWE, but the author of ThreeBears [HR17]
suggest that this relation is not tight for their cryptosystem.

Another variant of LWE is called Learning With Rounding (LWR), where
the main difference is the way a ‘disturbance’ e is applied to the linear relations.
In LWE that disturbance happens in a random fashion, whereas LWR intends
to remove this randomness by making such disturbance deterministic by means
of ‘rounding’. This in order to avoid attacks that exploit weaknesses due to the
random sampling, like timing attacks (for which in LWE additional measures
are taken).

4.3.1 Plain LWE and its key and ciphertext size

For most NIST candidates that have an LWE-alike cryptosystem, the number
of samples m is of the order of n; in many cases m = 2n (or m = n in the small
secret variant). This means that the public key (A,b) consists of an m × n
matrix and a m-dimensional vector, both with coefficients in Z/qZ. One large
advantage of LWE is that the matrix A is random and thus one could derive
it with a pseudorandom function from a small seed. So the (pseudorandom)
public key (A,b) could be transferred using Θ(m log2(q)) = O(n log2(q)) bits.
Now let’s have a look at the encryption procedure, as shown in Section 4.2.4
the encryption of a single bit produces a ciphertext (a, b) ∈ (Z/qZ)n × Z/qZ in
the order of Θ(n log2(q)) bits. Sending B bits of information therefore requires
Θ(B · n log2(q)) bits.

Generally, in the setting of a KEM, the dimension n and the shared key size
B are roughly proportional to the logarithm of the advance of calculation speed
of computers, say λ (also known as the bit-security parameter); intuitively,
to withstand an attack of a twice faster computer, the lattice dimension n
and the shared key size B needs to be (additively) increased by a constant.
The ciphertext of a plain LWE cryptosystem is of size roughly nB log2(q) =
Ω̃(λ2), and needs to be transmitted over a network, say, the internet (just to
share the key). So, in order for such a cryptosystem to be also usable in the
future, the network speed should keep up quadratically with the logarithm of
the calculation speed. Some would argue that network speed depends on large-
scale infrastructure, and this is therefore not something to be expected. Others
say that such a ciphertext size of Ω̃(λ2) is untenable with respect to other (pre-
and post-quantum) cryptosystems and will be competed away by their more
efficient counterparts.

Note that the public-key size is only of order Ω̃(λ), while the ciphertext size
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is of order Ω̃(λ2). By applying additional trade-offs these sizes can be balanced
to obtain a total size in the order of Ω̃(λ3/2). The idea is to have roughly O(

√
λ)

secret vectors s hidden in the public key, and roughly O(
√
λ) ciphertexts, which

when properly combined can transfer O(
√
λ
2
) = O(λ) bits of information. This

was for example done in FrodoKEM [Nat17]. Nevertheless, a key and ciphertext
size in the order of Ω̃(λ3/2) is still rather large for practical purposes.

So, for future implementation one could state that plain LWE has key sizes
that are too large for everyday use. Even at the current time NIST considers
the key sizes of cryptosystems based on plain LWE too large for (direct) stan-
dardization [Moo+20, §3.6], though they do state for example that the plain
LWE-based FrodoKEM “suitable for use cases where the high confidence in
the security of unstructured lattice-based schemes is much more important that
performance” [Moo+20, §3.6].

Summary 2 (Reason for using ‘structured’ LWE). ‘Plain’ LWE with pa-
rameters q, n,m = Θ(λ) has key and ciphertext sizes Ω̃(λ2) or with some im-
provements Ω̃(λ3/2), which is generally considered too large for everyday use.
This is the reason why ‘structured’ variants of LWE are considered.

Public key and ciphertext sizes of Ring-LWE and Module-LWE

The structured variants of LWE (i.e., Ring-LWE and Module-LWE) are invented
to diminish the public key size and cipher text size by using ring arithmetic and
to improve calculation speed of multiplicative operations by means of Fourier
transforms.

Due to the ring arithmetic, Ring and Module-LWE have public keys of size
O(n log q) and cipher texts of size O(n log q) for an n-bit message, with maybe
some additional logarithmic factors. We now examine how this efficiency im-
provement is obtained.

4.3.2 Ring-LWE

NIST finalists

As none of the NIST finalist are based on Ring-LWE (but many candidates are),
we will only briefly treat this variant. Covering Ring-LWE first will ease the
explanation of Module-LWE.

Remark 5. The reason that the NIST finalist lack Ring-LWE based schemes
is mostly due to the preference for low rank Module-LWE based cryptosystems
instead, as the latter are of comparable efficiency but have less algebraic structure
(e.g., [Moo+20, §3.12]).

Ring-LWE

In Ring-LWE, one attempts to lower this public key size by using ring arithmetic.
By using the multiplicative structure of the ring, one can ‘compactify’ the matrix
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NIST candidates Assumption Security (bits) Public key (bytes)

FrodoKEM (FrodoKEM–976) LWE 154 15632
Round 5 (R5N1 3PKE 0d) LWR 175 9660
CRYSTALS-Kyber (Kyber768) Module-LWE 164 1184
SABER Module-LWR 185 992
Three Bears (MamaBear) I-MLWE 213 1194
NTRU (ntruhps4096821) NTRU 178 1230
NTRUPrime (sntrup761) NTRU 139 1158
LAC (LAC-192-v3a) RLWE 267 1056
NewHope (NewHope1024) RLWE 233 1824

Table 4.1: The NIST 3rd round lattice-based KEM finalists and alternatives
with their assumptions and key sizes for Category III security [Rav+21], with
the exception of NewHope, which has no category III proposal (instead category
V is listed). Note the large public key sizes in the unstructured LWE-based
cryptosystems; almost ten times larger than those based on structured lattices.

A from Definition 14.
In most Ring-LWE schemes, the arithmetic happens in the ringR = Z[x]/(xt+

1), with t = 512, 1024 or 2048; so we will focus on this ring. Additionally we
have a prime number q, which is of reasonably large size2. A Ring-LWE sample
is of the form (aR,bR) ∈ (R/qR)× (R/qR) where

bR = aR · sR + eR mod q.

Here, the subscript R of the element indicates that we are computing in the ring
R, as to make the difference with plain LWE. The secret key sR ∈ R is random
(in most schemes chosen to have small coefficients), aR is uniformly randomly
drawn from R/qR, and eR generally is drawn from a distribution over R/qR
that is concentrated around 0 (think about a discrete Gaussian centered at 0
with a deviation much smaller than q). The multiplication operation is ring
multiplication, not the inner product.

Ciphertext sizes of Ring-LWE

As argued before, the ciphertext sizes of Ring-LWE are significantly smaller
(O(t log q) for a t-bit message) than that of ordinary LWE. This can be seen by
the following observation. For ordinary LWE, to encrypt a single bit, the tuple
(anew, bnew) ∈ (Z/qZ)n+1 must be sent, of size O(n log q), see Section 4.2.4.

For Ring-LWE, one can pick a random element yR =
∑t−1

j=0 yix
i ∈ R/qR

with entries in {−1, 0, 1} and translate an t-bit string κ0κ2 . . . κt−1 into an

element in R by putting kR = ⌊q/2⌉∑t−1
j=0 κjx

j ∈ R.
Then, encryption of k is done by sending over

yR · aR and yR · bR + kR mod q.

2It can range from q = 251 to q = 16900097, e.g. [Alb+18]
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Note that this are two ring elements from R, and thus take space O(t log q).

Decryption then uses the secret key sR, by computing

yR · bR + kR − yR · aR · sR (4.4)

=yR · (aR · sR + eR) + kR − yR · aR · sR (4.5)

=yR · eR + kR (4.6)

Now, by using that yR and eR have very small coefficients, and therefore their
product also has very small coefficients, whereas kR has coefficients that are
either ⌊q/2⌉ or zero, one retrieves the i-th bit of the bit message κ0 . . . κt−1 by
observing whether the i-th coefficient of yR · eR + kR is closer to q/2 or to 0.

Remark 6. Something very similar happens in Module-LWE (with a small
loss), which has thus the same efficiency benefits as RingLWE in terms of public
key size and ciphertext size.

Summary 3 (Public key size and ciphertext size of LWE versus
Ring/Module-LWE). For encryption of a t-bit message ‘ordinary’ LWE re-
quires transmission of O(t2 log q) bits, whereas Ring-LWE (and Module-LWE)
requires O(t log q) bits. FrodoKEM, by using a special trick, requires transmis-
sion of O(t3/2 log q) bits for a t-bit message.

Seeing Ring-LWE as an LWE instance

In plain LWE, the expression

b = A · s+ e mod q (LWE) (4.7)

involves vectors b, e, s ∈ (Z/qZ)n and a matrix A ∈ (Z/qZ)n×m. In Ring-LWE,
the expression

bR = aR · sR + eR mod q (Ring-LWE) (4.8)

involves ring elements bR, eR, sR,aR ∈ R/qR and ring multiplication and addi-
tion.

In the following explanation we will show that the ring-LWE is a variant
of LWE where bR, eR and sR can be seen as vectors in (Z/qZ)n and the ring
multiplication aR · − corresponds to multiplication by a matrix MaR

associated
with aR, called themultiplication matrix. Such a matrix is of a special structured
shape, sometimes called ‘anti-circulate’.

An element cR ∈ R/qR is a polynomial of which the coefficients can be
chosen to be in Z/qZ.

cR =

t−1∑

j=0

cjx
j with cj ∈ Z/qZ. (4.9)
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a =

a0

a1

a2

a3

a4

a5

a · x2 =

−a4
−a5
a0

a1

a2

a3

Figure 4.1: The anti-circular multiplication of aR = a0 + a1x
1 + a2x

2 + a3x
3 +

a4x
4 + a5x

5 by x2 in the ring R = Z[x]/(x6 + 1). This yields aR · x2 = −a4 +
−a5x1 + a0x

2 + a1x
3 + a2x

4 + a3x
5. Note that x6 = −1 in such a ring, causing

the negative sign.

This polynomial can just be represented by the coefficients, which gives a vector
(c0, . . . , ct−1) ∈ (Z/qZ)t, which we will denote c (without the subscript R). This
is how we can see bR, sR and eR ∈ R as vectors b, s, e ∈ (Z/qZ)t. So, we have
an additive group isomorphism between R/qR and (Z/qZ)t. Note that the
standard basis vectors ϵj are just the monomials xj for j ∈ {0, . . . , t− 1}.

The element aR gets a different treatment because that ring element is in-
volved in the multiplication. The action cR 7→ aR · cR maps R/qR to R/qR
in a linear fashion, as aR(cR + dR) = aRcR + aRdR. By using the additive
isomorphism R/qR ≃ (Z/qZ)t, one can thus see this map ‘multiplying by aR’
as a linear map. Thus, we can represent it by a matrix by looking how it acts
on the standard basis vectors ϵk ↔ xk. Writing aR =

∑t−1
j=0 ajx

j ∈ R/qR, we
have

aR · xk =




t−1∑

j=0

ajx
j


 · xk =

t−1∑

j=0

ajx
j+k = −

k−1∑

j=0

at−k+jx
j +

t−1∑

ℓ=k

aℓ−kx
ℓ,

see also Figure 4.1. So the matrix of multiplication by aR has a special shape,
which is often called anti-circulant (due to the negative sign after the ‘circular’

movement). For the multiplication matrixMaR
of aR =

∑t−1
j=0 ajx

j we can write

MaR
=
(
sign(j − k) · aj−k mod t

)
j=0,...,t−1
k=0,...,t−1

,

where j−k mod t is chosen to be in {0, . . . , t−1} and sign(j−k) = 1 if j−k ≥ 0
and −1 otherwise. An example of how such a anti-circulant matrix looks like
for the case R = Z[x]/(x6 + 1) can be seen in Figure 4.2.
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a0 −a5 −a4 −a3 −a2 −a1
a1 a0 −a5 −a4 −a3 −a2
a2 a1 a0 −a5 −a4 −a3
a3 a2 a1 a0 −a5 −a4
a4 a3 a2 a1 a0 −a5
a5 a4 a3 a2 a1 a0

Figure 4.2: An example of an anti-circulant multiplication matrix of aR ∈ R in
the ring R = Z[x]/(x6 + 1).

The ‘compactified’ matrix A

So, concluding, one can see that an Ring-LWE sample

bR = aR · sR + eR mod q

can be seen as a plain LWE sample by seeing the polynomials bR, sR and eR as
vectors in (Z/qZ)t by considering their coefficients, and by putting A = MaR

,
the anti-circulant multiplication matrix of aR.

b = A︸︷︷︸
=MaR

·s+ e mod q

Note that the matrix of Ring-LWE is fully determined by the first column;
the rest of the column actually follows from the ‘anti-circulant’ rule. Therefore,
to send over this multiplication matrix, we only need to send the first column,
or equivalently, the coefficients of the polynomial aR.

Summary 4 (Ring-LWE as ‘plain’ LWE). In essence one can see Ring-LWE
as a special version of plain LWE in which the matrix A is of such a shape that
it is fully defined by its first column (and where the rest of the columns are
defined by a linear transformation of the first column), see Figure 4.2.

Remark 7. In Section 5.1, we will deduce that we can see (any variant of)
LWE as a BDD instance a very much related lattice whose dimension equals
the number of samples m. Then by embedding this BDD target we can reduce
it to an (unique)SVP-instance in a lattice of dimension m+ 1. For the system
to have a unique solution the number of samples is generally at least n + 1
or often even 2n where n is the LWE dimension or rank. In particular, note
that the dimension of the lattice problem is not directly determined by the LWE
dimension, but more by the number of samples.

In a very similar way, one can see Ring-LWE with m ≥ 2 samples as a
BDD instance in a rank m module lattice (hence keeping the structure), or a
(unique)SVP-instance in a rank m+ 1 module lattice.
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For Module-LWE of rank r′ with m ≥ r′ + 1 samples, essentially the same
reduction applies; it can be considered as a (unique)SVP-instance in a rank m+1
module lattice, again by embedding the error in a new rank.

4.3.3 Module-LWE

NIST finalists

All LWE-based NIST finalists are based on Module-LWE of rank 2, 3, 4 or 5.
The module ranks of the earlier NIST candidates based on Module-LWE does
not exceed 5 either. The underlying ring R is, in all MLWE (and MLWR)
cases, a cyclotomic ring of the shape Z[x]/(xt + 1) for t a power of two, or
Z[x]/(xt + xt−1 + . . .+ x+ 1), for t+ 1 a prime number [Alb+18].

Remark 8. The low rank of module-LWE is for efficiency; the lower the rank,
the more ‘compactified’ the public key can be stored and sent, and the more
efficient arithmetic in the underlying ring is. Module-LWE of rank 1 is just
equal to Ring-LWE.

NIST has a slight preference for (low rank but ≥ 2) module-LWE over Ring-
LWE [Moo+20, §3.12], as Module-LWE is generally believed (but yet unproven)
to be a more difficult problem to tackle algorithmically than Ring-LWE (which
is rank 1 Module-LWE).

Module-LWE

Module-LWE is some ‘blend’ between Ring-LWE and plain LWE. It has the ring
multiplication of Ring-LWE, and a kind of (different) inner product from LWE.

We will denote r′ for the rank of the Module-LWE problem. Given a secret

(s
(1)
R , . . . , s

(r′)
R ) ∈ Rr′ consisting of a r′-tuple of ring elements, a Module-LWE

sample consists of ((a
(1)
R , . . . ,a

(r′)
R ),bR) ∈ Rr′ ×R where

bR = a
(1)
R · s

(1)
R + ...+ a

(r′)
R · s(r

′)
R + eR mod q (rank r′ module-LWE),

where the subscripts R indicate that an element is from R (multiplication is in

R as well), where all a
(j)
R are uniformly randomly chosen from R/qR and where

eR ∈ R follows a specific distribution concentrated around 0.

A number m of such samples of the shape ((a
(1)
R , . . . ,a

(r′)
R ),bR) ∈ Rr′ × R

can be put in a matrix form, with coefficients in R/qR, like with LWE. The
m different bR and eR can be assembled into m-dimensional row vectors with

entries in R/qR, and the secret (s
(1)
R , . . . , s

(r′)
R ) ∈ Rr′ into a r′-dimensional

column vector with entries in R/qR.



b
(1)
R
...

b
(m)
R


 =




a
(1,1)
R . . . a

(1,r′)
R

...
. . .

...

a
(m,1)
R . . . a

(m,r′)
R




︸ ︷︷ ︸
AR

·




s
(1)
R
...

s
(r′)
R


+




e
(1)
R
...

e
(m)
R


 mod q (4.10)

52



The subscript ‘R’ in the matrix AR indicates that this matrix has entries in
R/qR, as opposed to A in plain LWE, which has entries in Z/qZ.

Definition 16 (Module-LWE, e.g. [PP19]). Let n,m and q be positive integers,
let R be a ring whose additive group is isomorphic with Zn, let χ be a probability
distribution on Rm and let s ∈ Rr′ be a ‘secret vector’.

We denote Lm,q,χ,R,r′ for the distribution on (R/qR)m×r′ × (R/qR)m given

by choosing A ∈ (R/qR)m×r′ uniformly at random, (e
(1)
R , . . . , e

(m)
R ) ← χ (from

Rm), and outputting

(AR, (b
(1)
R , . . . ,b

(m)
R ))

where AR and (b
(1)
R , . . . ,b

(m)
R ) are as in Equation (4.10).

Similar to plain LWE, we then have the following two problems.

Definition 17 (Search-MLWE, Decision-MLWE). Search-MLWE is the prob-

lem of recovering the secret vector s from a sample (AR, (b
(1)
R , . . . ,b

(m)
R )) ←

Lm,q,χ,R,r′ .
Decision-MLWE is the problem of distinguishing between samples from Lm,q,χ,R,r′

and from the uniform distribution Um,q,R,r′ over (R/qR)m×r′ × (R/qR)m.

Seeing Module-LWE as a plain LWE instance

Likewise as with what we did with Ring-LWE, we would like to write the mul-
tiplication matrix of the action of the matrix AR ∈ (R/qR)m×r′ on the secret
vector 



s
(1)
R
...

s
(r′)
R .


 (4.11)

As in the Ring-LWE setting, we can essentially write each s
(j)
R ∈ R = Z[x]/(xn+

1) as a vector in (Z/qZ)n by considering the coefficients of the polynomial
(modulo q).

To see what the multiplication matrix of AR looks like, it is insightful to
consider the rank two case (r′ = 2) with two samples3 (m = 2). In that case,

the secret is of the shape (s
(1)
R , s

(2)
R ) ∈ (R/qR)2, and we have two LWE samples

((a
(1,1)
R ,a

(1,2)
R ),b

(1)
R ) ∈ Rr′ ×R

((a
(2,1)
R ,a

(2,2)
R ),b

(2)
R ) ∈ Rr′ ×R

3This is not a real-life example, for multiple reasons: in actual cryptosystems the number
of samples is generally twice the dimension to avoid the linear system to be underdetermined,
and the underlying number ring has a larger degree (e.g., CRYSTALS-Kyber uses a degree
256 number field).
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satisfying

b
(1)
R = a

(1,1)
R · s(1)R + a

(2,1)
R · s(2)R + e

(1)
R mod q

b
(2)
R = a

(1,2)
R · s(1)R + a

(2,2)
R · s(2)R + e

(2)
R mod q,

or, equivalently,

[
b
(1)
R

b
(2)
R

]
=

[
a
(1,1)
R a

(1,2)
R

a
(2,1)
R a

(2,2)
R

]

︸ ︷︷ ︸
AR

·
[
s
(1)
R

s
(2)
R

]
+

[
e
(1)
R

e
(2)
R

]
mod q.

The action of the left part of the matrix a
(1,1)
R ,a

(1,2)
R only acts on the upper

component of the secret s
(1)
R , and, similarly, the right part of the matrix on the

lower component of the secret vector). Therefore, one can see the multiplication

matrix of AR, denotedMAR
, acting on the coefficients of the secret (s

(1)
R , s

(2)
R ) ∈

(R/qR)2 as a block matrix consisting of the respective multiplication matrices.

MAR
=

[
M

a
(1,1)
R

M
a
(1,2)
R

M
a
(2,1)
R

M
a
(2,2)
R

]
∈ (Z/qZ)2n×2n (Module-LWE, r′ = 2,m = 2)

An example of such a multiplication matrix can be seen in Figure 4.3. We just
treated the case of rank 2 (r′ = 2) and two samples (m = 2). In the general case,
the multiplication matrix has the following shape, by the very same argument.

MAR
=




M
a
(1,1)
R

. . . M
a
(1,r′)
R

...
. . .

...
M

a
(m,1)
R

. . . M
a
(m,r′)
R


 ∈ (Z/qZ)mn×rn

Summary 5 (Module-LWE as ‘plain’ LWE). Like with Ring-LWE, we can
in essence see Module-LWE as a special version of plain LWE in which the matrix
A has a shape that is fully determined by the columns 1, n+1, . . . , (r′−1)n+1.
The rest of the columns are a linear transformation of the defining column
directly left to them.

Remark 9. A rank r′ module over a dimension t ring yields a lattice of di-
mension d = r′ · t. For fixed lattice dimension d, one can increase r′ (and
accordingly decrease t) in order to have less structure. In this way one can
choose the amount of ‘structuredness’ in the scheme.

For example, for a highly structured scheme one can put r′ = 1 (Ring-LWE),
for a slightly less structured LWE-based scheme one put r′ slightly larger, like
2, 3, 4, 5 (low-rank Module-LWE). For (almost) no structure, one can put r′

to be close to d, that is, choose the ring dimension t to be small (high-rank
Module-LWE). For r′ = d and t = 1 one recovers plain LWE. So in a sense,
Module-LWE ‘interpolates’ between Ring-LWE and plain LWE.
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a0 −a5 −a4 −a3 −a2 −a1 a′0 −a′5 −a′4 −a′3 −a′2 −a′1
a1 a0 −a5 −a4 −a3 −a2 a′1 a′0 −a′5 −a′4 −a′3 −a′2
a2 a1 a0 −a5 −a4 −a3 a′2 a′1 a′0 −a′5 −a′4 −a′3
a3 a2 a1 a0 −a5 −a4 a′3 a′2 a′1 a′0 −a′5 −a′4
a4 a3 a2 a1 a0 −a5 a′4 a′3 a′2 a′1 a′0 −a′5
a5 a4 a3 a2 a1 a0 a′5 a′4 a′3 a′2 a′1 a′0

a′′0 −a′′5 −a′′4 −a′′3 −a′′2 −a′′1 a′′′0 −a′′′5 −a′′′4 −a′′′3 −a′′′2 −a′′′1
a′′1 a′′0 −a′′5 −a′′4 −a′′3 −a′′2 a′′′1 a′′′0 −a′′′5 −a′′′4 −a′′′3 −a′′′2
a′′2 a′′1 a′′0 −a′′5 −a′′4 −a′′3 a′′′2 a′′′1 a′′′0 −a′′′5 −a′′′4 −a3
a′′3 a′′2 a′′1 a′′0 −a′′5 −a′′4 a′′′3 a′′′2 a′′′1 a′′′0 −a′′′5 −a′′′4
a′′4 a′′3 a′′2 a′′1 a′′0 −a′′5 a′′′4 a′′′3 a′′′2 a′′′1 a′′′0 −a′′′5
a′′5 a′′4 a′′3 a′′2 a′′1 a′′0 a′′′5 a′′′4 a′′′3 a′′′2 a′′′1 a′′′0

Figure 4.3: An example of the multiplication matrix in (Z/qZ)12×12 of[
aR a′R
a′′R a′′′R

]
∈ R2×2 where R = Z[x]/(x6 + 1). This type of matrices occur

in rank 2 module-LWE cryptosystems with a number of Module-LWE samples
of m = 2. Note that the entire matrix is dictated by the first and the seventh
column. The columns 2 to 6 are defined as a linear transformation of the first
column, whereas the columns 8 to 12 as a transformation of the seventh column.
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Summary 6 (Structured vs. unstructured LWE). Among the three vari-
ants of LWE treated in this survey, RingLWE is the most structured one, and
‘plain’ LWE is the least structured one. ModuleLWE lies in between, and the
rank parameter r′ of ModuleLWE exactly indicates the similarity with plain
LWE (and the dissimilarity with RingLWE): the larger r′, the more ModuleLWE
‘looks like’ plain LWE.

4.4 NTRU

4.4.1 Introduction

The NTRU cryptosystem originates from Hoffstein, Pipher and Silverman [HPS98]
and uses arithmetic in the ring4 R = Z[x]/(xt +1) modulo two different primes
p and q; where t = 2k is a power of two.

The underlying hard problem could be informally named the ‘short modular
fraction problem’. Given a h ∈ R/qR, write it as a ‘short’ fraction

h =
g

f
mod q = f−1g mod q,

provided that it exists; where ‘short’ means that we want g, f ∈ R to have (very)
small polynomial coefficients.

4.4.2 The NTRU setup

The NTRU setup already happens in a ring R and is therefore already ‘struc-
tured’. Usually, this ring is taken to be R = Z[x]/(xt + 1) where t = 2k is a
power of two. Such a ring can be considered as all polynomials with degree
strictly less than t with coefficients in Z, and where multiplication of two poly-
nomials is given by ordinary polynomial multiplication followed by substituting
xt by −1 where it occurs.

Additionally, two prime numbers play a role, a large prime number q and
a small prime number p. Most of the time in the NTRU setup, one calculates
with the finite ring R/qR = (Z/qZ)[x]/(xt+1), i.e., where the coefficients of the
polynomials are reduced modulo q. In a small part one also needs to calculate
in R/pR, so, the same type of ring but then the coefficients are reduced modulo
p.

The secret key

The secret key consists of two polynomials f ,g ∈ R that have coefficients in
{−1, 0, 1}; such polynomials are called ternary. Here, the polynomial f is re-
quired to be invertible in both R/qR and in R/pR, i.e., there exists ‘inverses’

4In the original paper [HPS98], the ring R = Z[x]/(xt − 1) is used instead; but is currently
replaced by R = Z[x]/(xt + 1) because xt − 1 is reducible and therefore more vulnerable
to ‘subfield attacks’. The choice of ring is not limited to those two cases. For example, the
variant NTRUPrime [Ber+18] uses a different ring Z[x]/(xp−x−1), for reasons of diminishing
Galois symmetries.
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fq, fp ∈ R such that

f · fq ≡ 1 mod q and f · fp ≡ 1 mod p

The public key

The public key is the p-multiplied ‘fraction’

h = p · g · fq = p · g mod q

f mod q
∈ R/qR

4.4.3 The NTRU assumption

For NTRU-like protocols, like with LWE, there are two main assumptions.

The search-NTRU assumption

The search-NTRU assumption states that it is hard to find elements f ′,g′ ∈ R
with small coefficients such that

h = p · g
′ mod q

f ′ mod q
∈ R/qR.

Note that it is not strictly required to find the secrets f ,g themselves.

The distinguishing-NTRU assumption

Similarly to the case of LWE, the distinguishing-NTRU assumption essentially
states that the fraction h = p · g mod q

f mod q
looks much like uniformly sampled

elements in R/q, for an adequate distribution choice for the small-coefficient
f ,g. Slightly more precise: It is assumed that it is algorithmically hard to
distinguish between a uniform sample from R/qR and an h constructed as the
fraction of two (random) polynomials with coefficients in {−1, 0, 1}.

4.4.4 Encryption and Decryption

Encryption

A message m ∈ R is a polynomial with coefficients that are smaller than p/2
in absolute value. Note that the encrypter is in possession of the public key h
(as everybody is). Encryption of m ∈ R happens by choosing a random small-
coefficient polynomial r ∈ R, and multiplying it with h and use that product to
obscure the message. More precisely, the cipher text is

c = r · h+m (mod q),

where multiplication is in the polynomial ring R/qR.
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Decryption

The decrypter is in possession of the secret key f (and its inverses modulo p and
q), and can therefore compute

d = f · c = f · (r · h+m) (mod q)

= f ·
(
r · p · g

f
+m

)
(mod q)

= p · r · g + f ·m (mod q)

Above element d is only computed mod q, so, we choose a representative d̂
in R = Z[x]/(xt + 1) where every coefficient lies in {−q/2, . . . , 0, . . . , q/2}. As
r,g, f and m are small, we can deduce (for appropriate parameter choices) that

for this representative d̂ holds

d̂ = p · r · g + f ·m

Note the absence of ‘modulo q’ ; this is an equality in the ring R = Z[x]/(xt+1).
Indeed, since r, f ,g andm are small, there is no ‘overflow’ over the (rather large)

modulus q. Taking d̂ modulo the small prime p removes the p · r · g part:

d̂ = f ·m mod p.

It remains to multiply this by the p-inverse fp of f , to obtain m modulo p. As
this message m was assumed to have coefficients smaller than p/2 in absolute
value, the decrypter can successfully recover m.

fp · d̂ = fp · f ·m = m mod p.

Idea of security

A rough idea for the proof sketch for the security of NTRU is very analogous
to that of the security of the LWE-based cryptosystem. In fact, for the above
encryption scheme the security is related to that of small secret RLWE. For this
we assume that the message m is small and random (one can add an additional
small error pe otherwise in the scheme).

Now recall the distinguishing-NTRU assumption, i.e., that it is algorithmi-
cally hard to distinguish ‘small modular fractions’ h = g/f mod q in R/qR
from uniform samples hu in R/qR; where ‘small’ means that g, f have small
coefficients. So under the distinguishing-NTRU assumption we can assume that
h is in fact uniform in R/qR. But if we now look at the ciphertext

c = r · h+m mod q,

we see that it is in fact a small secret RLWE sample, where r is the small secret,
h is uniform and public, and m is the secret small error. Under the (small
secret) RLWE assumption it is thus hard recover the message.
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4.4.5 Formal definition of NTRU

Though there are slight differences between candidates, almost all NTRU-based
cryptosystems rely on the hardness of the following problem.

Definition 18 (search-NTRU [HPS98]). Let t, q be positive integers and ψ(x) ∈
Z[x] be a monic irreducible polynomial of degree t and put R = Z[x]/(ψ(x)).

Let f ,g ∈ R have small coefficients (following some specific distributions χf

and χg respectively), provided that f is invertible mod q. Given h = g/f mod q,
the Search-NTRU is the computational problem of recovering g, f ∈ R.

We call h (= g/f) an NTRU instance with parameters (q, n, χf , χg, ψ(x)).

Remark 10. The variants of NTRU mostly differ in the way the defining poly-
nomial ψ(x) ∈ Z[x] is chosen, or the way the invertible key f ∈ R is chosen.

For example, ψ(x) is often chosen to be a cyclotomic polynomial with degree
p− 1 or degree a power of 2 (e.g., xt +1 with t a power of 2). Alternatively the
polynomials xt − 1 and xt − x− 1 are used.

The way f ∈ R is chosen falls roughly in a few large classes. Sometimes f
is of the shape p · f ′ or p−1 · f ′ mod q for some f ′ ∈ R with small coefficients.
In other cases, to make f trivial to invert modulo p, it is set to f = 1+ pf ′ with
small coefficient ring element f ′ ∈ R.

In the concluding sections, we will not consider all these variants, for lack of
space.

Summary 7 (NTRU assumption). The NTRU assumption states that, for
adequate parameters ψ(x) ∈ Z[x], q ∈ N>0, fractions of polynomials h = g/f
modulo q and ψ(x) are computationally indistinguishable from uniform polyno-
mials modulo q and ψ(x).

Remark 11. A recent work of Felderhoff, Pellet-Mary and Stehlé [PS21; FPS22]
shows that NTRU is as least as hard as unique Module-SVP in rank 2 (by show-
ing a reduction from the latter to the former). Additionally, it is shown that
NTRU can be reduced to RingLWE.

NTRU and RingLWE are both at least as hard as IdealSVP, as there is a
reduction from IdealSVP to those two problems.

4.5 Variants of NTRU

Though none of the NIST candidates actually implements this, there exists also
a unstructured variant of NTRU. This could be seen as an NTRU analogue of
plain LWE, in which no ring is involved.

We will treat this variant because it will be useful for translating the original
(ring) NTRU into a lattice problem.
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IdealSVP NTRU
Rank-2

Module uSVP

RingLWE

Figure 4.4: A simplified diagram of the reductions between IdealSVP, NTRU,
RingLWE and unique module SVP.

4.5.1 ‘Unstructured’ NTRU

In unstructured NTRU, the large prime q and a small prime p essentially play
the same role as in the structured variant. The ring elements h,g, f are instead
replaced by square matrices H,F ,G ∈ Zn×n, that satisfy

H = p · F−1 ·G mod q,

where F ,G have very small entries and where F is assumed to be invertible
mod q. Additionally, F is also assumed to be invertible mod p.

Encryption and decryption

Encryption and decryption happens in the same fashion; a message m ∈ Zn

with entries bounded in absolute value by p/2 is encrypted by putting

c = Hr+m mod q

for a small random r ∈ Zn. Such a ciphertext is decrypted by multiplying c on
the right with F to obtain

d = F c = F (Hr+m) = pGr+ F ·m mod q

Taking a representative d̂ ∈ Zn and taking it modulo p, yields (due to the
smallness of all elements)

d̂ = F ·m.

By multiplying with F−1 modulo p, one obtains the original message again.

Original NTRU as a ‘unstructured’ NTRU problem

Most NTRU-based cryptosystems already happen in a ring setting, with R =
Z[x]/(ψ(x)). In order to make an NTRU-instance into an ‘unstructured’ NTRU
instance, we need to transform the ring-based equality (with f ,g,h ∈ R)

h = f−1 · g mod q
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into one of matrices (with H,F ,G ∈ Zn×n)

H = F−1 ·G mod q.

Exactly as with LWE, this transformation is done by seeing the additive
part of the ring R = Z[x]/(ψ(x)) as a Z-module: R ≃ Zt (taking n = t).
Here, the basis elements can be chosen to be the monomials, 1, x, x2, . . ., as in
Section 4.3.2. Multiplication by f ,g or h,

R
·f−→ R, x 7→ x · f

can then be seen as an invertible linear map, described by a matrix, which are
then respectively coined F ,G,H.

As in the Ring-LWE case, these matrices will then have a specific shape,
depending on the structure of the ring R. For example, for the ring R =
Z[x]/(xt + 1), it will be of the anti-circulant form, as in Figure 4.2.

Summary 8 (NTRU as a lattice problem). Like with structured LWE,
original NTRU translates into a lattice problem by considering the multiplica-
tion matrix of the public key h.
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Part II

Unstructured attacks and
refinements
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Chapter 5

Attacks on Unstructured
Lattices

In this chapter we discuss attacks on (variants of) LWE and NTRU assumptions
by interpreting them as generic lattice problems. The security estimates for
all lattice-based NIST candidates is mainly based on these attacks. For usual
parameters, the best known attacks are based on BKZ and SVP calls in lower
dimensions. In this chapter we will mostly consider the block-size β of BKZ or
the dimension β of these SVP calls, as the main cost metric. In the next chapter
we will go deeper into the concrete costs of running BKZ or solving SVP with
such parameters.

5.1 LWE and NTRU as lattice problems

5.1.1 Introduction

In Sections 4.3 and 4.5 we saw that all variants of LWE and NTRU can be
phrased as a ‘plain’ LWE or a ‘plain’ NTRU problem, involving matrices, vectors
and plain lattices in Rn. As this chapter is about unstructured attacks, we will
only consider these plain variants of LWE and NTRU, leaving the structured
attacks on the respective structured variants to the later Chapter 7.

5.1.2 Search-LWE as a lattice problem

Recall from Definition 15 the search-LWE problem: given (A,b) ∈ (Z/qZ)m×n×
(Z/qZ)m satisfying, for some secret s ∈ (Z/qZ)n,

b = A · s+ e mod q (5.1)

where e ← χ, some 0-centered distribution over (Z/qZ)m. The task is to find
the secret s from this information.
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LWE as a BDD instance

One could consider the lattice

Lq(A) = {y ∈ Zm | y = Ax mod q for some x ∈ Zn} = AZn + qZm.

If the small error vector e in Equation (5.1) did not exist, the vector b would
be in this lattice Lq(A). But, we know, because of this small error e, that
the vector b does not lie in this lattice, although it must be very close to the
lattice! Namely, due to the modular equation there exists some z ∈ Zm such
that b = A · s+ qz+e. Since A · s+ qz ∈ Lq(A), the distance of b to the lattice
Lq(A) is bounded by ∥e∥.

dist(b,Lq(A)) := min
ℓ∈Lq(A)

∥b− ℓ∥ ≤ ∥b−A · s− qz∥ = ∥e∥.

Though, the error vector e is known to be concentrated around 0 ∈ (Z/qZ)n,
thus one may assume that there is a known, small bound on ∥e∥. So, almost
surely, A·s+qz is the closest vector to b. As retrievingA·s+qz allows to recover
s (by just modular inversion of the matrix A), search-LWE is an instance of the
closest vector problem (CVP). Even more so, because there is a given upper
bound on the closeness (namely ∥e∥), this problem is even a Bounded Distance
Decoding (BDD) instance.

So one can see search-LWE with parameters n,m, q, χ as a Bounded Distance
Decoding instance with target b ∈ (Z/qZ)m and lattice Lq(A), with closeness
promise dist(b,Lq(A)) ≤ ∥e∥ ≤ uχ (with high probability). Here, uχ ∈ R>0 is
a high-probability upper bound on ∥e∥ for e← χ.

The lattice Lq(A) has dimension m and (with high probability) determi-
nant qm−n. The Gaussian heuristic indicates that the first minimum is about

gh(Lq(A)) ≈
√
m/(2πe) · q

m−n
m . For an error distribution χ with independent

0 centered coefficients with some constant standard deviation σ > 0, we expect
an error of size about

√
mσ. The BDD distance ratio δ then becomes

δ ≈
√
m · σ

√
m/(2πe) · q

m−n
m

=
√
2πeσ · q

n−m
m .

Solving a BDD instance can be done by a so-called dual attack, which tries
to find short dual lattice vectors in the dual lattice of Lq(A), in order to solve
BDD in the original (primal) lattice. We discuss this attack in Section 5.2.2.

LWE as a uSVP instance

Alternatively, one can also see the search-LWE problem as an instance of an
unusually-short SVP (uSVP) instance, as every BDD-instance can be translated
into such a uSVP instance (where the dimension is increased by one).

This translation can be done by creating a new matrix, constructed by stack-
ing the column vector b next to A and adding an extra dimension to keep the
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columns linearly independent. [
A b
0 c

]

Here, 0 is a n-dimensional row vector consisting of zeros, and c ∈ R>0 is chosen
in an appropriate way (namely, close to ∥e∥ for a proven reduction, or just a
small constant in practice). Then the following lattice,

Lq(A,b) :=

{
y ∈ Zm+1

∣∣∣ y =

[
A b
0 c

]
· x mod q for some x ∈ Zn+1

}

of dimension m+ 1 has the unusually short vector
[
A b
0 c

]
·
[
s
−1

]
=

[
As− b
−c

]
=

[
e
−c

]

Finding such a unusually short vector in a lattice is done by a so-called
primal attack, in which short vectors in the original (called ‘primal’, as opposed
to ‘dual’) lattice solve the problem at hand. This is the subject of Section 5.2.1.

5.1.3 Search-NTRU as a lattice problem

Recall from Section 4.5, the (unstructured) search-NTRU problem: given H ∈
(Z/qZ)n×n, find any F ,G ∈ (Z/qZ)n×n with small coefficients such that

H = G · F−1 mod q, (5.2)

given that such F ,G exist.

NTRU as a uSVP instance

One can phrase an NTRU instance as a lattice problem in the following way, by
putting the public n×n matrix H into a 2n× 2n matrix in the following block
shape.

BH =

[
qI H
0 I

]
, (5.3)

where I is the n × n identity matrix. The lattice L(BH) generated by the
columns of BH then contains any column of the 2n× n matrix

BGF =

[
G
F

]
. (5.4)

This can be deduced from Equation (5.2), which implies that H ·F = G+ qW
for some W ∈ Zn×n. Therefore, using block-wise multiplication, we obtain

BH ·
[
−W
F

]
=

[
qI H
0 I

]
·
[
−W
F

]
=

[
−qW +HF

F

]
=

[
G
F

]
(5.5)

Concluding, we see that the lattice L(BH) contains n unusually short vectors
consisting of the columns of BGF . So, one can see a search-NTRU problem as
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Figure 5.1: Overview of reductions from LWE and NTRU to the general lattice
problems BDD or uSVP.

an instance of a uSVP problem in L(BH) where the (unusual) shortness of the
vectors is parametrized by the distribution of the matrices G and F .

The dimension of the NTRU lattice L(BH) is 2n and the determinant is qn.
The Gaussian heuristic indicates a first minimum of gh(L(BH)) =

√
n/πe ·√q,

but the lattice contains unusually short secret vectors (the columns of BGF ).
Suppose G and F have independent 0 centered coefficients with standard devi-
ation σ, then the n secret columns have norm about

√
2nσ. The uSVP gap δ

between the actual minimum and the expected minimum is

δ =

√
2nσ√

n/πe · √q
=

√
2πeσ√
q

.

One can roughly compare NTRU to LWE with m = 2n samples. The presence
of not 1 but n unusual shortest vectors makes the NTRU problem in general
slightly easier than LWE for similar parameters. For large moduli however, the
presence of these n vectors can make the NTRU problem significantly easier
than a similar LWE instance, this regime is discussed in Section 5.2.4.

Summary 9 (LWE and NTRU as lattice problems). The LWE problem
can be interpreted as a Bounded Distance Decoding problem in a q-ary lattice of
dimension m. Alternatively, LWE (and any BDD instance) can be transformed
into a uSVP instance of dimension m + 1. The NTRU problem can directly
be interpreted as a uSVP problem in dimension 2n, where the unusually short
vectors are given by the columns of the secret key BGF .

5.1.4 Influence of parameters on hardness

The hardness of a BDD or uSVP instance generally increases with the dimen-
sion and the error norm or the (unusually small) first minimum. The latter
is often summarized as the ratio δ between the error or vector length and the
Gaussian heuristic of the lattice. In the previous parts we discussed the rela-
tionship between the LWE or NTRU parameters and this ratio. In Table 5.1
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we summarized the influence of increasing LWE or NTRU parameters on the
hardness of the underlying problem.

Parameter Dimension d BDD/uSVP ratio δ Influence

↑ q = d ↓ δ Easier
↑ n = d ↑ δ Harder
↑ σ (or ↑ E(∥χ∥)) = d ↑ δ Harder (if δ < 1).

↑ m (for LWE) ↑ d ↓ δ Same or easier1

Table 5.1: Influence of increase of LWE and NTRU parameters on hardness of
the associated BDD or uSVP problem. Decreasing the same parameters has the
adverse effect.

Summary 10 (Influence of parameters on hardness). Generally, increas-
ing the parameter n or the error/secret size makes the LWE and NTRU problems
harder to solve. Increasing the modulus q makes the problem easier. For LWE,
increasing the number of samples can make the problem easier.

5.2 Kind of attacks

5.2.1 Primal Attack

As the name suggests, the primal attack reduces the basis of the (primal) lattice.
The goal is to recover an unusually short vector of the lattice. This unusually
short vector is either inherently part of the lattice, or the result of embedding
a BDD instance. The premise is that the lattice L contains a shortest vector
v of length λ1(L) ≪ gh(L), i.e., much shorter than expected. Note that, in
general, to find a shortest vector, one needs to solve SVP in the full dimension
d. However, when this vector is unusually short the BKZ algorithm already
recovers it for a blocksize β ≪ d. The larger the gap between λ1(L) and gh(L),
the easier it is to recover a shortest vector.

Estimates.

Initially the focus of the primal attack was on the unique-SVP problem, where
there is a large gap between λ1(L) and λ2(L). That the BKZ algorithm recovers
such a unique shortest vector much earlier than expected was already observed
experimentally in [GN08]. By extrapolating the experimental results the au-
thors came to the following rough estimate: BKZ-β recovers a unique shortest

vector with high probability whenever λ2(L)/λ1(L) ≥ τβ · αd/2
β , where τβ < 1

is a experimentally determined constant that depends on the algorithm, lattice

1One can always ignore some samples and therefore assume a lower m′ < m. For certain
parameters, the best attacks do not use all samples.
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family, and blocksize used. This estimate [GN08] is often referred to as ‘the
2008 estimate’.

Later, in [AFG13], the 2008 estimate was applied to (embedded) LWE in-
stances. Experiment with small blocksizes where showed to match the 2008
estimate with a constant τβ between 0.3 and 0.4. While the 2008 estimate gives
quite reasonable predictions, it does not explain how a unique shortest vector
is recovered, and therefore also lacks a heuristic explanation.

The first heuristically motivated estimate came in 2016 and became known
as the 2016 estimate [Alk+16]. It turns out that the uniqueness does not really
matter, it is more about the gap between λ1(L) and gh(L). The general idea
is that if v is unusually short, then so is the projection πd−β+1(v) to the last
BKZ block L[d−β+1:d]. In case the length ∥πd−β+1(v)∥ is less than the expected
minimum gh(L[d−β+1:d]), it is likely that the SVP call in this last BKZ block
will recover the projection πd−β+1(v). For large enough β, it is generally easy
to then recover the full vector v from its projection. This reasoning leads to the
following estimate.

Estimate 1 (Primal Attack). Let L be a lattice of dimension d and let v ∈ L
be a unusually short vector ∥v∥ ≪ gh(L). Then under the Geometric Series
Assumption BKZ recovers v if

√
β/d · ∥v∥ < √αβ

2β−d−1 ·Vol(L)1/d,

where αβ = gh(β)2/(β−1).

Justification. The left hand side of the inequality is an estimate for ∥πd−β+1(v)∥,
while the right hand size is the expected norm of b∗

d−β+1 under the GSA. When
the inequality is satisfied we expect that the shortest vector in L[d−β+1:d] is in
fact (a projection of) the unusually shortest vector, and thus it is inserted by
BKZ at position d− β + 1. See Figure 5.2 for an illustration.

Except for very small blocksizes β, the unusually short vector v is recovered
from its projection πd−β(v) with high probability, either directly by Babai’s
nearest plane algorithm, or by later BKZ tours on the blocks L[d−2β+2:d−β+1],
L[d−3β+3:d−2β+2], . . . ; lifting the vector block by block. The 2016 estimate has
been verified extensively [Dac+20; PV21] with experiments in feasible dimen-
sions. In hindsight this implies that the 2008 estimate, in case λ2(L) ≈ gh(L),
is true for a constant τβ ≈ gh(β)−1.

Asymptotics.

Consider a lattice L of dimension d and with gap gh(L)/λ1(L) = dg+o(1) for some
constant g ≥ 0. Let β = B · d for some constant B. Estimate 1 asymptotically
boils down to the inequality

B >
1

2g + 1
+ o(1).
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Figure 5.2: Illustration of the 2016 Estimate on a 100-dimensional lattice with
an unusually short vector v. Around β = 40 the projection π100−β+1(v) is
expected to be the shortest vector in the projected sublattice L[d−β+1:d], which
is thus recovered by the SVP call on this block inside BKZ-β.

For example, with a gap of gh(L)/λ1(L) =
√
d we obtain B = 1

2 and thus the
primal attack only requires a blocksize of about 1

2d+o(d) to recover an unusually
short vector. This is the typical regime for current cryptographic schemes, such
as Falcon and Dilithium.

Refinements.

The 2016 Estimate gives a clear explanation on how and where the secret vector
is recovered, namely its projection is found in the last BKZ block. This also
allows to further refine the estimate and give concrete predictions. For example
by using a BKZ-simulator instead of the GSA, and by accounting for the prob-
ability that after the projection ∥πd−β(v)∥ has been found, it is successfully
lifted to the full vector v. Also instead of working with the expected length
of the projection, we can directly model the probability distribution under the
assumption that v is distributed as a Gaussian vector. Such refinements were
applied in [Dac+20; PV21], and the resulting concrete predictions match with
experiments to recover an unusually short vector. Sometimes there is not just
a single unusually short vector, but there are more of them, which makes it
more likely that at least one of them is recovered. Because the refined concrete
estimators already works with a probability distribution, we can easily take
multiple vectors into account.
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Summary 11 (Primal attack for uSVP). The primal attack solves the uSVP
instance by running the BKZ lattice reduction algorithm on a (primal) lattice
basis. Given an estimate for the length of the unusually short vector(s), there
exist accurate (probabilistic) models and estimates for the BKZ blocksize that
is required to recover such a vector.

5.2.2 Dual Attack

Dual attack for decision BDD.

The dual attack is a general way to distinguish BDD instances. So far it has
mostly been considered and optimized for the LWE problem [MR09; Alk+16;
Alb17; EJK20; GJ21; MAT22]. We will first consider a more natural and general
version.

Every lattice L has a dual lattice L∗ = {w ∈ span(L) : ⟨v,w⟩ ∈ Z for all v ∈
L}. For a BDD instance t = v + e with v ∈ L, and a dual vector w ∈ L∗ we
have

⟨t,w⟩ = ⟨v,w⟩+ ⟨e,w⟩ ≡ ⟨e,w⟩ mod 1.

If t is uniform (over Rd/L), then ⟨t,w⟩ mod 1 is uniform over [− 1
2 ,

1
2 ). However,

if e and w are both small, then ⟨e,w⟩ is small and ⟨t,w⟩ mod 1 becomes biased
towards 0. This difference can be used to distinguish a uniform target from a
BDD instance.

Summary 12 (Dual attack for BDD). For a BDD instance (L, t), the mod-
ular inner product ⟨t,w⟩ mod 1 ∈ [− 1

2 ,
1
2 ) with a short dual vector w ∈ L∗ is

biased towards 0. For a uniform target the outcome would also be uniform.
The dual attack solves the decisional BDD problem computing the above inner
product for many short dual vectors, and seeing if the result is uniform or not.

Lemma 2. Let L be a lattice of dimension d, and let d ∈ L∗ be a dual vector
of length ∥d∥ = α · gh(L∗). Let e be a uniform error of length δ · gh(L). The
the advantage of distinguishing ⟨e,w⟩ mod 1 from random is

ϵ = exp

(
−α

2 · δ2 · d
2e2

)
.

If O(1/ϵ2) of such independent samples are available, the success probability
for the distinguisher is close to 1. Generally, there is no reason for these samples
to behave independently, but one can heuristically assume that they do to obtain
a conservative estimate.
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Estimate 2. Let L be a lattice of dimension d, and let D ⊂ L∗ be a finite list
of distinct dual vectors of length at most α · gh(L∗). If we assume the samples
behave independently, then the dual attack correctly decides a δ-dBDD instance
(L, t) with high probability if

#D · ϵ2 ≥ Ω(1),

where ϵ = exp
(
−α2·δ2·d

2e2

)
.

Remark 12 (Independence Heuristic). Since the work of [MAT22] the inde-
pendence heuristic has been under sharp scrutiny and has been shown to lead to
incorrect estimates [DP23b; WEB23]. In particular, these works partly invali-
date the reduced security level claims of [MAT22]. These issues can partly be
resolved but they do lead to worse estimates in certain regimes [DP23a].

One could obtain such short dual vectors by first BKZ reducing the dual
lattice with blocksize β, after which we obtain #D = (4/3)β/2+o(β) dual vectors
of length about

√
4/3·√αβ

d−1 ·det(L∗)1/d. This leads to the following estimate.

Estimate 3 (Dual Attack). Let L be a lattice of dimension d. Then under the
Geometric Series Assumption and the independence assumption the dual attack
with sieving correctly decides a δ-dBDD instance with high probability if

β/2 · ln(4/3) ≥ 8π

3e
· αd−1

β · δ2,

where αβ = gh(β)2/(β−1).

Justification. The left hand side represents the number of short dual vec-
tors log(#D) = β/2 · ln(4/3) + o(β) obtained from a sieving call on a β-
dimensional sublattice. After BKZ reduction with blocksize β on the dual
lattice, we obtain a basis [d1, . . . ,dd], where ∥d1∥ =

√
αβ

d−1 · det(L∗)1/d.
Given that ∥d1∥ ≈ gh([d1, . . . ,dβ ]) a full sieve on the sublattice generated by

d1, . . . ,dβ gives vectors of length bounded by ℓ∗ =
√
4/3 · √αβ

d−1 · det(L∗)1/d,
and thus

α2 :=
ℓ∗

gh(L∗)
=

4

3
·
αd−1
β

d/2πe
.

We then obtain

ln(1/ϵ2) =
α2 · δ2 · d

e2
=

8π

3e
· αd−1

β · δ2,

which forms the right-hand side of the estimate.
While the distinguishing advantage of a dual vector can be some ϵ > 0, and

we need about O(1/ϵ2) of such vectors, we still need a concrete distinguishing
algorithm that manages to extract this advantage into a correct decision. We
know that such an algorithm should be periodic with respect to the primal
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lattice L. For a list D = {w1, . . . ,wK} ⊂ L∗ of dual vectors, one naturally
obtains the periodic function

FD(t) :=

K∑

j=1

exp(2πi · ⟨wj , t⟩).

If the inner products ⟨wj , t⟩ mod 1 are uniformly distributed, then FD(t) ≈ 0,
whereas if |⟨wj , t⟩| mod 1 is biased towards 0 then (the real part of) FD(t) is
expected to be large. By choosing an appropriate threshold value T we obtain
a decision algorithm. If all dual vectors are of about the same length, then the
above strategy is close to optimal (see e.g. [GMW21]). If the dual vectors are
not of the same length, one can introduce some weights in the summation that
depends on their norm, giving more importance to shorter vectors.

Asymptotics.

Consider a lattice L of dimension d and a δ-dBDD instance with δ = d−g+o(1) ·
gh(L) for some constant g ≥ 0. Let β = B · d for some constant B. Estimate 3
asymptotically boils down to the inequality

B >
1

2g + 1
+ o(1).

For example, with g =
√
d we obtain B = 1

2 and thus the dual attack only
requires a blocksize of about 1

2d + o(d). Note that asymptotically the dual
attack coincides perfectly with the primal attack (after converting the BDD
instance to an unusual SVP instance).

The cost of the basic dual attack is mainly dominated by the cost of obtaining
the short dual vectors. The best sieving algorithms run in time (3/2)d/2, while
the distinguishing part only requires on the order of #D = (4/3)d/2 ≪ (3/2)d/2

computations. We can improve this balance by creating multiple BDD instances
on the same lattice, such that we can reuse the short dual vectors.

BDD search to decision

The same idea can also be used to solve the BDD instance (contrary to just
distinguishing it). In particular if ⟨e,w⟩ ∈ [− 1

2 ,
1
2 ), then we obtain a non-

modular linear equation on the error e. Computing d of such independent
equations allow to fully recover the error. However, this would require a few
very short dual vectors, while for the decision problem it is optimal to use many
somewhat short vectors. To resolve this we refer to the next section on hybrid
attacks, that naturally convert a (partial) search BDD instance into multiple
decision BDD instance.

5.2.3 Hybrid Attack

Let L be a lattice and w ∈ L∗ be a primitive dual vector. Let (L, t = v+ e) be
a BDD instance, and suppose that we know that ⟨e,w⟩ ∈ S for some finite set

72



S ⊂ R. Suppose ⟨e,w⟩ = c, then we know that

⟨w,v⟩ = ⟨w, t⟩ − ⟨e,w⟩ = c′,

and the right-hand side is known. This describes some hyperplane H in which
the solution v lies, e.g. v ∈ L ∩ H. Let x ∈ L ∩ H, then L′ := (L ∩ H) − x
is again a lattice, of dimension d − 1 and determinant det(L′) = ∥w∥ · det(L).
Furthermore the original BDD instance can be adapted to (L′, πH(t)− x) with
solution v− x. So by solving the new BDD instance in L′ we obtain a solution
to the original BDD instance.

uSVP or
Search BDD
L, δ

Guesses Search or
Decision BDD
L′ = L ∩H, δ′

Primal or dual
attack

One lattice

Figure 5.3: Diagram of hybrid attack. Here L′ is some lower rank section of the
original lattice.

In general we do not know such a linear equation ⟨e,w⟩ = c on our se-
cret error, however it might be the case that there are only a few possible
values for the inner product, or some that are highly likely. For example for
a LWE lattice, which is integer, we always have the trivial unit dual vectors
ui = (0, . . . , 1, . . . , 0). In case of ternary errors the inner product ⟨e,ui⟩ = ei ∈
{−1, 0, 1} has only a few possibilities. Making these three guesses means we go
from one BDD instance on L, to three BDD instances of L′. The correspond-
ing new lattice L′ has the same determinant as the original lattice, a lower
dimension, and depending on the error distribution the absolute BDD radius
can decrease. As a result the BDD instances on L′ are relatively easier, and
depending on the parameters solving the three BDD instances might be easier
than solving the single original one. In fact one is only required to solve the
decision BDD problem for the resulting instances, which indicates if the original
guess was correct or not.

The process might be applied recursively, reducing the dimension to d−k for
some k > 0. At the same time the number of guesses often grows exponentially
in k, so there is a careful trade-off to be made. One should also take note that
when trying to identify a single BDD instance out of X guesses, that the needed
distinguishing advantage must increase by a small factor

√
ln(X).

Summary 13 (Hybrid attack). A hybrid attack combines a primal or dual
attack with some initial guessing phase. The hybrid attack is mostly effective if
the secret (error) is sparse, or more generally, has small entropy. For example a
hybrid attack might be effective in the case of binary or ternary secrets, or for
very narrow discrete Gaussians.
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FFT speed-up for hybrid dual attack

The hybrid attack reduces a single search BDD instance to many decisional BDD
instances in the same lattice. This implies that if we instantiate the decision
oracle by the dual attack, we only have to pre-compute the short dual vectors
once. In contrast, for the primal attack, we would need, at the very least, to
solve a large SVP instance, for each decisional BDD instance. The hybrid attack
is thus mostly useful in combination with the dual attack.

Search BDD
L, δ

Guesses
Decision BDD
L′ ⊂ L, δ′ < δ

Dual Attack
on L′

FFT speed-up

Precompute short
vectors D ⊂ (L′)∗

Figure 5.4: Overview of full hybrid dual attack from search BDD.

Furthermore, it is possible to attain another speed-up when using the hy-
brid dual attack, by FFT techniques. Algorithmically, when instantiating the
decision oracle by the dual attack, we have to compute (the real part) of

FD(t− g) :=

K∑

j=1

exp(2πi · ⟨wj , t− g⟩).

for each guess g. If we have T guesses, and K dual vectors, then this would
require about O(T ·K) inner product computations. Given that usually both
T and K are (exponentially) large, this can be a limiting factor for the hybrid
dual attack.

If these guesses have some particular structure however, we can speed up
this computation to about Õ(maxT,K) inner products. Note that every guess
g corresponds to some coset g+L′ w.r.t. the lower rank lattice L′. Now suppose
the set G of guesses is closed under addition modulo L′, i.e. the guessed cosets
form an additive group, then FFT techniques are applicable.

To see this let L′′ = G + L′ be the superlattice of finite index. The idea is
that in that case the value of the inner product ⟨wj ,g⟩ only depends on the

coset of wj ∈ (L′)∗/(L′′)∗ = (L′′/L′)∗ ∼= Ĝ. We can rewrite

FD(t− g) :=

K∑

ŵ∈Ĝ

f(ŵ) exp(−2πi · ⟨ŵ,g⟩),
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where
f(ŵ) :=

∑

wj∈D|ŵ

exp(2πi · ⟨wj , t⟩).

Computing (f(ŵ)ŵ∈Ĝ has a total cost of |D| = K inner products. From these
values we can then compute (FD(t− g))g∈G by an FFT in time O(|G| log(|G|).

In theory, the FFT can reduce the running time by a square root. Unfor-
tunately, if we guess only the small errors, the cosets do not form an additive
group. When applying such an attack to e.g. LWE this could be resolved by
guessing all possible errors modulo q, resulting in an FFT with cost in the order
of Õ(qt) when guessing t coordinates. Given that q is generally quite large, the
cost of this grows extremely fast, limiting t to small values. Recent works [GJ21;
MAT22] have resolved this limitation. Either by only guessing the error coef-
ficients modulo some smaller value γ (say γ = 2), or, similarly, by modulus
switching techniques to translate the problem to some lower modulus γ. The
FFT cost is then reduced to only Õ(γt) when (partially) guessing t coordinates,
allowing for much larger guessing dimensions t. Both techniques do introduce
some additional round-off errors, which can be compensated by more short dual
vectors. Overall, these techniques can improve the hybrid dual attack by half a
dozen of bits.

Summary 14 (Hybrid dual attack). When we use the dual attack as a
distinguisher, we can pre-compute the short dual vectors once, and an FFT can
be used to speed-up the handling of all BDD instances at once.

5.2.4 Dense Sublattice Attack

The primal attack strongly relies on the existence of an unusually short vector
in the lattice. However, on certain lattices, the primal attack can behave better
than expected. It turns out that this is the case if the lattice contains a large
rank dense sublattice, i.e., with covolume and if a somewhat good basis is
already known.

In particular this applies to the NTRU lattice. The n = d/2 secret keys
(f, g) generate a sublattice of rank n. Due to their shortness this sublattice is
dense compared to the full lattice. Moreover, the q-vectors give a somewhat
good basis. When the modulus q is relatively large, BKZ reduction recovers
the dense sublattice and thereby the secret keys2, with a much lower blocksize
than what follows from the primal attack estimate. This regime is coined the
overstretched regime.

Initially, attacks in the overstretched regime had a more algebraic nature [ABD16;
CJL16]. This broke several NTRU-based FHE schemes. In a later work Kirch-
ner and Fouque pointed out that the efficiency of the algebraic attack was in
fact routed in the geometry of the NTRU lattice itself, and that the regular

2Once the secret dense sublattice is recovered, the dimension of the lattice problem is
halved and the secret key recovery often follows immediately. Moreover, for regular NTRU
the dense sublattice is an ideal lattice in which quantum algorithms can recover the secret
short vectors in polynomial time (for certain parameters).
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primal attack should perform better than expected. In fact, this dense sublat-
tice attack is better than the original algebraic ones. Recently, the concrete
complexity of the dense dual attack was thoroughly studied [DW21], leading
to a precise concrete estimator for the blocksize that BKZ needs to recover the
dense sublattice, extensively verified by experiments. This work showed that
the dense sublattice attack is already applicable for reasonably low moduli. I.e.,
for uniform ternary secrets and NTRU parameter n, the cross-over is around
q = 0.004 · n2.484. Asymptotically, this is above the usual NTRU parameters
for encryption and signature schemes (for which q = O(n)), but due to the low
constant one still needs to take care when choosing concrete parameters.

Estimate 4. For an NTRU instance with parameters q, n and secrets of norm
∥f∥, ∥g∥ = O(

√
n), the dense sublattice attack improves upon the primal attack

when
q > n2.484+o(1).

For ternary secret coefficients the precise cross-over point is around 0.004·n2.484.

Remark 13. In theory one can also construct a lattice with a dense sublat-
tice from structured LWE instances. I.e. by adding not a single target, but all
(rotations of) the target, one can again obtain a dense rank n sublattice. How-
ever in these cases the dimension of the full lattice also grows significantly, and
therefore the dense sublattice attack does not seem to improve upon the original
primal attack for LWE.

Summary 15 (Dense sublattice attack for NTRU). The NTRU lattice
contains a dense sublattice of large rank. For large moduli q this leads to an
attack that is asymptotically better than the primal and dual attacks. For
typical small error distributions this happens when q ≥ n2.484+o(1). Concretely,
however, this might already occur for relatively small q, and thus the relevancy
of this attack should be checked on a case by case basis.

5.2.5 Arora-Ge and BKW

We shortly discuss here some attacks that are generally not applicable. They
generally require an error distribution with a very small support, or a lot of
samples. Note that for the LWE-based NIST candidates, if executed properly,
we obtain at most m ≤ 2n LWE samples.

The Arora-Ge attack [AG11] turns the LWE problem into a system of
polynomial equations, which they solve in turn by standard linearization tech-
niques. The general idea is that if an error coefficient ei takes at most k values
{c1, . . . , ck}, then

∏k
j=1(ei − cj) = 0. Now let fi(X) := fi(X1, . . . , Xn) = bi −∑n

j=1 Aij ·Xj and note that fi(s1, . . . , sn) = ei. So, each from each public LWE

sample we can construct the multivariate polynomial Fi(X) :=
∏k

j=1(fi(X)−cj)
of degree k and with root s. Doing this for all samples gives a polynomial system
of degree k in n variables, m equations and solution s. Such a system contains
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O(nk) distinct monomials, and can thus be solved by linearization techniques if
m ≥ O(nk) equations (samples) are available.

For binary LWE, i.e. for which the errors take values in {0, 1} the Arora-Ge
attack runs in polynomial time if m ≥ Θ(n2) samples are available. However,
given that there are at most 2n errors available such an attack does not apply,
even in the extreme case of binary errors (both asymptotically and concretely).

Another option is to solve the polynomial system of equations using Gröbner
basis techniques [Alb+14]. This allows for a trade-off between the number of
available equations (samples) and the run-time. Again looking at the binary
error case this leads to a sub-exponential attack whenever m = Θ(n log log n).
Moreover, such an attack improves on e.g. the primal attack only when m ≥
7.98n samples are available. For larger error sets the number of required samples
quickly grows.

The BKW attack was initially developed for the LPN problem (similar to
LWE, but with q = 2). Consider the LWE secret s = (s1|s2) where s1 ∈
(Z/qZ)k and s2 ∈ (Z/qZ)n−k. The idea is to find many pairs of LWE samples
(bi, ai), (bj , aj) such that say the first k coefficients of ai − aj are 0. For such
a pair we obtain a new LWE sample (bi − bj , ai − aj). Because the first k
coefficients of ai − aj are 0, we can remove those to obtain an LWE sample
for the secret s2 of dimension n − k. We have thus reduced the dimension of
the LWE problem. We can repeat this process until the LWE problem becomes
feasible. Such an attack has two problems, firstly the error of the new LWE
sample is larger than the original one, and secondly, we need aboutm = Θ(

√
qk)

samples to find even a single pair that collides on the first k coefficients. To use
this technique recursively we would constantly need about m = Θ(qk) samples.
The parameters k cannot be too small as otherwise the error would increase
too much. All in all, for typical parameters, the BKW algorithm requires and
exponential number of samples to function. With onlym = 2n available samples
the BKW attack is not applicable.

Summary 16 (Arora-Ge, Gröbner bases and BKW). The Arora-Ge and
Gröbner bases attacks are only applicable when many LWE samples are available
and when the error support is very small. Only for binary errors the required
number of samples is close to the 2n available ones (but still larger). The BKW
attack requires significantly more samples.

5.3 BKZ Block-sizes β for NIST Candidates

We give an example for the computation of the BKZ blocksize needed to solve an
LWE instance. We focus on the primal attack as it is the simplest, and does not
involve other costs beyond BKZ reduction. For most schemes the primal attack
also gives a good rough estimate of the security. For more refined estimates and
for the other attacks we recommend the usage of estimation scripts which we
will discuss more in Section 6.4.

Let us consider an LWE instance (A,b = A · s + e mod q) with parame-
ters (q, n,m, χ), where χ samples each coefficient as a discrete Gaussian with
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standard deviation σ. Following Section 5.1 we turn the LWE instance with m
samples into a uSVP instance with the lattice spanned by Lq(A) ⊕ 0 and the
embedded BDD instance (b, 1). This lattice has dimension d = m+ 1, volume
qm−n and contains (for common parameters) an unusually short vector (e, 1).
The expected norm of the shortest vector is close to

√
mσ2 + 1. Following Esti-

mate 1 running BKZ on this lattice recovers the secret short vector (e, 1) when
the blocksize β satisfies

√
β/(m+ 1) ·

√
mσ2 + 1 <

√
αβ

2β−m−2 · q(m−n)/(m+1),

where αβ = gh(β)2/(β−1).
For example for concrete parameters n = 640,m = 2 · 640, q = 215 and

σ = 2.8 we obtain the above whenever β ≥ 485.72. This, however, might not
be the best primal attack. Using less samples might be beneficial, so one has
to find the lowest blocksize β along with some m ≤ 2 · 640, that satisfies the
above inequality. For this example reducing the number of samples increases
the blocksize β, and thus it is best to use all the samples.
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Chapter 6

The fine-grained costs of
BKZ and SVP

Cost estimates for cryptographic attacks generally have three traits that distan-
tiate them from their real-life costs. The first trait is that they mostly consider
asymptotic run-times, which generally omits multiplicative constants that are
very relevant non-asymptotically. The second trait is that these cost estimates
generally necessarily involve simplifications regarding the computations. For
example, one can assume that memory usage is ‘free’ or that an attack can be
totally parallelized. In reality, working on real machines, these simplifications
are far from true. Thirdly, the behavior of the attack algorithms is usually sim-
plified and analyzed using heuristics, and these heuristics can differ from the
actual more complex behavior.

A relevant example of these differences between theoretically estimated costs
and real-life costs is that of the comparison between sieving and enumeration in
lattices in order to find short vectors. While asymptotically, sieving has a lower
overall cost than enumeration, enumeration algorithms were for a long time more
efficient in practice. Only quite recently, sieving has beaten enumeration in real-
life costs, as can be seen by the recent solutions to the Darmstadt challenges by
the lattice sieving framework G6K [SG10; Alb+19].

In this chapter we will discuss both the asymptotic, as well as the lower
order improvements to the enumeration and sieving algorithms. Overall, these
improvements, over the last decade, have lead to significant decreases to the
concrete cost of the attacks discussed in Chapter 5. We will end with a discus-
sion on how to compute concrete cost estimates for solving LWE and NTRU
instances.

6.1 Enumeration

Recall that the enumeration algorithms find short (or close) vectors in a lat-
tice L recursively by first enumerating short (or close) vectors in the projected
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lattices πi(L). The complexity of this enumeration process heavily depends
on the reduction quality of the basis. Assuming the current basis is close to
HKZ reduced, the time complexity of the standard enumeration algorithm is

asymptotically given by 2
β log β

2e +O(β) for a rank β lattice. This is roughly the
case when using enumeration within progressive BKZ, and also in practice this
leading term is achieved.

Super-exponential speed-ups

The time complexity of enumeration within BKZ was recently improved from

2
β log β

2e +O(β) to 2
β log β

8 +O(β) [Alb+20b]. This potential improvement was al-
ready indicated in [HS10], and given as a heuristic lower bound in [Ngu09].
This improved constant was therefore already used in some pessimistic security
estimates.

The idea is that enumeration is much faster on bases that follow the Geo-
metric Series Assumption (see Heuristic 2), i.e. that have a straight log-profile.
In theory, this would lead to a leading constant of 1

8 . However, for the reduc-
tion quality that is needed, the basis attains a more concave HKZ shape (see
Definition 13). The concavity is what makes the constant increase to 1

2e . For
the general SVP problem there seems to be no way to circumvent this problem.

However, when using enumeration as an SVP oracle within BKZ, there is
more freedom to pre-reduce the lattice basis. The trick in [Alb+20b] is to pre-
reduce a slightly larger block around the BKZ block in which the enumeration
is ran. Because the reduction is relatively weaker to the larger pre-processing
dimension, the basis does actually attain the GSA shape in BKZ block. Some
care has to be taken at the first and last few BKZ blocks, but this can be resolved.
This strategy heuristically works as long as the BKZ blocksize β is sufficiently
small compared to the total dimension d. In practice however it seems sufficient
to have d ≥ 1.15β, which makes it applicable for all NIST candidates for which
usually β ≤ d/2 + o(d).

Exponential speed-ups

When looking for a vector v ∈ L of length at most R > 0, the naive enumeration
algorithm enumerates all vectors of at most length R in the projected lattices
πi(L). However, assuming v is pointed in a random direction relative to the
basis, one can expect that ∥πi(v)∥2 ≈ n−i

n · ∥v∥2 ≤ n−i
n ·R2. It would therefore

be sufficient to enumerate all vectors of squared length at most R2
i := n−i

n ·
R2 + ϵ in the projected lattice πi(L), while still finding a short vector with
high probability. For example, R⌊n/2⌉ ≈ R/

√
2, which following the Gaussian

Heuristic would result in a factor
√
2
n/2

= 2n/4 less vectors to enumerate in
π⌊n/2⌉(L), giving an exponential speed-up.

We call this pruned enumeration and the radii R = R0 ≥ R1 ≥ . . . ≥ Rn

the pruning parameters [SH95]. By adjusting the pruning parameters there is a
trade-off between the size of the enumeration tree, and the success probability
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of finding a short vector. It turns out that the best trade-off is achieved by
decreasing the pruning parameters such that the success probability is expo-
nentially small, but such that the search tree decreases even more [GNR10].
This regime is called extreme pruning. By re-randomizing and repeating the
enumeration (an exponential number of times), the success probability can be
boosted to find a short vector with high probability. This also leads to another
large exponential speed-up over naive pruning. Concretely, the extreme enu-
meration cost when used inside BKZ with blocksize β was determined to be
around 20.184β log2(β)−0.995β+16.25.

Another line of works tried to make the enumeration inside BKZ more effi-
cient by allowing it to find not exactly the shortest vector, but some approximate
short vector. The loss of shortness is then compensated by running the enu-
meration in a slightly larger BKZ block. For reasonably small approximation
factors α > 1 the trade-off seems beneficial [Aon+16; Agg+20; LN20a]. In a
later work [Alb+21] the approximate strategy was combined with the earlier
discussed super-exponential speed-up by extended pre-processing. Concretely,
this lead to the most efficient enumeration procedure within BKZ known so far,
with a time complexity of 20.125β log(β)−0.654β+25.84 for BKZ with blocksize β.

Estimate 5. The cost of BKZ reducing an d-dimensional lattice with blocksize
β and enumeration as a subroutine can be done in time

poly(d) · 20.125β log(β)−0.654β+25.84

The main benefit of enumeration techniques over sieving techniques is their
almost trivial parallelization and the polynomial memory complexity. This
makes it relatively easy to run large scale attacks on large clusters. The main
drawback of course is the time complexity that is much worse than sieving algo-
rithms. The advanced sieving techniques that we will discuss next are already
faster than the enumeration techniques in dimensions as low as 70, and the gap
quickly grows after that. This makes enumeration techniques currently not so
relevant for security estimate against classical attacks.

The quantum side of things is a slightly different story. Enumeration tech-
niques can in general benefit from a quadratic speed-up by applying Grover
search (contrary to lattice sieving techniques). Lowering the concrete complex-
ity to 20.0625β log(β)+O(β). For low blocksizes this might improve a bit upon the
fastest sieving algorithms. However, given the expected overhead of quantum
computations over classical ones, and the inherent overhead of Grover search, it
is unclear if quantum enumeration improves significantly over sieving in cryp-
tographic dimensions (around security level I).

Summary 17 (SVP by enumeration). Enumeration algorithms solve
the shortest vector problem in dimension β in super-exponential time
expO(β log(β)), and polynomial memory. They are easy to parallelize, but for
dimensions relevant to cryptography their run-time is inferior to that of sieving
algorithms.
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6.2 Sieving

We will now discuss improvements to the lattice sieving algorithms. These are
currently the most efficient algorithms to solve SVP, both asymptotically as in
practice. Recall from Section 2.12 that heuristic sieving algorithms take a list
of N = (4/3)d/2+o(d) vectors, and repeatedly tries to find pairs of close vectors
x,y in this list. The short(er) vector x − y is then inserted back into the list,
possibly replacing a longer one. This process is repeated until the list contains a
short enough vector. The naive algorithm by Nguyen and Vidick [NV08], which
checks all pairs in the list runs in time N2+o(1) = 20.415d+o(d).

Exponential speed-ups.

To reduce the time complexity below 20.415d+o(d) we need a more efficient way
to find pairs of close vectors in the list. In a line of works [Laa15; BGJ15; BL16;
Bec+16] the time complexity was improved to 20.292d+o(d) by nearest neighbor
searching techniques. Instead of checking all pairs, the idea is to first apply
some bucketing technique in which close vectors are more likely to fall into the
same bucket. By only considering the somewhat-close pairs inside each bucket,
the total number of checked pairs can be decreased.

We shortly highlight two of such bucketing variants, the practically efficient
bgj1 sieve with a time complexity of 20.349d+o(d) [BGJ15], and the asymptot-
ically best bdgl sieve with a time complexity of 20.292d+o(d) [Bec+16]. The
bgj1 sieve creates buckets by first picking some random directions v1, . . . ,vm ∈
Sn−1 = {x ∈ Rn | ∥x∥ = 1}. Then a vector w from the list is put in a bucket vi

if ⟨vi,w/∥w∥⟩ ≥ α for some fixed constant α > 0. The geometric interpretation
of this is that the vector w lies in the spherical cone that points in the direc-
tion of vi. Two vectors that lie inside the same spherical cone have a higher
probability to be close that two uniformly random vectors. By tweaking the
number of buckets and the constant α the trade-off between the bucketing and
then finding the pairs inside each bucket can be optimized. In this case leading
to buckets of size about O(

√
N), and a time complexity of 20.349n+o(n).

The bdgl sieve improves the bucketing part by using structured buckets.
In particular the dimension d is split unto multiple parts d = d1 + . . . + dk,
and the total set of bucket is a product of random local buckets. By sorting
and cleverly enumerating the inner product of a vector w with the (few) local
buckets on can quickly enumerate all buckets that the vector w should be part
of. In addition, for say k = O(log(d)) the bucket directions are still close to
uniformly distributed (more about this later). Due to this structure one can
have many more buckets, while keeping the bucketing cost low. This leads to a
different trade-off, with much smaller optimal bucket sizes of around N1/(k+1),
and for slowly growing k a time complexity of 20.292d+o(d).

To lower the space cost below N = 20.2075+o(d) one has to look beyond sums
and differences of pairs, and consider triples u ± v ± w or more generally k-
tuples [BLS16; HK17; HKL18]. The current best triple sieve [HKL18] has a
space complexity of 20.1887d+o(d), but comes with a higher time complexity of
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20.3588d+o(d). Given that current estimates mostly ignore the cost of memory,
we do not consider these memory saving variants further.

Quantumly, there is good news from the perspective of security. The speed-
up obtained from Grover search techniques applied to sieving algorithms has
so far only given minor improvements, far from the possible quadratic speed-
up. A line of works [LMV15; Laa16a; CL21; Hei21] improved the classical time
complexity of 20.292d+o(d) down to 20.2570d+o(d). Even though the improvement
is far from quadratic, it might still be of importance for the security of schemes.
However, even in unit cost quantum memory models, the concrete speed-up of
quantum sieving algorithms is tenuous at best [Alb+20a]. With all the expected
overhead of quantum computations, quantum sieving is so far not a threat. Note
that all sieving algorithms based on pairs have a fundamental lower bound of
20.2075d+o(d) on the number of vectors that need to be stored. As a result, any
quantum improvements to the search procedures will also be limited to that
lower bound.

Summary 18 (SVP by sieving). The best sieving algorithm solves the short-
est vector problem in dimension β in time 20.292β+o(β), and 20.2075β+o(β) mem-
ory. Quantum computers only improve the run-time to 20.2570β+o(β), while
keeping the same exponential (quantum) memory usage.

Subexponential speed-ups.

Asymptotically the single exponential time complexity of sieving algorithms is
much lower than the super-exponential time complexity of enumeration algo-
rithms. However, naive sieving implementations can have large subexponential
overheads. Enumerations algorithms are therefore faster in low dimensions, and
for a long time sieving algorithms were not viewed as practical. This status-quo
changed due to many subexponential and polynomial improvements, and cur-
rently sieving algorithms are already faster than enumeration in dimensions as
low as 70.

One improvement, already discussed in Section 2.12, is progressive sieving.
Instead of immediately sieving in the full dimension, we first sieve in a projected
sublattice, and slowly undo the projection (while sieving) until we are sieving
in the full dimension. Due to the exponential time complexity sieving in the
lower dimensional projected sublattices is often much more efficient than in the
full dimension. Once we reach the full dimension the vectors are already quite
short, which implies that we only need to do a bit of sieving there.

Another large improvement, which works well in conjunction with progres-
sive sieving, is the ‘dimensions for free’ technique [Duc18]. The key observation
is that lattice sieving algorithms do not just find a single shortest vector, but
a large list of short vectors. Heuristically, the list contains (a large fraction of)
the N shortest vectors of the lattice. Now suppose we sieve in some projected
sublattice πf (L) for some not too large f > 1. Suppose v ∈ L is a shortest
vector in the full lattice. If f is not too large, and if the basis is already quite a
bit reduced, then we can expect that πf (v) is present in the sieving list. Thus
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by lifting all vectors obtained from the sieving process to the full lattice we ex-
pected to recover a shortest vector of the full lattice. A heuristic analysis shows

that this can be expected if f ≤ ln(4/3)d
ln(d/2πe) . We can thus solve exact SVP in

dimension d by sieving only in dimension d−f , essentially getting f dimensions
for free. Given that f is sublinear this leads to a subexponential speed-up. For
BKZ for schemes of security level 1 this can reduce the sieving dimension by
more than 40 dimensions, making it an important technique to take account of
when making estimates.

Lastly, we discuss some small polynomial (or even constant) speed-up. Lat-
tice sieving involves a lot of floating point inner product computations. The
latest record computations (and their analysis) showed that a low floating point
precision, such as 16-bit, is more than enough for the most computing-intensive
task. Given that the gate footprint of such multiplications often grows like p2 for
a precision of p bits, this leads to some important constant speed-ups. This also
enables usage on extremely efficient hardware such as Tensor cores on NVIDIA
GPUs [DSW21], or even more efficient dedicated hardware.

An even more extreme technique is the so-called popcount hash trick. Here
the idea is to create a small hash of each vector that captures some information
about its direction. One approach is for example to take some direction vectors
h1, . . . ,hh, and to record if the inner product ⟨hi,v⟩ is positive or negative.
This information can be pre-computed and stored as a bit string of length h
(say h = 2n). Now if two vectors v,w are close, then one can expected that
their corresponding bit strings share many directions. By a simple binary XOR
operations combined with a population count (counting the number of ones),
we can thus quickly compute if two vectors are close or not. Commonly this is
used as an initial filter, and only for those pairs passing the filter a full inner
product is computed. In practice this can leads to a factor 10× speed-up.

Estimates

The heuristic nature, and the many involved vectors, makes estimating the cost
of sieving algorithms very complex. The so-called core SVP estimate ignores all
subexponential factors and just computes the main complexity term. E.g. for
the bdgl in dimension β this would result in a bit estimate of 0.292β. However,
such estimates are overly optimistic, given that the overheads in terms of gates
can be extremely large. The more precise estimates have tried to estimate the
precise cost of the most computationally intensive tasks (bucketing and finding
pairs), sometimes by explicitly setting up circuits [Alb+18; Alb+20a]. Still some
overheads are ignored, but these estimates are getting closer to the truth. The
most precise concrete estimate from [Alb+20a] gives a gate complexity summa-
rized as 20.356d+o(d)+23.08 for bgj1 and 20.299d+26.01 for bdgl, for dimensions up
to about β ≤ 1024. The estimate for bdgl has been updated after [MAT22]
found a mistake in the estimation scripts of [Alb+20a]. These estimates are for
a single sieving iteration in dimension β. This is somewhat realistic in the case
of progressive sieving given that a single iteration (or less) might already be
enough in each dimension. In that case we should also add the (constant factor)
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progressive overhead of sieving in the lower dimensions.

Ignored overheads

These estimates, certainly the one for bdgl, should be viewed as optimistic
(or pessimistic from a cryptanalysis point of view). For example, the negative
overhead of using structured buckets that are not uniformly random can be
as large as subexponential. This overhead is completely ignored in the above
estimate. In a recent work a more precise estimate was made that does include
these overheads [Duc22]. Around security level 1 this leads to a run-time increase
by a factor of about 26. This factor can in theory be decreased at the cost of a
significant memory increase.

Another reason why these estimates might be optimistic is because the us-
age of memory is ignored (or counted at unit cost). The best attacks around
security level 1 require at least 295 memory. Achieving such a memory capac-
ity might be much harder than achieving the say 2140 needed bit operations.
Secondly, random access would require at least log2(2

95) = 95 traversal gates
(and in practice much more), adding another overhead that is currently ignored.
Physically, the memory would also be spread out, leading to latency and band-
width constraints. Memory bandwidth was already a problem in current record
computations on a single machine when using GPUs, and is expected to only
increase when moving to a multi node setup.

Possible improvements

We shortly discuss a few areas where we might expect improvements to the
current best lattice sieving algorithms.

At the moment there are no signs for more exponential speed-ups. The near-
est neighbor line of improvements has culminated in the 20.292d+o(d) algorithm,
and from a nearest neighbor perspective this is optimal [KL21]. Still there might
be improvements in the lower order terms. For example, the 26 overhead from
the structure in the bdgl sieve is not inherent, but originates from the choice of
using a product of locally random buckets. Currently, this is the best approach
known, but progress on the area of spherical decodable codes might remove the
overhead. Note that this overhead was already ignored in the latest estimates.

Moving to sub-exponential speed-ups the dimensions for free technique might
be stretched a bit further. Already in practice we attain more dimensions for
free than expected, by lifting many vectors, that are encountered during sieving,
on the fly. It is unclear how these practical observations scale to cryptographic
dimensions. Another interesting trade-off might be to combine dimensions for
free with the approximate BKZ techniques recently used in enumeration. Al-
lowing a small SVP approximation factor instead of aiming for exact SVP can
increase the dimensions for free significantly. Although this does not give expo-
nential speed-ups as in the enumeration case, it might still lead to a significant
sub-exponential speed-ups. Lastly, the current dimensions for free techniques
are strongly related to the primal attack. In case it turns out that the dual
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attack is actually better, it might also be possible to increase the number of
dimensions for free by using techniques from there. Possibly combined with
hybrid methods.

There are still some simplifications made in the current estimates that are
slightly pessimistic. For example, all vectors in the sieving list are assumed to be
of about the same norm, i.e., they are assumed to be uniform over some sphere.
Secondly, all vectors in some spherical bucket are also assumed to be uniform
over the edge of this bucket. While asymptotically these assumptions are fine,
they do not hold up when looking at lower order terms. It is easier to find a
reduction between a short and a long vector than it is to find one between two
long vectors. This is not as simple as replacing uniformity of spheres to that of
balls, as sieving algorithms do not output vectors that are uniform over a ball,
in fact they are slightly biased to vectors of small norm.

The current estimates compute the cost of finding (almost) all close pairs in
a list of vectors. Which is the main operation in lattice sieving. If we actually
require to find all pairs depends on multiple factors such as the saturation we
want to achieve, the number of vectors in our list, and the length (and exact
distribution) of them at the start of sieving. When sieving directly in the full
dimension we might have to repeat this operation many times. Conversely, for
progressive sieving, and not too harsh saturation constraints, it might be enough
to find a fraction of all pairs, thus obtaining a speed-up over the estimates (at
the cost of the progressive overhead).

Summary 19 (Concrete estimates for sieving). Precisely estimating the
lower order factors in the time complexity of lattice sieving algorithms is still
in its infancy. Further improvements could push current estimates a bit lower,
while incorporating realistic overheads, such as for memory, could increase the
estimates significantly. Generally, the obtained security estimates can be seen
as conservative.

Estimates versus reality

We conclude this section on lattice sieving with a comparison of the current
estimates and real world computations. In particular, we compare the gate-
count estimates for sieving with the concrete records in Table 6.1.

For the estimates we used the latest (corrected) estimates from [Alb+20a;
MAT22], and we added the progressive sieving overhead factor of C = 1/(1 −
2−0.292) ≈ 5.46, which accounts for sieving in the dimensions 2, . . . , d. For the
records we used the reported floating point operations (FLOP) from [DSW21].
These estimates only counted the main operation of computing inner products
between vectors in 16-bit precision. To obtain a gate-count we multiplied by
162, which is the estimate for a naive 16-bit multiplication circuit. Note that
these records did not use the popcount trick, as for GPUs it was overall better
to have a stronger filter. This should be seen as a rough comparison, to see if
the estimates are anywhere close to the results obtained in practice.

We take a look at the comparison in Table 6.1. Firstly, we see that the
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Record runs Gate estimates

Sieving dimension Cost (2k FLOP) Cost (2k gates) BGJ1 BDGL

143 67.5 75.5 76.4 65.2
146 68.6 76.6 77.5 66.1
150 69.9 77.9 78.9 67.3

Table 6.1: Comparing TU Darmstadt record sieving runs from [DSW21], with
the sieving cost estimates. A FLOP represents a 16-bit floating point oper-
ation (mostly addition or multiplication). The estimate only counts the op-
erations from the reduction phase and is thus an underestimate. The gate
cost is an optimistic extrapolation by adding log2(16

2) (naive cost of 16-bit
multiplication), ignoring any gates needed for memory or other operations.
The estimates correspond to the most precise estimates for the BGJ1 sieve
(random buckets-classical), and BDGL sieve (list decoding-classical)
from [MAT22; Alb+20a]. The last estimate is currently used for security esti-
mates.

estimates for the bgj1 sieve match very closely with the concrete record com-
putations. Indeed, the sieve used in these computations was asymptotically
equivalent to the bgj1 sieve. The same work also implemented a CPU and
GPU version of the bdgl sieve. For CPUs the bdgl sieve already improved
upon the bgj1 sieve in dimensions as low as 90, as expected by the estimates.
However, when moving to GPUs, the trade-off seems to be in dimensions above
150. This is due to memory bandwidth constraints, for which the bdgl sieve
is much more susceptible than the bgj1 sieve. At the same time the estimates
for the bdgl sieve are significantly lower, giving an improvement of more than
10 bits around a sieving dimension of 150. In practice, the bgj1 sieve is faster.
This gives an indication that the lower order overheads of the bdgl sieve are
much higher in practice than what the current estimates give. This can partially
be attributed to the structural overhead indicated by [Duc22], and partially by
memory bandwidth constraints. This indicates that scaling the bdgl sieve to a
multi-node system is expected to result in significant overheads.

Summary 20 (Lattice sieving in cryptographic dimensions). Scaling lat-
tice sieving algorithms to cryptographic dimensions is non-trivial. In particular,
the current asymptotic best sieving algorithm, is prone to memory bottlenecks
in practice. Current cost estimates, that ignore the cost of memory, are therefore
significantly lower than what we can (currently) achieve in practice.

6.3 BKZ

Cost estimate

In theory running the BKZ algorithm with a blocksize of β on a lattice of
dimension d requires a polynomial number (in d) calls to an SVP oracle. More
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precisely, a single tour costs around d SVP oracle calls (most in dimension β),
and up to O(d2 log(d)/β2) tours might be needed.

In practice, when using sieving, each block can often be HKZ reduced after
a single SVP call (using the many short vectors found). So one only needs to
consider about d − β + 1 blocks in a single tour. Secondly, instead of running
many tours with blocksize β, it is better to progressively increase the blocksize
and only run maybe a single tour per blocksize. When using the asymptotically
fastest sieving algorithm as the SVP oracle the cost of running all tours up to
dimension β is in theory only a factor about C = 1/(1 − 2−0.292) ≈ 5.46 more
costly than running a single tour with blocksize β.

Estimate 6. The cost of running a progressive BKZ algorithm with blocksize β
is

5.46 · (d− β + 1) · Tsvp(β),
where Tsvp is the cost of the SVP oracle.

Running progressive BKZ with only a single tour per blocksize introduces
some loss of quality. The precise loss can be modeled using simulators. As a
result one might have to increase the blocksize a bit to obtain the same profile
as the Geometric Series Assumption indicates. Often this trade-off improves the
overall run-time.

Simulator

While the Geometric Series Assumption gives a good first order estimate of the
basis profile after BKZ-reduction, it is known to be inaccurate in small dimen-
sions or when the dimension is only a small multiple of the blocksize due to the
head and tail behavior. Additionally it does not account for the slower conver-
gence when running progressive BKZ with only a few tours. To resolve these
problems [CN11] introduced a BKZ simulator based on the Gaussian Heuristic.

This simulator keeps track of the basis profile ℓ = (∥b∗
1∥, . . . , ∥b∗

d∥), and runs
BKZ tours where instead of computing a shortest vector it just updates

ℓκ = min



ℓκ, gh(b) ·

(
κ+b−1∏

i=κ

ℓi

)1/b


 ,

for b = min{β, n−κ} (or experimental values of gh(b) for b < 50), and adjusts the
remaining norms ℓκ, . . . , ℓκ+b−1 accordingly. Such a simulator predicts correctly
both the center (body) and tail part of the profile. This simulator was later
refined by a probabilistic variant of the Gaussian Heuristic that can return
slightly short vectors with a small probability [YD17; BSW18]. Due to this
addition the head behavior is also captured. In short, these simulators allow for
accurate and efficient predictions of the profile shape for random lattices, even
for progressive BKZ with a limited number of tours.
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Figure 6.1: Typical Z-shape of the basis profile of q-ary lattices such as those
arising from LWE or NTRU.

Remark 14. The current lowest estimates for NIST candidates, such as [GJ21;
MAT22], often use the GSA to estimate the basis profile, while using a progres-
sive BKZ model for the cost. Accounting for this would increase the estimates
by a few bits.

Influence of Z-shape

Current BKZ simulators predict very well the profile of a random basis after
BKZ reduction. However, sometimes the input basis is not so random. For
example, in the common case of LWE and NTRU, the lattice is q-ary, and as
a result the input bases often start with many orthogonal vectors of length q.
These vectors can be much shorter than what one could get after e.g. LLL
reduction, and they influence the shape of the basis profile, for example to a
typical Z-shape as in Fig. 6.1. The GSA heuristic can be adapted to a Z-shape
GSA heuristic, that is quite accurate as a first order approximation [Alb+21].
This special shape already enabled the dense sublattice attack for NTRU in
the case the modulus q is large [ABD16; KF17; DW21]. For other attacks,
such as the primal attack, it is generally assumed that the Z-shape structure
has (mostly) disappeared around the successful blocksize. Because of this the
Z-shape is ignored in current estimates.

When looking at the more refined simulators and cost models, there are still
many open questions regarding the effect and cost of running BKZ on q-ary
lattices. For example, experimentally (progressive) BKZ seems to improve the
basis quicker, because essentially it only has to do much work on the smaller
middle part. Secondly, current estimators fail to catch the precise shape of the
reduced basis profile, with relatively large deviations in the last (non-flat) part
of the profile. We expect the influence of these refinements to be minor, but
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they should still be modeled correctly to obtain precise estimates.

Summary 21 (Concrete behaviour of the BKZ algorithm). For general
lattices the reduction behavior and cost of BKZ algorithms (in terms of SVP
calls) can be predicted accurately by simulators. Most schemes resort to simpli-
fications such as the GSA to obtain somewhat rougher estimates. There are still
some open questions about the reduction behavior of BKZ on the q-ary lattices
obtained from LWE and NTRU. However, for typical parameters the influence
of the latter is expected to be small.

6.4 How do the NIST candidates get their secu-
rity estimate?

The bit-security of a cryptosystem is calculated according to the most effective
attack against that system. Since all these attacks have a different (sometimes
complex) effect, it is not possible to abbreviate them all into a single simple
formula. Even estimating and optimizing a single attack, with all the cost
refinements, lower order improvements, and careful trade-offs, can be a complex
computation.

Because of this complexity we depend on programs that try to estimate the
cost of the individual attacks as best as possible, and based on the current state-
of-the-art. There exist many such programs, each from different publications,
each often focused on a few attacks. The currently most complete estimator
is a product of multiple works [APS15; Alb+18; Alb+20a]1. We included an
Appendix to this work where it is explained how to use the mentioned estimator,
both for current NIST proposals, as well as for custom parameters.

Summary 22 (Concrete bit-security estimates). The bit-security of a
cryptosystem is based on the most effective attack. Computing the concrete
cost of each attack can be rather complex, and thus is often done by programs
that are written for this task. The Appendix includes an explanation on the
usage of such programs, to go from LWE or NTRU parameters, to a concrete
bit-security estimate.

1Available at https://github.com/malb/lattice-estimator/.
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Part III

Structured attacks
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Chapter 7

Attacks on ideal lattices

7.1 Introduction

Ideal lattices are specific structured lattices that arise from ideals in number
fields. Though ideal lattices have only been sparsely used as the basis of a
cryptographic system (e.g. [Gen09]), they are deemed interesting due to the
apparent computational gap they show for classical computers versus quantum
computers. Indeed, there seems to be a discrepancy between classical and quan-
tum computers in how well they can find a short vector in these ideal lattices,
especially those stemming from cyclotomic fields. Where classical computers
can efficiently achieve an approximation factor of only 2n using LLL-reduction,
quantum computers efficiently achieve a much smaller 2O(

√
n) for ideal lattices

in these cyclotomic fields [Cra+16; CDW17; DPW19; CDW21].
As said, this quantum attack applies also to general number fields [PHS19],

though it has several drawbacks compared to cyclotomic fields. It is heuristic
(i.e., not fully proven); it requires a pre-computation of worst-case 2O(n) for a de-
gree n number field (though this only needs to be computed once per field); and
the approximation factor is expressed in slightly more complicated quantities,
mainly involving the discriminant. Depending on the value this complicated
quantity, the gain in shortness quality might be less impressive compared to the
approximation factor of 2n achieved by (classical) LLL-reduction.

This attack on ideal lattices heavily relies on the computation of the (S-)unit
group and the class group of the number field considered. Without the knowl-
edge and means of efficient computation within these groups, the attack would
not proceed (as far as we know now). In the computation of these two groups
is exactly where quantum computers play its key role: classically, no efficient
algorithms are known computing these groups, whereas quantum computers can
compute unit groups and class groups efficiently [Eis+14; BS15; BDF20]. Using
a so-called continuous hidden subgroup framework, a quantum computer allows
for efficiently computing class groups and (S-)unit groups, in the same fashion
as quantum computers can factor large numbers into prime factors.
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For rank > 1 module lattices, no such or similar attack is known (recall
that ideal lattices can be considered as rank 1 module lattices). Though there
are reductions known: one reduction1 of the shortest vector problem in rank
r > 1 module lattices to the same problem in a lower rank r′ > 1 module lattice
(where r′ < r); and another reduction that reduces the shortest vector problem
in rank 2 module lattices to a closest vector problem in a specific lattice that is
related to the underlying number field [Lee+19; MS19]. These reductions are
the subject of Chapter 8.

Road map

In this chapter, we postpone the quantum algorithm to the last section, for
sake of clarity. In the first few sections we just assume that we can efficiently
compute the (S-)unit group and class group of a number field and compute
generators of principal ideals. In the last section, Section 7.5, we then show
how this is done using a quantum computer. That way, the attack techniques
for the shortest vector problem in ideal lattices are not clouded by the rather
technical details of the quantum algorithm.

Section 7.2 introduces notions which are required for the ideal lattice at-
tack, such as the definitions of the unit group and the class group. The next
section, Section 7.3, explains how to find a mildly short vector in ideal lattices
in cyclotomic fields. In Section 7.4 is shown how this attack is then general-
ized to general number fields. The last section, Section 7.5, treats the quantum
computation of the class group and the (S-)unit group.

7.2 Preliminaries

In this chapter we will consider a number field K with a ring of integers OK .
Recall from Section 3.2 that the Minkowski map K → KR, α 7→ (σ(α))σ makes
ideals I ⊆ OK into lattices of the R-vector space KR. The length of an element
α ∈ K is then defined as the length of the vector in the Minkowski space,
i.e., ∥α∥ := ∑σ |σ(α)|2. We define the following logarithmic map Log : KR →
Log(KR), which is defined component-wise. For (xσ)σ ∈ KR, we define

Log((xσ)σ) := (log |xσ|)σ ∈ Log(KR).

Note that via the Minkowski embedding this map is also defined on K, by
Log(α) := (log |σ(α)|)σ ∈ KR. This map has the nice property that it translates
multiplication into addition: Log(αβ) = Log(α) + Log(β). Hence, it maps
multiplicative structures into additive structures, which is very useful in the
multiplicative structure of the unit group.

1Here with ‘reduction’ is meant a computational reduction; a translation of one problem
into another problem. Famous reductions in complexity theory are the one from SAT to 3SAT
and from 3SAT to the clique problem in graphs.
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Class groups and (S-)unit groups

Three groups play an important role in the attacks of this chapter: the unit
group, the class group and the S-unit group (which can be considered a gener-
alization of the first unit group). The unit group O×

K is defined by the following
rule

O×
K := {u ∈ OK | there exists v ∈ OK such that uv = 1}.

The unit group is a multiplicative group: if u, v ∈ O×
K , then uv ∈ O×

K . Hence,
under the Log map, this multiplicative group changes into a discrete additive
group inside the real vector space KR. Hence, Log(O×

K), the image of O×
K under

the map Log, is a lattice, which we call the logarithmic unit lattice.
To define the class group we first need the notion of fractional ideal. A

fractional ideal is an ideal of the shape α · I, where I ⊆ OK is an ideal and
where α ∈ K\{0}. This notion is needed to make ideals invertible, such that
one can speak of the group of all fractional ideals, which we call IK . So, the
fractional ideal group is defined as follows.

IK := {α · I | I ⊆ OK is an ideal and α ∈ K\{0}}.

Inside this commutative group lives the subgroup of principal fractional ideals,
which are the fractional ideals generated by a single element, i.e., are of the
shape α · OK . Formally,

PrincK := {α · OK | α ∈ K\{0}}.

The class group can then be defined as the quotient group of these two: ClK :=
IK/PrincK . The class group is a finite group [Neu13] and somehow measures
how many ideals can be written as a principal ideal. Most number fields have
a large class group; as a general rule people expect it to be of the order of the√
|∆K |, where ∆K is the discriminant of K, due to the Brauer-Siegel theorem.
Before we define the S-unit group, the notion of prime ideals of OK is

required. An ideal p ⊆ OK is called a prime ideal if for all α, β ∈ OK holds
that if αβ ∈ p then α ∈ p or β ∈ p. Prime ideals are a generalization of prime
numbers in Q. The fundamental theorem of arithmetic generalizes to number
fields, with the difference that it involves fractional ideals rather than numbers:
any fractional ideal can be uniquely decomposed (up to order) into a product
of prime ideals. I.e., any fractional ideal αI can be written as

αI =

k∏

j=1

p
np

j ,

where np ∈ Z are allowed to be negative. Now let S = {p1, . . . , pℓ} be a set of
such prime ideals. Then the S-units are those elements α ∈ K\{0}, for which
the fractional ideal αOK decomposes into primes in S. Formally,

O×
K,S := {α ∈ K\{0} | αOK =

∏

p∈S

pnp for some np ∈ Z}.
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Example 2. The {2}-units in Q are precisely the elements ±2k for k ∈ Z.

Example 3. Consider the number field K = Q(
√
2). The units in O×

K are of

the shape ±(3 + 2
√
2)k for some k ∈ Z. That 3 + 2

√
2 is a unit can be seen by

evaluating (3 + 2
√
2)(−3 + 2

√
2) = 1. That all units are of that specific shape

follows by Dirichlet’s unit theorem.
Consider the prime ideal p7 = (7, 3+

√
2) = (3+

√
2) of norm 7. Taking S =

{p7}, the S-units of K = Q(
√
2) are O×

K,S = {±(3+2
√
2)k ·(3+

√
2)j | k, j ∈ Z}.

In other words, these S-units consists of products of ordinary units and powers
of (3 +

√
2), the prime ideal p7.

Ideal-SVP

We finish the preliminaries with the definition of the Ideal-SVP computational
problem.

Problem 5 (Ideal-SVP). Given an ideal I ⊆ OK of a degree t number field K,
find a non-zero element α ∈ I such that

∥α∥ ≤ γ(t) ·N(I)1/t · |∆K |1/(2t) = γ(t) ·Vol(I)1/t,

where γ(t) is some function of the degree t, measuring the shortness of the
vector.

One generally considers γ(t) =
√
t to be short and γ(t) = poly(t) to be inter-

esting for (ideal-lattice based2) cryptography, whereas γ(t) = 2t is considered
trivial as solutions can then be found by means of LLL-reduction.

7.3 Solving Ideal-SVP in cyclotomic fields

7.3.1 Plan for Solving Ideal-SVP in Cyclotomic Fields

Finding a short vector in an ideal I ⊆ OK in a cyclotomic field K consists of
three parts, on which is elaborated in later sections.

� Finding a close principal multiple3. That is, finding another small norm
integral ideal J ⊆ OK such that the ideal product I · J is principal, i.e.,
generated by a single element : I · J = (α0) for some α0 ∈ K∗. In cyclo-
tomic fields this can be done efficiently, by using a quantum algorithm for
the class group discrete logarithm and by means of so-called Stickelberger
relations. This step is treated in Section 7.3.2.

� Finding a (not necessarily small) generator α0 of the principal ideal I ·
J . This is done by a quantum algorithm, using the hidden subgroup
framework, see Section 7.3.3.

2As said, almost no cryptography is based on ideals. For example, none of the NIST
candidates is based on ideal lattices.

3Note that this can be skipped if ideal is principal (as is often the case in crypto)
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� Reducing the generator, i.e., make the generator α0 of I · J smaller by
replacing it by α = η ·α0 for a suitable unit η ∈ O×

K . Also here, due to the
special cyclotomic units, this can be done efficiently. This is explained in
Section 7.3.4

This element α ∈ I ·J ⊆ I is then a possible solution for the Ideal-SVP problem
on input I.

Result

We will see that this approach yields an approximation factor γ(t) = exp(O(
√
t))

(in the context of Problem 5) within polynomial time using quantum computa-
tion power. I.e., this α ∈ I satisfies ∥α∥ ≤ exp(O(

√
t)) ·Vol(I)1/t.

Figure 7.1: In arbitrary lattices, using BKZ, it takes time exp(Θ(
√
t)) to get a

‘mildly’ short vector of length exp(Θ(
√
t)) (left image). In the case of cyclotomic

ideal lattices, such ‘mildly’ short vectors can be found in quantum polynomial
time (right image). Picture from [CDW21].

7.3.2 Finding a close principal multiple

Given an ideal I, we would like to find another small ideal J ⊆ OK , such that
I · J is principal (generated by a single element).

To tackle this problem, one looks at the ideal class group of K, which is the
quotient group obtained by taking the group of fractional ideals and quotient it
out by the group of principal ideals.

ClK = IK/PrincK .

This is a finite group, and we denote the ideal class of an ideal I by [I] ∈ ClK .
The close principal multiple problem then translates into: find an ideal J ⊆ OK
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that is small (i.e., has a small norm) and satisfies [J ] = [I]−1. Indeed, then
[IJ ] = [I][J ] = [I][I]−1 = 1, which means that IJ ∈ PrincK is principal.

A reasonable guess would be that this small J consists of small multiples
of relatively small prime ideals. So, to tackle this problem, one then often
considers a set of (small) prime ideals S = {p1, . . . , pk}, and defines the following
surjective4 group homomorphism on the free commutative group ZS to ClK .

ϕ : ZS → ClK , (n1, . . . , nk) 7→




k∏

j=1

p
nj

j


 .

Then, as [I]−1 ∈ ClK , one uses a quantum algorithm, namely the class group
discrete logarithm algorithm (see Section 7.5), to find a (not necessarily small)
inverse image of [I]−1 under ϕ, i.e., (n1, . . . , nk) ∈ ZS such that

ϕ(n1, . . . , nk) =




k∏

j=1

p
nj

j


 = [I]−1.

So, then we could put J =
∏k

j=1 p
nj

j , but there are two problems: (1) The
exponents nj could be large, so that J itself is large as well and (2) the exponents
nj could be negative, which makes J not an integral ideal.

The trick is to circumvent this by shifting (n1, . . . , nk) by elements of the
kernel lattice of ϕ, i.e.,

Λ0 =
{
(m1, . . . ,mk) ∈ ZS

∣∣ [
k∏

j=1

p
mj

j ] = 1
}
= kerϕ.

In the case of cyclotomic fields, this kernel lattice has small so-called Stickel-
berger relations [CDW17; CDW21], to efficiently diminish the sizes of (n1, . . . , nk)

and make them positive, in order to get a small J =
∏k

j=1 p
nj

j that satisfies I ·J
being principal.

7.3.3 Finding a generator of the principal ideal

Finding a (not necessarily small) generator of a principal ideal is done with a
quantum algorithm, just like the class group discrete logarithm. As these two
algorithms both fall into the same ‘hidden subgroup’ framework, the treatment
is postponed to the later Section 7.5.

To continue the current discussion, we assume that we found a α0 ∈ I · J
such that (α0) = I · J .

4Assuming the Generalized Riemann Hypothesis, one can deduce that this homomorphism
is surjective whenever S consists of the prime ideals with norm up to 12 log(|∆K |)2.
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7.3.4 Reducing the generator

The generator α0 of the principal ideal I · J found by the quantum algorithm is
generally not short. In order to find a short generator of I · J , we attempt to
multiply α0 by a suitable unit η ∈ O×

K . It is a fact that α = η · α0 generates
I · J if and only if α0 does.

So, the remaining task is: Find η ∈ O⋆
K such that ∥η · α0∥ is minimal. In

the literature (e.g., [Cra+16]), one now resorts to taking logarithms to translate
this multiplicative problem into an additive problem. This compound logarithm,
denoted Log, happens component-wise after the Minkowski embedding.

Log : K → Log(KR), α 7−→ (log |σ(α)|)σ.

Under this embedding, the units O×
K map to the log unit lattice Log(O×

K) which
is of full rank in the hyperplane H = {(xσ)σ ∈ Log(KR) |

∑
σ xσ = 0}.

CVP in the Log-unit-lattice

Reducing the generator α0 is now done by reducing in the logarithmic unit
lattice; the task is (by taking the logarithm) changed into: find a ℓ ∈ Log(O×

K)
such that ∥Log(α) + ℓ∥∞ is minimal5.

By projecting Log(α0) orthogonally to the hyperplaneH, we obtain Log(α0)|H ∈
H, so that the minimizing problem translates in a CVP instance of the loga-
rithmic unit lattice: find ℓ ∈ Log(O×

K) closest to Log(α0)|H .
In cyclotomic fields Q(ζpk) of prime power modulus [Cra+16, Thm. 3.1]

the dual lattice logarithmic unit lattice can be shown to have very short vec-
tors. These vectors are the duals of the logarithms of the so-called ‘cyclotomic
units’. Such short dual vectors allow for efficiently reducing Log(α0)|H to a
much shorter Log(α0)|H +Log(η), thus finding the shortest generator α = α0 ·η
of I · J . Typically, even if one minimizes the length of Log(α0)|H + Log(η)
by picking η optimally, one still has ∥Log(α0)|H + Log(η)∥∞ ≥ Θ(

√
n), which

is simply because the closest lattice point in the log-unit lattice can still be
rather far away. This leads to an optimal but necessary factor exp(O(

√
n)). In

later work [CDW21] this argument is generalized for arbitrary cyclotomic fields,
leading to the following summarized result.

Summary 23 (Attack on cyclotomic ideal lattices). There exists an attack
on ideal lattices in prime-power cyclotomic fields of degree t that finds vectors
v ∈ I with ‘mildly short length’ ∥v∥ ≤ exp(Õ(

√
n)) · det(I)1/n.

5Note that the norm is changed from the 2-norm in the Minkowski space to the ∞-norm
in the Log Minkowski space. Since we have (for a degree n number field) ∥(exσ )σ∥2 =
(
∑

σ e2xσ )1/2 ∈ [1,
√
n] · e∥(xσ)σ∥∞ , we could say that the infinity norm in the Log-space

gives us the best relation with the 2-norm in the original space.
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7.4 A Quantum Attack on Ideal Lattices in Gen-
eral Number Fields

7.4.1 Introduction

A natural question about the quantum attack on ideal lattices in cyclotomic
fields would be: Generalizes this attack to other number fields?. The answer
turns out to be yes heuristically [PHS19], but at the expense of a heavy pre-
computation, that requires time and space exponential in the number field de-
gree. Though, this pre-computation only needs to be done once for a fixed
number field. In other words, with this pre-computed data associated with the
number field K you can attack all ideal lattices associated with the field K.

As the underlying number field in a standardized cryptographic protocol is
mostly assumed to be fixed, this ‘single pre-computation per field’ scenario is
relevant indeed. Fortunately, the third round lattice-based NIST candidates are
based on (rank > 1) module lattices rather than ideal lattices, so this attack
seems not to apply to these candidates (as far as we know now). A possible
generalization of this attack to (rank > 1) module lattices or even any attack on
module lattices that is strictly better than a ‘generic attack’ (as in Chapter 5)
is not found yet (see Chapter 8).

7.4.2 Differences between generalized and cyclotomic at-
tack

The attack of Pellet-Mary, Hanrot and Stehlé [PHS19] generalizes the line of
work [Cra+16; CDW17; Eis+14] and follows essentially the same plan as in
Section 7.3.1. That is: Given an ideal I, find a close principal multiple I · J ,
find a generator α0 ∈ I · J such that (α0) = I · J and reduce the generator α0

using the units O×
K to obtain a small generator α, which is hopefully a short

element in I.
However, the generalized attack allows more freedom in the step that reduces

the (possibly large) generator α0. Namely, the generator α0 is reduced by the
S-units O×

K,S ⊃ O×
K , which happens by reducing Log(α0) by the Logarithmic

S-unit lattice Log(O×
K,S). For this reduction to be successful and efficient, a

pre-computation is needed, that essentially consists of building an exponential
large data set that allows to solve BDD (Bounded Distance Decoding) in this
Log-S-unit lattice efficiently [Laa16b].

Apart from the generalized attack being heuristic and requiring an expen-
sive pre-computation step, it generally also has a worse quality output vector.
The approximation factor achieved in this generalized attack is more intricately
related to the discriminant and algorithmic properties of the logarithmic S-unit
lattice.

This S-unit part of the generalized attack and its associated heavy pre-
computation can in some way be seen as the compensation for the fact that
general number fields (generally) do not have the nice Stickelberger properties
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and cyclotomic unit properties that the cyclotomic fields have. These structures
in the class group and unit group of cyclotomic fields allow to make the close
principal multiple step and the generator reduction step efficient (and successful
up to the approximation factor exp(

√
n)).

7.4.3 Sketch of the attack

The goal of the attack is to find a (mildly) short non-zero element in α ∈ I,
where I is a given ideal of OK of a number ring K.

� Start with defining S = {p1, . . . , pk} to be the set of all prime ideals with
norm up to the bound6B = 12 log(|∆K |)2.

� Use a quantum computer to find an α0 ∈ I such that (α0) = I ·∏p∈S pnp ,
that is, solve the discrete logarithm in the class group.

� Attempt to minimize ∥α0 · η∥ over η ∈ O×
K,S (the S-units), given the

constraint that all mp ≥ 0 in the decomposition (α0 · η) = I ·∏p∈S pmp .
This is done with the pre-computed data on the Log-S-unit lattice.

� Output α = α0 · η.

Example 4. Suppose η ∈ O×
K,S has decomposition (η) =

∏
p∈S pkp , and (α0) =

I ·∏p∈S pnp , then

(α0 · η) = I ·
∏

p∈S

pnp+kp .

Remark 15. The constraint mp ≥ 0 for the decomposition (α0 · η) = I ·∏
p∈S pmp is required in order to have α0 · η ∈ I.

Summary 24 (Quantum attack on ideal lattices in general number
fields). The attack on ideal lattices in cyclotomic fields by [CDW21; Cra+16]
described in Section 7.3 generalizes to general number fields; for the expense of
an exponentially heavy pre-computation in the degree of the number field, that
only needs to be computed once per field.

7.4.4 The Log-S-unit lattice and the problem of positive
exponents

As with the unit attack, minimizing ∥α0 · η∥ is equivalent to minimizing the
norm of

Log(α0 · η) = Log(α0) + Log(η) over η ∈ O×
K,S .

6In the actual attack, a quantum computer is used to diminish this bound to log(hK),
where hK is the class number of K, since this gives better bounds. For our current intuitive
explanation, we will skip this step.
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So, essentially, the task is to find Log(η) ∈ Log(O×
K,S) that is the closest to

Log(α0). But, in the S-units we have the additional constraint that α0 · η is
required to be an element of the input ideal I, i.e., the decomposition

(α0 · η) = I ·
∏

p∈S

pmp

needs to have exponents mp ≥ 0.
This problem is solved by using the Log-S-unit lattice and adding some

‘drift’ β to the prime ideal coordinates.

The Log-S-unit lattice

One can define a log-S-unit lattice by giving each prime in S an own ‘dimension’,
though this dimension is integral (i.e., equal to Z). So, an element η ∈ O×

K,S

maps to the vector

Log(S) : O×
K,S → H × Z|S|, η 7−→ (−c · Log(η)|H , (vp(η))p).

Here ·|H : log(KR)→ H projects the log-space to the hyperplaneH = {(xσ)σ |
∑

σ xσ =

0}; the factor c = t3/2

|S| is for the optimal balance between the ‘H’ part and the

Z|S| part. In the full analysis, this shows to be the optimal choice for obtaining
the best vectors of the input ideal I. One can show that Log(S)(O×

K,S) is a

lattice in H × Z|S|.

Minimizing in the Log-S-unit lattice

Minimizing Log(α0 · η) for η ∈ O×
K,S is equivalent to finding the closest vector

in Log(S)(O×
K,S) to Log(S)(α0) := (−cLog(α0)|H , (np)p). Here, α0 ∈ I is the

(not necessarily small) element found by the quantum computer that satisfies
(α0) = I ·∏p∈S pnp .

It might well be that the closest vector in Log(S)(O×
K,S) to Log(S)(α0) :=

(−cLog(α0)|H , (np)p) has negative prime coordinates, which gives us invalid
solutions. To solve this, we add a ‘drift’ β ∈ N to each prime coordinate. This
translates into: Find a vector v ∈ Log(S)(O×

K,S) that is β-close to the vector

Log(S)(α0)− (0, (β)p) := (−cLog(α0)|H , (np − β)p).
in the maximum norm, denoted by ∥ · ∥∞.

Properties of a β-close vector Suppose we found a η ∈ O×
K,S that solves

this β-Closest Vector problem; i.e., η ∈ O×
K,S satisfies

∥Log(S)(α0)−(0, (β)p)+Log(S)(η)∥∞ = ∥(−cLog(α0η)|H , (np−β+vp(η))p)∥∞ ≤ β.
Then surely, for all p ∈ S, |np − β + vp(η)| ≤ β, i.e., 0 ≤ np + vp(η) ≤ 2β, i.e.,
the decomposition of

(α0 · η) = I ·
∏

p∈S

pnp+vp(η) (7.1)
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only has positive exponents np + vp(η) in the primes. So, phrasing the problem
as a ‘drifted’ CVP problem indeed yields sound solutions.

7.4.5 Quality of the output

We can write

Log(α0η) = Log(α0η)|H +
1

t
· log(N(α0η)) · 1,

where t = [K : Q] is the field degree and 1 is the all-one vector. This yields

∥α0η∥2 ≤ exp(∥Log(α0η)|H∥∞) · exp(log(N(α0η)
1/t)) (7.2)

≤ exp(∥Log(α0η)|H ·N(α0η)
1/t. (7.3)

Starting with the right expression, we have (see Equation (7.1)),

N(α0η)
1/t = N(I)1/t ·

∏

p∈S

N(p)
np+vp(η)

t ≤ N(I)1/t · (poly(log(∆K)))
2·β·|S|

t ,

since 0 ≤ np + vp(η) ≤ 2β, and the norm of the largest prime in S is around
poly(log(|∆K |)).

Continuing with the left expression, we have ∥cLog(α0η)|H∥∞ ≤ β, where

c = t3/2

|S| is the ‘correction factor’. Therefore,

∥Log(α0η)|H∥2 ≤
√
t∥Log(α0η)|H∥∞ ≤

√
t · β/c = β · |S|/t.

Putting these inequalities into Equation (7.3), one obtains

∥α0η∥2 ≤ exp

(
O

(
β · |S| · log log∆K

t

))

︸ ︷︷ ︸
approximation factor

·N(I)1/t.

Using quantum computation power, one can diminish the size of |S| to
log |∆K | [PHS19, Lemma 2.7]; writing β = (log |∆K |)α, we get the following
result. Here Õ is similar to the O-notation, except that in the Õ, polylogarith-
mic factors are suppressed.

Summary 25 (idealSVP in general number fields reduces to CVP
in the log-unit lattice). Assuming quantum computation power, solving
(log |∆K |)α-CVP (in the maximum norm ∥ · ∥∞, α > 0) in the Log-S-unit
lattice of a degree t number field K allows for solving Ideal-SVP in K with
approximation factor

exp

(
Õ

(
(log |∆K |)1+α

t

))
,

where ∆K is the discriminant of K.
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7.4.6 Complexity and quality of the output

CVP with pre-processing

Laarhoven [Laa16b, Corollaries 2 and 3] proved the following statement heuris-
tically. Given α ∈ [0, 1/2] and given t ∈ span(L) where L is a d-dimensional
lattice, there exists an algorithm that computes a vector v ∈ L with

∥t− v∥ ≤ O(nα) · dist2(t,L),

in time exp(Õ(n1−2α)), given a pre-processing stage depending only on L, that
requires time exp(O(n)). Here, dist2(t,L) is the minimum distance of the target
t to the lattice L.

Cyclotomic fields and other ‘small discriminant’ fields

For degree t cyclotomic fields, we have that we have log |∆K | ≤ O(t), turning
the approximation factor in Summary 25 into

exp

(
Õ

(
(log |∆K |)1+α

t

))
= exp(Õ(tα)),

if we are able to solve log |∆K |α = tα-CVP∞ in the log-S-unit lattice7. The
same holds of course for number field families that have log |∆K | ≤ O(t).

Combining this with Laarhoven’s result, yields

Summary 26 (Quantum computers solve exp(
√
n)-idealSVP in gen-

eral small-discriminatn fields, assuming precomputation). Assuming
quantum computation power, with a pre-processing stage of time and mem-
ory exp(O(t)), one can solve exp(Õ(tα))-approximate IdealSVP in time
exp(Õ(n1−2α)) in degree t number fields K satisfying log |∆K | = O(t), see
Figure 7.2.

7.5 Quantum algorithm for computing (S-)unit
groups and class groups

7.5.1 Overview

In this part we sketch how quantum algorithms are able to find a discrete log-
arithm in the class group, a generator of a principal ideal and the (S−) unit
group. Those are exactly the missing parts of the previous sections that rely on
quantum computation. All these tasks fall into one general framework, namely
that of the ‘hidden subgroup problem’.

7CVP∞ means CVP with respect to the maximum norm
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Figure 7.2: Left: The usual, unstructured time/approximation-factor trade-offs
for Approximated SVP in number fields of degree n. On the right the trade-
offs of PHS for number fields with log |∆K | = Õ(n), taking into account a
pre-processing of exp(O(n)). Image from [PHS19].

Figure 7.3: On the left, the time/approximation-factor trade-offs for the first
structured attack on prime power cyclotomic fields of degree n, described in
Section 7.3 (see also Figure 7.1). On the right, the trade-offs of the PHS attack
with the same fields. Image from [PHS19].
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7.5.2 The Hidden Subgroup Problem

The core of the quantum algorithms needed for the attacks in this chapter is a
hidden subgroup algorithm which solves the so-called hidden subgroup problem,
that can be superficially described as follows.

Definition 19 (Hidden subgroup problem). Given a group of the shape Zk×Rn

and a function8 f : Zk × Rn → CN that satisfies f(x + t) = f(x) for all t ∈ T
and x ∈ Zk×Rn, where T ⊆ Zk×Rn is a ‘hidden’ subgroup of G. Additionally,
the function f is required to be smooth and not too constant9.

The task is to find (approximated) generators and relations of the group T .

In this survey we assume that a quantum computer, given such adequate
function f , is able to find the subgroup T ⊆ Zk × Rn. This function f is
referred to as an oracle function, which essentially captures information about
the subgroup T .

7.5.3 Preliminaries for the Oracle Function

In order to find a generator of a principal ideal, or to find the discrete logarithm
in the class group, we need to define an adequate oracle function f . One of the
ingredients of such oracle function is the lattice quantum superposition.

Ideal lattices

For this oracle function we need the space of (fractional) ideals to be more
‘continuous’, which we call the group of ideal lattices of K, denoted IdLatK .
Such a (continuous) ideal lattice is of the shape x · I, where I ⊆ OK is an ideal
and where x = (xσ)σ ∈ KR. With x · I we mean the following lattice:

{(xσσ(α))σ ∈ KR | α ∈ I}.
We can see that IdLatK forms a group and the unit ideal lattice is OK . The
representation x · I of the ideal lattice is not unique, there are many other y · J
such that x · I = y · J . This will play a role for the later oracle function.

Another important part of the oracle function is the exponential function
that maps H to KR. We already defined the Logarithmic map Log : KR →
Log(KR) ⊇ H in Section 7.2, where

H = {(hσ)σ ∈ Log(KR) |
∑

σ

hσ = 0}.

The exponential function Exp : H → KR is the inverse of this map Logarithmic
map and sends (hσ)σ ∈ H to (ehσ )σ ∈ KR. We use throughout this section
that H is isomorphic to Rℓ for some ℓ ≥ 0; indeed, a quantum computer can
then apply the hidden subgroup problem (as the groups that will occur in the
following text are then all of the shape Zk × Rℓ).

8This function is allowed to have quantum states as an output.
9The precise requirements for the function f are slightly more technical, see for example

[Eis+14; BDF20]
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The lattice quantum superposition

The most important part of the oracle function f will be the encoding of an ideal
lattice x · I ⊆ KR (with x ∈ KR, and where the inclusion is via the Minkowski
embedding) into a quantum state. This is done by a Gaussian superposition,
which sends the ideal lattice x · I ⊆ KR to the quantum state10

|xI⟩ :=
∑

v∈x·I
e−s∥v∥2 · |v⟩, (7.4)

for a certain large enough s ∈ R>0.
This superposition |xI⟩ quite captures the ‘essence’ of the ideal lattice xI.

Indeed, |xI⟩ = |yJ⟩ if and only if xI = yJ .

Remark 16. In order to build this superposition on a real-life quantum com-
puter, one would need to take care of machine precision numbers, as it is not
possible to represent elements of KR in full precision. In this survey we ignore
these issues.

7.5.4 The oracle function for finding the generator of a
principal ideal

On of the tasks that were left to be done by a quantum machine is the task
of finding a generator of a principal ideal (see Section 7.3.3). That is, given a
principal ideal a, one would like to find α ∈ a such that a = (α).

For any h ∈ H = {(xσ)σ ∈ Log(KR) |
∑

σ xσ = 0} in the hyperplane and
any integer j ∈ Z we construct an ideal lattice N(a)−j/t · Exp(h) · aj .

This is indeed an ideal lattice of the form x · I, by putting x = N(a)−j/t ·
Exp(h) ∈ KR and I = aj (the factor N(a)−j/t is put in to make the ideal have
the same determinant as OK).

So, our oracle function f is then defined as follows:

Z×H → {quantum states}, (j, h) 7−→
∣∣∣N(a)−j/t · Exp(h) · aj

〉
, (7.5)

where |x · I⟩ is as in Equation (7.4).

The hidden subgroup of this oracle function

What is the hidden subgroup T of the oracle function f as in Equation (7.5)?
For this case it is enough to know which elements in Z × H send to the same
state as |OK⟩, the ‘unit’ state (that encodes the ring of integers OK). Suppose

|N(a)−j/t · Exp(h) · aj⟩ = |OK⟩. (7.6)

10Actually, quantum states are required to have unit norm, so this state must have a constant
in the front as to make the total state having norm 1. In this survey, for sake of clarity and
conciseness, we omit these constants.

106



Let us write a = (α) for some element α ∈ a. Such an α necessarily exists, we
just do not know this element yet. We have, by Equation (7.6) and the fact that
the lattice quantum superposition is the same, that the following ideal lattices
are the same.

|N(α)|−j/t · Exp(h) · (αj) = N(a)−j/t · Exp(h) · aj = OK

In other words, by taking Logarithms and noting that OK is can be generated
by any unit η ∈ O×

K , the element h = (hσ)σ ∈ H satisfies, for some unit η ∈ O×
K ,

(hσ)σ = −j
t
· log |N(α)| − Log(αj · η)

So, the hidden subgroup T ⊆ Z×H of f must consists of (j, h) with h ∈ H of
above shape, i.e.,

T =

{(
j,−j

t
· log |N(α)| − Log(αj · η)

) ∣∣∣ j ∈ Z, η ∈ O×
K

}

If we just know two elements (j, h), (j′, h′) ∈ T for which j and j′ are coprime,
one can find (by the extended euclidean algorithm), a, a′ ∈ Z such that aj +
a′j′ = 1. In that case one necessarily obtains an element in T of the shape

(1,−1

t
· log |N(α)| − Log(α · η),

for some η ∈ O×
K . Since we can compute log |N(α)| = log(N(a)), one can then

recover (an approximation of) Log(α · η). From this logarithmic image, one is
(with a good enough approximation) able to recover α · η, which is a generator
of a.

Remark 17. Note that no guarantee is given on the length of this generator;
the output of the quantum algorithm is even given in logarithmic coordinates,
which might yield generator α · η which is even too large to write down.

So, the next step of the total algorithm (namely, to reduce this element mod-
ulo the logarithmic unit lattice) is of importance to actually obtain a mildly short
generator of a.

Remark 18. In this example, we used an extended euclidean algorithm to obtain
a generator of a. In reality, one might resort to many samples (j, h) ∈ T and use
lattice reduction techniques to get an overall small element of the shape (1, h′).

7.5.5 The oracle function for finding the discrete loga-
rithm in the class group

The task that we are trying to solve is: Given an ideal class [a] ∈ ClK = IK/K∗

in the ideal class group represented by the ideal a, and given a set of k prime
ideals S = {p1, . . . , pk}. Find exponents nj ∈ Z≥0 such that [

∏k
j=1 p

nj

j ] = [a]−1.
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Again, we construct an oracle function, now defined on Z× Zk ×H, where
H is again the hyperplane where the Logarithmic units live in.

The oracle function is defined as follows

f : Z× Zk ×H → {quantum states}, (7.7)

(r, (nj)j∈[k], h) 7−→ |N−1/t · Exp(h) · ar ·
∏

j

p
nj

j ⟩ (7.8)

where N = N(a)r ·∏j N(pj)
nj ; this is to scale the lattice down to have the same

determinant as OK . Here, again, |xI⟩ is the lattice quantum superposition.

The hidden subgroup of this oracle function

By the same reasoning as in the previous section, the hidden subgroup T are
those elements (r, (nj)j , (hσ)σ) in Z× Zk ×H for which holds

N−1/t · Exp(h) · ar ·
∏

j

p
nj

j = OK

By taking a linear integral combination of multiple such elements (r, (nj)j , h) ∈
T , one can compute one of the shape (1, (nj)j , h) ∈ T for which nj ≥ 0, for all
j ∈ [k]. This means that

a ·
k∏

j=1

p
nj

j = N1/t · Exp(h) · OK ,

from which you can conclude that a ·∏k
j=1 p

nj

j is principal and that [a]−1 =

[
∏k

j=1 p
nj

j ]. Moreover, by computing N1/t · Exp(h) ∈ KR sufficiently precise,

one can then obtain an element α ∈ K such that α = N1/t · Exp(h). By these
means we then found

a ·
k∏

j=1

p
nj

j = (α),

i.e.m α is a generator of the ideal a ·∏k
j=1 p

nj

j .

Summary 27 (Quantum computers solve the ‘continuous’ hidden sub-
group problem). Quantum computers are able to efficiently find the period-
icity of a periodic function on a space of the shape Zk × Rn. By choosing this
function adequately, this allows for computing class groups and unit groups of
number fields efficiently.
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Chapter 8

Attacks on Module Lattices

8.1 Introduction

8.1.1 Attacks

Module lattices arise in ModuleLWE, RingLWE and NTRU, and are mostly
of rank 2 or higher. There are no attacks known on module lattices that are
better than the attacks on generic lattices. In other words, module lattices, from
a current-time algorithmic perspective, seem to be as hard as generic lattices
for the time being. This is the main reason why lattice-based cryptography is
mostly based on these lattices: using them is more efficient, and (as far as we
know) there is no increase in security risks.

As far as we know, the quantum attack on ideal lattices (rank 1 module
lattices) described in the previous sections does not generalize to higher rank
module lattices.

Summary 28 (Attacks on Module lattices). There are no attacks known
for (rank > 1) module lattices that are better than the ‘generic attacks’ that
apply to general lattices. In other words, as far as we know now, there is no
algorithm (better than generic ones) that exploits the structure of these module
lattices.

8.1.2 Reductions

There are no known module-lattice specific attack, but there is a certain reduc-
tion, independently found by Lee–Pellet-Mary–Stehlé–Wallet and Mukherjee–
Stephens-Davidowitz [Lee+19; MS19]. In this reduction, SVP in module lattices
of higher rank r′ are reduced to SVP in module lattices of rank 2, which is highly
inspired on the LLL-algorithm and does in essence generalize it for number fields.
For this reduction there is only a ‘small’ blow up (dominantly depending expo-
nentially on the module rank r′) in the approximation factor. As the rank for
module-lattice based cryptography are generally quite small (most of them not
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larger than 5), this suggests that the hardness of these cryptographic schemes
relies on the hardness of finding short vectors in rank 2 module lattices.

As far as we know now, no reduction is known from rank 2 module lattices to
rank 1 module lattices (also known as ideal lattices), so it is believed that there
is a significant hardness gap between rank 1 module lattices (ideal lattices) and
rank > 1 module lattices.

Though there is no reduction for SVP on rank 2 module lattices to rank 1
module lattices, in the work [Lee+19] there is a (quantum) reduction from SVP
on rank 2 module lattices (of a fixed number field) to (exact) CVP in a specific
log-S-unit alike lattice; this reduction has similarities to the reduction in the
quantum attack on ideal lattices in general number fields.

8.2 LLL (and BKZ) in module lattices

8.2.1 Introduction

In this section, we treat a generalization of the LLL algorithm to module-lattices,
in the framework of Lee et al. [Lee+19]. Essentially same generalization can be
applied to the BKZ algorithm [MS19], but will be omitted in this text.

8.2.2 Basis operations in module bases

The reduction for modules [Lee+19; MS19] are in essence generalizations of the
LLL algorithm for number fields. Recall that basis reduction algorithms (like
LLL) manipulate bases B ∈ Zn×n by means of multiplying them on the right
with U ∈ GLn(Z), yielding BU. This multiplying on the right boils just down
to (invertible) column operations (switching columns, adding a multiple of one
column to another, etc.).

To generalize LLL to number fields, on now attempts to manipulate module
bases B ∈ Rn×n (where R = Z[x]/(ψ(x)) for some polynomial1) by multiplying
them on the right with U ∈ GLn(R) = {U ∈ Rn×n | det(U) ∈ R×}. In other
words, GLn(R) are matrices with coefficients in R whose determinant is a unit
in R. Again, this boils down to invertible column operations on B, but now at
‘ring coefficient’ level.

Example 5. Let R = Z[
√
2] = Z[x]/(x2 − 2) and let

B =

[
21 + 10

√
2 2 + 3

√
2

8 + 12
√
2 1 +

√
2

]
.

Subtracting 3
√
2 times the second column from the first column accounts to

multiplying on the right with

U =

[
1 −3

√
2

0 1

]
∈ GLn(R).

1This is of course not the most general shape of a number ring, but for simplicity we will
assume this for the moment.
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The left column of B ·U is then

[
21 + 10

√
2

8 + 12
√
2

]
− 3
√
2

[
2 + 3

√
2

1 +
√
2

]
=

[
21 + 10

√
2

8 + 12
√
2

]
−
[
6
√
2 + 18

3
√
2 + 6

]
=

[
3 + 4

√
2

2 + 9
√
2

]
.

So, as the right column of B keeps fixed,

B ·U =

[
3 + 4

√
2 2 + 3

√
2

2 + 9
√
2 1 +

√
2

]
.

Remark 19. Module lattices with bases B ∈ Rn×n are called free modules. To
simplify matters, we will focus on these particular module lattices. It is sufficient
for grasping the idea of the reduction of [Lee+19].

There are also module lattices that are not free modules – they have a pseudo-
basis instead of an ordinary basis, as explained in Section 3.4; these module
lattices are omitted in this discussion for now. See for example [Coh12] for
more information on pseudo-bases.

8.2.3 LLL-revisited

In Sections 2.4 to 2.6, the LLL algorithm and its ingredients were explained.
This LLL algorithm is a basis reduction algorithm for bases2 in Zn×n; almost
all such basis reduction algorithms rely on an exact-SVP oracle in a lower di-
mension. For LLL, this exact-SVP oracle is called many times in the dimension
two projected lattice of the lattice of the input basis3.

The efficiency of LLL is partially due to the fact that we have a polynomial
algorithm to solve exact-SVP in rank-two lattices in R2×2; this algorithm is
known as Lagrange reduction and is in essence nothing else than the extended
Euclidean division algorithm.

The full reason why LLL is efficient is also due to another important proce-
dure in the LLL algorithm, known as size reduction. This is to avoid so-called
‘coefficient explosion’; in other words, size reduction keeps the coefficients man-
ageably small during the LLL reduction computation.

2We assume Z as a base ring, as bases with coefficients in Q can always be scaled up to be
in Z.

3For BKZ of block size β, the reduction algorithm relies instead of solving exact-SVP in
dimension β projected lattices of the input basis’ lattice
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Summary 29 (Ingredients of the LLL algorithm). The LLL algorithm
consists of three main components, with their own purpose.

(i) A rank 2 exact-SVP oracle. In the ‘ordinary’ Z-case, this can be done
efficiently by Lagrange reduction.

(ii) Size reduction. This keeps the coefficient manageably small during the
computation.

(iii) Projection. This allows to project the lattice onto a two-dimensional lattice
and use the rank 2 exact SVP oracle.

The ‘outer loop’ of LLL searches for projected 2-dimensional blocks of the ba-
sis that are not Lagrange reduced; and Lagrange-reduces them; this is always
followed by a ‘size reduction’ step.

8.2.4 ModuleLLL on module bases: Reduction from SVP
in high-rank module lattices to SVP in rank 2 mod-
ule lattices

Module-LLL on module bases

The exact same ingredients as in Summary 29 are needed to do LLL-reduction
on module bases. We go through the different ingredients one by one.

(i) The rank 2 exact-SVP oracle “A reduction from SVP in high-rank
module lattices to SVP in rank 2 module lattices” exactly means that we may
assume that we have an exact-SVP oracle for rank 2 module lattices. So, for
the remainder of this text, we will assume that we have such an oracle.

In a later part of this text, namely Section 8.2.5, we show that exact-SVP
for rank 2 module lattices (of a fixed number field K) can be reduced to CVP in
a special lattice LK only depending on K; a lattice that resembles a log-S-unit
lattice.

(ii) Size reduction and (iii) projection The notion of size reduction and
projection uses the fact that we can Gram-Schmidt orthogonalize a basis, which
needs an adequate norm notion on the column vectors of a module basis.

So, suppose B = (b1, . . . ,br′) is a module lattice basis. In other words,
each bj ∈ Rr′ is a column vectors consisting of r′ entries from the number ring
R. Then are essentially two ‘size notions’ on a vector; one is the (Minkowski)
geometric norm, the other is the algebraic norm.

Minkowski geometric norm The Minkowski geometric norm is defined
via the concatenated Minkowski embedding. Recall the Minkowski embedding
R → KR, where each element α ∈ R is mapped to the vector (σ(α))σ for each
embedding σ : K → C into the complex numbers. The geometric norm ∥α∥
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of such an element α ∈ R is then defined as the geometric norm of the vector
(σ(α))σ. Concretely,

∥α∥2 =
∑

σ:K→C
|σ(α)|2,

with its associated inner product, for α, β ∈ R.

⟨α, β⟩ =
∑

σ:K→C
σ(α)σ(β)

The Minkowski geometric norm on a R-vector b = (β1, . . . , βr′)
T ∈ Rr′ is

then defined by the following rule

∥b∥2K =

r′∑

j=1

∑

σ:K→C
|σ(βj)|2 =

r′∑

j=1

∥βj∥2.

which again defines an inner product in the following sense, for c = (γ1, . . . , γr′)
T ∈

Rr′ :

⟨b, c⟩K :=

r′∑

j=1

σ(βj)σ(γj).

Algebraic norm Apart from the geometric norm there is also an algebraic
norm defined on elements α ∈ R as follows:

N(α) = |R/(α)|,

where |R/(α)| is the number of elements in the quotient ring R/(α). This
algebraic norm can then be generalized for R-vectors b = (β1, . . . , βr′)

T ∈ Rr′

by taking the algebraic norm of the norm ∥b∥K ∈ KR.

N(b) = N(∥b∥K).

One can show that this norm, in some way, has a reasonably interplay with the
inner product ⟨·, ·⟩K .

Gram-Schmidt orthogonalization Using this inner product, one can define
a Gram-Schmidt orthogonalized basis, which in essence can be used in the same
way to apply size reduction and projection. The ‘Lovász’ condition will need
the notion of the algebraic norm.

Remark 20. In complete generality, this is a slightly more technical to get to-
tally right, especially in the case of pseudo-bases. In both papers [Lee+19; MS19]
quite some work is dedicated to make the Gram-Schmidt orthogonalization and
LLL (and BKZ) reduction work.

113



The ‘loop’ part In the loop part, the LLL algorithm projects parts of the
module basis to a rank-2 basis, and checks whether this rank 2 basis is well-
reduced enough. In the ‘ordinary’ LLL algorithm this check is carried out by
checking the Lovász condition. For the module case this not fundamentally
different.

Summary 30 (LLL over modules). The Minkowski geometric norm in com-
bination with the algebraic norm allows to define LLL reduction of module bases
in a sound way.
We have [Lee+19, Theorem 3.9]: γ-SVP in rank 2 modules (over K) allows to
solve (2γ|∆K |1/t)2r

′−1-SVP in rank r′ modules, where t = [K : Q] and ∆K is
the discriminant of K.

8.2.5 Quantumly reducing exact-SVP in rank 2 module
lattices to CVP in a log-S-unit like lattice

The rank 2 SVP step in the module-LLL algorithm can be thought of as ‘Eu-
clidean division’ in the number field K. Most number fields cannot have Eu-
clidean division in the ‘classical’ way, so, the ‘division’ is relaxed into a slightly
different requirement: Given α, β ∈ R, we would like to find x, y ∈ R such that

∥xα+ yβ∥ ≤ c · ∥α∥, (8.1)

where ∥y∥ ≤ C. Here, c, C ∈ R are some small constants, depending on the
number field.

Essentially, Equation (8.1) boils down to finding x, y ∈ R where xα ≈ yβ,
which, by defining an adequate logarithmic map Log, can be rephrased into

Log(xα) ≈ Log(yβ)⇐⇒ Log(x/y) ≈ Log(β/α).

This logarithmic map is then an ‘extension’ of the map Log(S), used for the
logarithmic S-units (where S is a set of prime ideals). Recall that Log(S) :

O×
K,S → H × ZS sends α 7−→ ((log |σ(α)|)σ, (vp(α))p∈S), where σ ranges over

the embeddings σ : K → C. In this extended Logarithm, the log |σ(α)| is
replaced by the logarithm of σ(α) without the absolute values, i.e., the complex
logarithm, which lands into (R+ iR)/(2πiZ). This yields the map

Log : O×
K,S → H × ZS ,

where H := {(xσ)σ ∈
∏

σ(R+ iR)/(2πiZ) | ∑σ xσ = 0}.
Essentially, this rephrases into a CVP-problem where the lattice is Log(O×

K,S) ⊆
H×ZS , and where the target is some adequate definition of Log(β/α). This def-
inition will only consists of a H-part, namely, (log(σ(β/α)))σ ∈ H; the ZS-part
will be zero.

By heuristic reasoning and technical arguments, one can show that solving
CVP in this sort-of log-S-unit lattice allows to solve exact SVP in rank 2 module
lattices. Note however, that translating the Logarithm back into the original
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space requires taking exponents. So, in order to have a good SVP result, the
CVP-distance in the log space needs to be extremely small, essentially optimal.
The quantum part of the reduction essentially comes down to computing class
groups and unit groups and logarithms therein.

For now, there is no algorithm yet that allows for computing Closest Vectors
in this Logarithmic S-unit like lattices efficiently; which makes this reduction
essentially a theoretical one. The running time for our current CVP algorithms
are too large for this reduction to be useful in terms of finding short vectors in
module-lattices.

Summary 31 (Rank 2 Module-SVP reduces to CVP in a K-specific
lattice). By defining an adequate logarithmic function Log on the S-units, one
can translate SVP in rank 2 module lattices over K into a CVP instance (with
very small approximation factor) in a logarithmic S-unit like lattice, fixed for
K. No algorithm exists yet that allows to solve such CVP instances in an
efficient enough way in order for this module reduction to beat the generic
lattice algorithms for SVP.

8.3 Discussion

Computational gap between rank 2 and rank 1 module lat-
tices

For about a decade, the general consensus among lattice-based cryptographers
is that there is a computational barrier between SVP in rank 1 module lattices
(ideal lattices) and rank ≥ 2 module lattices. The belief in this computational
gap is partially caused by the works described in this chapter: Ideal lattices
are somehow ‘weaker’ than generic lattices4 due to the quantum attack, but for
module lattices no such attack is known. The reduction described in this section
from high-rank module lattices to rank 2 module lattices suggests that there is
indeed ‘something happening’ in between rank 1 and rank 2.

Space of lattices An additional argument for why rank 1 and rank ≥ 2
module lattices are different, is by considering the space of all rank r′ module
lattices for a fixed number field. This space turns out to be a homogeneous
topological space, but for the case r′ = 1 (ideal lattices), this space is a compact
Abelian group, known as the Arakelov class group.

For r′ ≥ 2, this topological space is non-compact and not Abelian. This is
not an argument of why no attack could ever happen on these module lattices,
but it is an indication of a fundamental difference between those two types of
lattices over a number field K.

4But, for small crypto-relevant approximation factors, we still have no algorithm better
than the generic ones.
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[DP23a] Léo Ducas and Ludo N Pulles. “Accurate score prediction for dual-
sieve attacks”. In: Cryptology ePrint Archive (2023) (cit. on p. 71).
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How to use estimation scripts

1 Usage of estimator scripts

We will shortly discuss the usage of the state-of-the-art estimator scripts from
https://github.com/malb/lattice-estimator/ . These scripts estimate the cost of the (hybrid)
primal and dual attacks, and the cost of Arora-Ge and BKW attacks. The hybrid dual attack
estimator does incorporate the latest SVP cost model from MATZOV, but does not yet contain
the latest dual attack improvements of that same work.

1.1 Getting started

• Obtain and install the latest version of SageMath (https://www.sagemath.org/). Most pack-
age managers contain it.

• Obtain the lattice estimator files (https://github.com/malb/lattice-
estimator/archive/refs/heads/main.zip), and extract to a folder.

• Start sage in that folder, and import the estimator scripts as follows:

[1]: from estimator import *

2 Obtaining estimates

The security estimate of schemes is based on the attack with the lowest (time) complexity. This
means that it can be hard to obtain a single formula for the hardness of a certain LWE instance.
The estimation scripts for each attack can be complex, as they often have to optimize over many
parameters involved in the attack.

2.1 Primal and dual attack

Let us look at the estimates for the Frodo640 parameters. The estimator contains these parameters.
Recall that a small secret LWE instance with m samples, can be turned into a regular LWE instance
with m+n samples, or vice versa. The estimator follows the schemes and uses the small secret way
of expressing the parameters.

[2]: from estimator.schemes import Frodo640
print(Frodo640)
display("Primal attack", LWE.primal_usvp(Frodo640))
display("Dual attack", LWE.dual(Frodo640))

LWEParameters(n=640, q=32768, Xs=D(σ=2.80), Xe=D(σ=2.80), m=656, tag='Frodo640')



'Primal attack'

rop: 2ˆ166.5, red: 2ˆ166.5, δ: 1.003473, β: 486, d: 1285, tag: usvp

'Dual attack'

rop: 2ˆ173.1, mem: 2ˆ104.0, m: 656, β: 506, d: 1296, : 1, tag: dual

These two estimates (primal_usvp, dual) are the most basic, and they correspond to the primal
and the dual attack. We now consider a few more refinements. First, primal_bdd considers the
primal attack that runs BKZ and then runs a final higher dimensional SVP call. This generally
improves the complexity a bit, at the cost of a higher memory usage (See Section . . . ). Secondly,
dual_hybrid does the same for the dual attack, in addition to combining it with a hybrid guessing
step. Recall that the hybrid attack is mostly useful in combination with the dual attack, as the
precomputation for computing short dual vectors only has to be done once.

[3]: display("Primal attack (final SVP call)", LWE.primal_bdd(Frodo640))
display("Hybrid dual attack", LWE.dual_hybrid(Frodo640))

'Primal attack (final SVP call)'

rop: 2ˆ163.0, red: 2ˆ162.1, svp: 2ˆ161.9, β: 470, η: 504, d: 1293, tag: bdd

'Hybrid dual attack'

rop: 2ˆ171.2, mem: 2ˆ167.0, m: 656, β: 499, d: 1285, : 1, ζ: 11, tag: dual_hybrid

For the Frodo640 parameters the hybrid attack is not very effective, because the error/secret dis-
tribution is quite wide. Lastly, we consider the FFT improvement by GJ. This is currently hidden
behind a flag. Computing this more complex estimate can take longer than usual.

[4]: display("Hybrid dual attack with FFT", LWE.dual_hybrid(Frodo640, fft=True))

'Hybrid dual attack with FFT'

rop: 2ˆ169.2, mem: 2ˆ166.3, m: 656, β: 492, t: 91, d: 1285, : 1, ζ: 11, tag:␣
↪→dual_hybrid

Overall we see that the lowest time complexity is achieved by the primal attack that uses a final
large SVP call. Here ‘rop’ represents an estimate for the needed gate count.

2.2 Arora-Ge and BKW attacks

For most schemes there are too little samples to make the Arora-Ge (and Gröbner basis extension)
or the BKW attacks work efficiently. Still one can obtain an estimate for them.

[5]: display("Arora-Ge + Grobner bases", LWE.arora_gb(Frodo640))
display("BKW", LWE.coded_bkw(Frodo640)) # slow

'Arora-Ge + Grobner bases'

rop: 2ˆinf, dreg: 2ˆinf, tag: arora-gb

'BKW'



rop: 2ˆ241.1, m: 2ˆ228.5, mem: 2ˆ229.5, b: 15, t1: 2, t2: 20, : 14, #cod: 555,␣
↪→#top: 0, #test: 56, tag: coded-bkw

3 Changing parameters and their influence

As a proof of concept we will change individual parameters of Frodo640 and see what kind of
influence this has on the attack costs. For simplicity we will focus on the dual_hybrid attack
(without FFT).

Let us first recompute the initial estimate:

[6]: display("Initial estimate:", LWE.dual_hybrid(Frodo640))

'Initial estimate:'

rop: 2ˆ171.2, mem: 2ˆ167.0, m: 656, β: 499, d: 1285, : 1, ζ: 11, tag: dual_hybrid

Decreasing the length n of the secret makes the problem easier:

[7]: display("Smaller secret dimension",
LWE.dual_hybrid(Frodo640.updated(n=500)))

'Smaller secret dimension'

rop: 2ˆ133.3, mem: 2ˆ128.8, m: 606, β: 363, d: 1097, : 1, ζ: 9, tag: dual_hybrid

Alternatively, decreasing the norm of the error/secret will result in an easier problem.

[8]: display("Smaller error/secret",
LWE.dual_hybrid(Frodo640.updated(Xs=ND.DiscreteGaussian(1.4), Xe=ND.

↪→DiscreteGaussian(1.4))))

'Smaller error/secret'

rop: 2ˆ147.6, mem: 2ˆ141.2, m: 656, β: 414, d: 1285, : 1, ζ: 11, tag: dual_hybrid

One can also use many other distributions for the secret and error. We do recommend to keep
them identical. For example we can consider a ternary distribution. Due to the small entropy per
coefficient the hybrid part of the attack becomes more important.

[9]: display("Ternary error/secret (no hybrid)",
LWE.dual(Frodo640.updated(Xs=ND.Uniform(-1,1), Xe=ND.Uniform(-1,1))))

display("Ternary error/secret (hybrid)",
LWE.dual_hybrid(Frodo640.updated(Xs=ND.Uniform(-1,1), Xe=ND.

↪→Uniform(-1,1))))

'Ternary error/secret (no hybrid)'

rop: 2ˆ134.6, mem: 2ˆ77.0, m: 617, β: 367, d: 1257, : 1, tag: dual

'Ternary error/secret (hybrid)'

rop: 2ˆ128.9, mem: 2ˆ125.1, m: 593, β: 346, d: 1200, : 1, ζ: 33, tag: dual_hybrid



Lastly, increasing the number of samples does not always make the problem (significantly) easier
for the primal or dual attack. The attack reports to only use 754 out of the 2000 samples.

[10]: display("More samples",
LWE.dual_hybrid(Frodo640.updated(m=2000)))

'More samples'

rop: 2ˆ170.4, mem: 2ˆ167.0, m: 754, β: 495, d: 1383, : 1, ζ: 11, tag: dual_hybrid

However, adding more samples, while making the secret/error small, might make the Arora-Ge and
BKW attacks better.

[11]: display("Grobner bases, many samples",
LWE.arora_gb(Frodo640.updated(Xs=ND.Uniform(-1,1), Xe=ND.Uniform(-1,1),␣

↪→m=2**24)))
display("BKW, many samples",

LWE.coded_bkw(Frodo640.updated(Xs=ND.Uniform(-1,1), Xe=ND.Uniform(-1,1),␣
↪→m=2**120))) # slow

'Grobner bases, many samples'

rop: 2ˆ65.5, dreg: 4, mem: 2ˆ65.5, t: 1, m: 2ˆ24.0, tag: arora-gb

'BKW, many samples'

rop: 2ˆ166.7, m: 2ˆ153.8, mem: 2ˆ154.8, b: 10, t1: 4, t2: 23, : 9, #cod: 536, #top:
↪→ 0, #test: 68, tag: coded-bkw

4 All estimates

To finalize, there exists a command to obtain many of the estimates in one go. This is however
slow, includes some less useful attacks, and does not consider all the flags (e.g. fft=True).

[13]: display(LWE.estimate(Frodo640))

bkw :: rop: 2ˆ241.1, m: 2ˆ228.5, mem: 2ˆ229.5, b: 15, t1: 2,
t2: 20, : 14, #cod: 555, #top: 0, #test: 56, tag: coded-bkw
usvp :: rop: 2ˆ166.5, red: 2ˆ166.5, δ: 1.003473, β: 486, d:
1285, tag: usvp
bdd :: rop: 2ˆ163.0, red: 2ˆ162.1, svp: 2ˆ161.9, β: 470, η:
504, d: 1293, tag: bdd
bdd_hybrid :: rop: 2ˆ163.0, red: 2ˆ162.1, svp: 2ˆ161.9, β: 470, η:
504, ζ: 0, |S|: 1, d: 1297, prob: 1, : 1, tag: hybrid
bdd_mitm_hybrid :: rop: 2ˆ353.8, red: 2ˆ353.8, svp: 2ˆ208.2, β: 485, η:
2, ζ: 0, |S|: 1, d: 1297, prob: 2ˆ-185.3, : 2ˆ187.5, tag: hybrid
dual :: rop: 2ˆ173.1, mem: 2ˆ104.0, m: 656, β: 506, d: 1296,
: 1, tag: dual
dual_hybrid :: rop: 2ˆ171.2, mem: 2ˆ167.0, m: 656, β: 499, d: 1285,
: 1, ζ: 11, tag: dual_hybrid



{'arora-gb': rop: 2ˆinf, dreg: 2ˆinf, tag: arora-gb,
'bkw': rop: 2ˆ241.1, m: 2ˆ228.5, mem: 2ˆ229.5, b: 15, t1: 2, t2: 20, : 14, #cod:␣
↪→555, #top: 0, #test: 56, tag: coded-bkw,
'usvp': rop: 2ˆ166.5, red: 2ˆ166.5, δ: 1.003473, β: 486, d: 1285, tag: usvp,
'bdd': rop: 2ˆ163.0, red: 2ˆ162.1, svp: 2ˆ161.9, β: 470, η: 504, d: 1293, tag:␣
↪→bdd,
'bdd_hybrid': rop: 2ˆ163.0, red: 2ˆ162.1, svp: 2ˆ161.9, β: 470, η: 504, ζ: 0, |S|:
↪→ 1, d: 1297, prob: 1, : 1, tag: hybrid,
'bdd_mitm_hybrid': rop: 2ˆ353.8, red: 2ˆ353.8, svp: 2ˆ208.2, β: 485, η: 2, ζ: 0,␣
↪→|S|: 1, d: 1297, prob: 2ˆ-185.3, : 2ˆ187.5, tag: hybrid,
'dual': rop: 2ˆ173.1, mem: 2ˆ104.0, m: 656, β: 506, d: 1296, : 1, tag: dual,
'dual_hybrid': rop: 2ˆ171.2, mem: 2ˆ167.0, m: 656, β: 499, d: 1285, : 1, ζ: 11,␣
↪→tag: dual_hybrid,
'dual_mitm_hybrid': rop: 2ˆ1866.0, mem: 2ˆ1865.0, m: 139, k: 315, : 2, β: 79, d:␣
↪→166, ζ: 613, tag: dual_mitm_hybrid}

5 MATZOV estimate

For the MATZOV dual attack estimate one use the code attached to
https://arxiv.org/pdf/2205.13983.pdf. For slightly less optimal estimates one can just use
LWE.dual_hybrid.
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