
Transistor: a TFHE-friendly Stream Cipher

Jules Baudrin1,7, Sonia Beläıd4, Nicolas Bon1,4,5, Christina Boura3,
Anne Canteaut1, Gaëtan Leurent1, Pascal Paillier4,6, Léo Perrin1,

Matthieu Rivain4, Yann Rotella2, and Samuel Tap6

Inria, France1

University of Versailles St Quentin, France2,
IRIF, Université Paris Cité3,
CryptoExperts, France4,

DIENS, Ecole normale supérieure, PSL University, CNRS, Paris, France5,
Zama, France6,

UCLouvain, Louvain-la-Neuve, Belgium7

Abstract. Fully Homomorphic Encryption (FHE) allows computations
on encrypted data without requiring decryption, ensuring data privacy
during processing. However, FHE introduces a significant expansion of
ciphertext sizes compared to plaintexts, which results in higher com-
munication. A practical solution to mitigate this issue is transciphering,
where only the master key is homomorphically encrypted, while the ac-
tual data is encrypted using a symmetric cipher, usually a stream cipher.
The server then homomorphically evaluates the stream cipher to convert
the encrypted data into a homomorphically encrypted form.

We introduce Transistor, a stream cipher specifically designed for effi-
cient homomorphic evaluation within the TFHE scheme, a widely-used
FHE framework known for its fast bootstrapping and ability to handle
low-precision data. Transistor operates on F17 which is chosen to op-
timize TFHE performances. Its components are carefully engineered to
both control noise growth and provide strong security guarantees. First, a
simple TFHE-friendly implementation technique for LFSRs allows us to
use such components to cheaply increase the state size. At the same time,
a small Finite State Machine is the only part of the state updated non-
linearly, each non-linear operation corresponding in TFHE to a rather
expensive Programmable Bootstrapping. This update is done using an
AES-round-like transformation. But, in contrast to other stream ciphers
like SNOW or LEX, our construction comes with information-theoretic secu-
rity arguments proving that an attacker cannot obtain any information
about the secret key from three or fewer consecutive keystream outputs.
These information-theoretic arguments are then combined with a thor-
ough analysis of potential correlations to bound the minimal keystream
length required for recovering the secret key.

Our implementation of Transistor significantly outperforms the state
of the art of TFHE transciphering, achieving a throughput of over 60
bits/s on a standard CPU, all while avoiding the need for an expensive
initialization process.

1 Introduction

Fully Homomorphic Encryption (FHE) refers to cryptographic systems that en-
able computations to be performed directly on encrypted data, without needing
to decrypt it first. For instance, imagine Alice wants to use an online service to
analyze her confidential medical data. With traditional encryption methods, the
service would need to decrypt her data before processing it, potentially exposing
sensitive information. In contrast, FHE allows the service to perform the analy-
sis while the data remains encrypted, ensuring privacy and security throughout
the entire process. Using FHE, Alice can encrypt her medical data and send the
encrypted version (ciphertext 𝐶) to the online service. The service can then per-
form the necessary computations on 𝐶 and produce a new ciphertext 𝐶 ′. When
𝐶 ′ is decrypted, the result will be the same as if the operations had been applied
directly to the original, unencrypted data.

Modern FHE schemes rely on encrypting data with added noise to ensure
security, but, as computations are performed, the noise grows. To maintain accu-
racy and prevent errors, they must manage and reduce the noise during the com-
putation process, typically through techniques like bootstrapping. Different FHE
schemes are available in the literature, such as BGV/FV [44,17], CKKS [23], and
TFHE [25,26,27]. Each of them offers different features in terms of efficiency, par-
allelization, noise management, and the types of plaintext and operations they
support. In this paper, we focus on TFHE (Torus FHE) which achieves boot-
strapping with much lower latency compared to other FHE schemes, making it
highly-suitable for real-time applications involving complex computations.

One common challenge with all FHE schemes is that the ciphertexts are much
larger than the corresponding plaintexts. For example, a plaintext message of a
few kilobytes can require tens or even hundreds of megabytes of data, making
the processing of large data sets impractical. While compression techniques can
help reduce the expansion factor in TFHE ciphertexts, the encrypted data still
remains an order or two of magnitude larger than the original plaintext.

Transciphering. It is possible to mitigate this issue using transciphering [62].
The idea is to off-load the task of actually encrypting the data to a symmetric
cipher, and to simply encrypt homomorphically the key that is used. The user
then sends both the homomorphically encrypted key and the ciphertext to the
server, which can then homomorphically decrypt the received ciphertexts. This
is done by running a fully homomorphic evaluation of the decryption function
of the symmetric cipher, producing valid homomorphic ciphertexts representing
the data. The server can then proceed to the homomorphic operations, like in
the traditional FHE setting. This principle is illustrated in Figure 1.

Implementing FHE encryption through transciphering solves the bandwidth
issue: the data sent by the client to the server is encrypted using a symmetric
cipher, thus avoiding the significant ciphertext expansion implied by direct FHE
encryption. The only exception is the symmetric key, which does experience
expansion, but this overhead is amortized across the entire data set.

2

User

Computation Result

𝐾FHE
$← 𝒦FHE

𝐾sym
$← 𝒦sym

𝑐 = 𝐸𝐾sym(𝑝)

𝑘 = 𝐻𝐾FHE(𝐾sym)

𝑝′ = 𝐻−1
𝐾FHE

(𝑒) 𝑝′ = 𝐴(𝑝)

Server

Computation Result

𝑑 =
(︀
𝐸𝐻

𝑘

)︀−1
(𝑐) 𝑑 = 𝐻𝐾FHE(𝑝)

𝑒 = 𝐴𝐻(𝑑) 𝑒 = 𝐻𝐾FHE(𝐴(𝑝))

(𝑐, 𝑘)

𝑒

Fig. 1: The principle of transciphering, where 𝐸 is a symmetric cipher (with
secret key 𝐾sym sampled from the space 𝒦sym), 𝐻 is a fully homomorphic cipher
(with private key 𝐾FHE sampled from the space 𝒦FHE), 𝐸

𝐻 is a homomorphic
evaluation of 𝐸, 𝐴 corresponds to some arbitrary operations, and 𝐴𝐻 to their
homomorphic evaluation.

However, we need the symmetric cipher to interact well with the FHE scheme,
as its decryption circuit must be homomorphically evaluated on the server side.
This induces a significant computational overhead with standard ciphers like
AES, which, according to the latest record [9], achieves only 4 bits per second at
an error probability of 2−40. As a result, the relevant performance metrics differ
significantly from traditional ones like RAM consumption or throughput per
area. Previous works [19,58] have highlighted that a synchronous stream cipher
is far more suitable for this application than a block cipher in CBC mode, which
is why we adopt this approach.

Building TFHE-friendly Stream Ciphers. A unique feature of TFHE is that, in
addition to having the fastest bootstrapping among FHE schemes, the latter
enables the free evaluation of an arbitrary function on the underlying plain-
text. Since any function can be evaluated at the same computational cost, the
Programmable Bootstrapping (PBS) becomes a powerful tool for introducing
non-linearity into the scheme, allowing for free composition with arbitrary ta-
ble lookups. Consequently, designing a TFHE-friendly scheme requires carefully
balancing the number of cheap linear operations, which provide diffusion and
increase noise, with the application of the more expensive PBS, which permits
introducing non-linearity and reduce the noise.

Several ciphers from the literature have been designed specifically to ad-
dress such requirements. Elisabeth [48] generates the keystream by first ex-
tracting digits from the master key in a pseudo-random manner, and then
applying a complex filter function that relies on numerous non-linear PBSs.
More recently, the designers of FRAST [30] opted for a block cipher operating
in counter mode. Their design utilizes a generalized Feistel network, where the
round function applies key-dependent S-boxes. While FRAST significantly outper-
forms Elisabeth in terms of throughput, the key-dependent S-box setup results

3

𝑥𝑡

𝐸𝐾

𝑠𝑡

+1

(a) Counter mode.

𝑥𝑡

𝜋

𝑠𝑡

(b) Permutation-based.

LFSR

FSM𝑈 𝜑

𝑠𝑡

(c) LFSR and FSM.

Fig. 2: Different types of stream cipher structures.

in a very time-consuming re-keying. Finally, Kreyvium [19], a stream cipher in-
spired by Trivium [36] with 128-bit security, turned out to have competitive
performance when used for TFHE transciphering [37], despite being originally
designed for use with BGV/FV schemes.

All stream ciphers share a common structure: they consist of an internal state,
an update function applied to that state, and a filtering function that extracts
some bits of the keystream at each clock cycle. Either the update function,
filtering function, or the initialization of the internal state must be dependent
on the key (and a nonce or IV). This very general view covers for example the case
of a block cipher in counter mode, where the internal state is a block cipher input
𝑥𝑡, the update function is a simple addition, and the filter is a very complex key-
dependent operation (the block cipher encryption 𝐸𝑘), as illustrated in Figure 2a.
This model also covers sponge-based stream ciphers [67], where the filtering
function is trivial (just copying bits from the outer part of the sponge), but the
update function is highly sophisticated, involving a cryptographic permutation
𝜋, as shown in Figure 2b.

More classical constructions based on LFSRs, NLFSRs, and nonlinear Finite
State Machines (FSMs) are also covered and turn out to be more promising for
us. The design strategies that lead to secure and efficient block-cipher-based or
permutation-based constructions typically apply non-linear functions (S-boxes)
to the entire internal state. However, in the case of TFHE, these operations are
by far the most expensive. On the other hand, an LFSR initialized with secret
key material can be efficiently implemented in a TFHE-friendly manner. Indeed,
we store the initial state as low-noise key material and we generate directly the
𝑡-th output as a linear combination of the key material, instead of updating the
LFSR state at each clock. Thus, we obtain an almost noise-free digit. This allows
the design of a TFHE-friendly stream cipher with large LFSRs to increase the
state size, and a smaller FSM where all non-linear operations are concentrated,
see Figure 2c. Ciphers like Grain [52] or SNOW [43,42] follow this construction.

As designers, we want to ensure that the stream cipher’s output is as decor-
related from the initial key material as possible. This makes cryptanalysis signif-
icantly harder: the lower the correlation, the more difficult it becomes to extract
information about the master key from the knowledge of the keystream. A nat-
ural approach for reaching this goal was proposed in [69,3], but has rarely been
used since. It consists in designing the stream cipher so that there exists no cor-
relation between its internal state and as many consecutive outputs as possible.

4

For instance, the authors of Rocca [66] prove that an attacker must derive linear
equations through four AES rounds to (potentially) be able to recover informa-
tion about the master key. Biryukov used a different technique in LEX [13], but
obtained a similar result: two consecutive outputs are uncorrelated.

Our Contributions. We present Transistor, a stream cipher optimized for tran-
sciphering with TFHE. This design is the outcome of a careful study of the con-
straints and advantages specific to achieving efficient homomorphic evaluations
with TFHE. In particular, we argue that operating on elements of F𝑝, where 𝑝
is a small prime (4–5 bits), is a good choice for leveraging the full potential of
TFHE’s programmable bootstrapping: we chose 𝑝 = 17. This choice is indepen-
dent of the data format supported by the application running on the server, as
changes of representations are easily feasible through bootstrapping [11].

The design of Transistor uses two LFSRs, one generating a sequence of
subkeys (the “key-schedule LFSR”), and the other producing a sequence of masks
(the “whitening LFSR”). The subkeys are fed into the round function of a finite
state machine (FSM), which is updated using an AES-round-like transformation.
At the same time, parts of the internal state of this component are leaked at
each clock cycle and added to the masks to generate keystream blocks.

This structure offers multiple advantages. As discussed above, it minimizes
both the noise in the subkeys, and the number of PBSs needed to update its
state. At the same time, the use of a block-cipher round function enables us to
construct robust security arguments that borrow techniques from block-cipher
design. In fact, we establish information-theoretic arguments demonstrating that
an attacker cannot obtain any information about the content of the key-schedule
LFSR from the observation of three consecutive keystream blocks. The fact
that at least four consecutive output blocks are needed then provides an upper
bound on the bias of any linear relation between the keystream digits and the
sequence produced by the key-schedule LFSR, derived from the use of traditional
components. Operating on elements of F𝑝 (𝑝 > 2) allows us to use nice features
of TFHE. However, it required a careful analysis of linear biases and correlations
in F𝑝. Our results in this area may be of independent interest.

We present a careful analysis of the noise evolution throughout the homo-
morphic evaluation of Transistor, to fine-tune the TFHE parameters for opti-
mal performance. Our homomorphic implementation of Transistor significantly
outperforms the state of the art, achieving a throughput of over 60 bits/s on a
standard CPU. This represents a factor 3 speedup compared to FRAST [30], the
fastest previous method, while also achieving a considerably lower error proba-
bility and eliminating the need for an expensive initialization phase.

Outline. The rest of the article is structured as follows. Section 2 covers the
preliminaries for the TFHE scheme. Section 3 discusses the design constraints
for a stream cipher intended for use with TFHE, along with the design choices
we made. The specification of Transistor and the reasoning behind its design
is detailed in Section 4. Section 5 provides an extensive security analysis against

5

several classes of attacks. Finally, Section 6 details the homomorphic implemen-
tation of our scheme, providing performance metrics and benchmarks.

2 Preliminaries

2.1 Notation

Let T = R/Z be the real torus, that is to say the additive group of real numbers
modulo 1. In practice, torus elements are not represented with an infinite number
of digits, but are discretized. We can define the discretized torus T𝑞 = {𝑎𝑞 |
𝑎 ∈ Z𝑞}, and identify it with the ring Z𝑞. Thus, any element 𝑎

𝑞 of T𝑞 will be
represented in machine by 𝑎 without losing any properties of the group T𝑞. The
operations of sum + and external product · have to be understood modulo 𝑞.
We also denote by B the set B = {0, 1}, which is trivially a subset of any Z𝑞.
Moreover, for a natural integer 𝑁 and a given 𝑞, we will denote by T𝑁,𝑞[𝑋] the
polynomial ring T𝑞[𝑋]/(𝑋𝑁 + 1). The elements of this ring are polynomials of
maximum degree 𝑁 − 1 and with coefficients in T𝑞. Like for the scalar version,
this ring will be identified with the ring Z𝑁,𝑞[𝑋] = Z𝑞[𝑋]/(𝑋𝑁 + 1). In the
following, 𝑁 is a power of two. For 𝑥 and 𝑞 ∈ Z , [𝑥]𝑞 denotes the reduction of 𝑥

modulo 𝑞. We denote by 𝑥
$← 𝜒 a random sampling according to a distribution

𝜒. We denote by F𝑝 the finite field with 𝑝 elements, i.e., Z𝑝 when 𝑝 is prime, and
refer to its elements as digits.

2.2 Preliminaries on TFHE

TFHE [25,26,27] is a homomorphic encryption scheme, designed as a successor
to FHEW [38]. Its security is based on the Learning With Errors (LWE) prob-
lem. Optimized for operations on low-precision data (typically less than 6 bits),
TFHE offers a distinctive feature: programmable bootstrapping. This enables the
evaluation of any univariate function on a ciphertext while simultaneously reset-
ting its noise to a nominal level. In what follows, we introduce TFHE, discuss its
underlying complexity assumptions, describe the encoding and encryption pro-
cedures, and provide an overview of the homomorphic operations it supports.

Complexity Assumptions. Like many popular FHE schemes, TFHE relies on
the LWE problem [65]. More specifically, it relies on a slightly different version
of this problem: the space considered is a discretized torus, and the secret is
binary. We refer to Appendix C.1 for a rigorous definition of this problem.

Plaintext Space and Encryption. The plaintext space is the discretized torus
T𝑝, that we trivially identify to the ring Z𝑝, with 𝑝 ∈ N. Let us consider a

mapping 𝜌 : Z𝑝→Z𝑞, defined as 𝜌 : 𝑚 ↦→
⌊︁
𝑚𝑞
𝑝

⌉︁
. The image of this mapping only

reaches 𝑝 elements in Z𝑞, which take the form
{︁

𝑘𝑞
𝑝 | 𝑘 ∈ Z𝑝

}︁
. These elements

6

are evenly distributed across Z𝑞 and form what we refer to as sectors of Z𝑞,

represented as:
{︁(︁

(2𝑘−1)𝑞
2𝑝 , (2𝑘+1)𝑞

2𝑝

)︁
| 𝑘 ∈ Z𝑝

}︁
.

TFHE features two types of encryption that share similar structural patterns
but operate within different mathematical spaces.

LWE Encryption. Let 𝑚 ∈ Z𝑝 be a message and let 𝑠𝑘 = (𝑠1, . . . , 𝑠𝑛) represent
the secret key, sampled uniformly at random from B𝑛. First, the message 𝑚 is

encoded in the space Z𝑞 by �̃� = 𝜌(𝑚). A small random Gaussian noise 𝑒
$← 𝜒𝜎

is then added. Since 𝑒 is small, the noisy message �̃� + 𝑒 remains within the
same sector as �̃�. Next, we construct the LWE ciphertext as a vector 𝑐 =
(𝑎1, . . . , 𝑎𝑛, 𝑏), where the 𝑎𝑖’s are sampled uniformly at random from Z𝑞, and 𝑏
is defined by 𝑏 =

∑︀𝑛
𝑖=1 𝑎𝑖 · 𝑠𝑖 + �̃�+ 𝑒.

Decryption is performed in two steps: first, we compute 𝜑(𝑐) = 𝑏−
∑︀𝑛

𝑖=1 𝑎𝑖 ·𝑠𝑖,
referred to as the phase of the ciphertext. Then we round it to the nearest

plaintext value: �̃� =
⌊︁
𝑝
𝑞𝜑(𝑐)

⌉︁
. As long as |𝑒| < 𝑞

2𝑝 , this rounding produces the

right sector center.

GLWE Encryption. This encryption mode mirrors the structure of LWE encryp-
tion but operates within polynomial rings. The secret key 𝑆𝐾 is here represented
as a vector (𝑆1, . . . , 𝑆𝑘), sampled uniformly at random from B𝑁,𝑞[𝑋]𝑘. The mes-
sage is encoded in a polynomial in Z𝑁,𝑞[𝑋]. The noise is also a polynomial from
the same ring, with coefficients drawn from 𝜒𝜎. Similar to LWE encryption, the
ciphertext takes the form 𝐶 = (𝐴1, . . . , 𝐴𝑘, 𝐵) where 𝐵 =

∑︀𝑘
𝑖=1 𝐴𝑖 ·𝑆𝑖+�̃� +𝐸.

It is worth noting that LWE encryption can be viewed as a special case of
GLWE encryption, where 𝑁 = 1 and 𝑘 = 𝑛.

Homomorphic Operations. TFHE is trivially linearly homomorphic, so we
define the following operations that apply to both types of ciphertexts. In what
follows, we refer to the variance of the Gaussian random variable associated to
the noise as the noise variance. This quantity is a measure of the “noise level”
and should stay as low as possible.

Sum of ciphertexts. Let 𝑐1 and 𝑐2 be two ciphertexts encrypting the messages 𝑚1

and 𝑚2, respectively, with noise variances 𝜎2
1 and 𝜎2

2 . Performing a coordinate-
wise sum of the two vectors results in a valid ciphertext 𝑐′, which encrypts
𝑚1+𝑚2 with noise variance 𝜎2

1+𝜎2
2 . We denote this operation by SumTFHE(𝑐1, 𝑐2).

Product with a cleartext. Let 𝑐 be a ciphertext encrypting 𝑚 with noise variance
𝜎2. Multiplying each coordinate of 𝑐 by a constant 𝜆 ∈ Z produces a valid
ciphertext 𝑐′, which encrypts 𝑚′ = 𝜆 ·𝑚 with noise variance 𝜆2 · 𝜎2. We denote
this operation as ClearMultTFHE(𝑐′, 𝜆).

These linear operations are extremely fast, particularly in comparison to
bootstrapping (which we will introduce below). However, they increase the noise
variance (noise level), which means that only a limited number of such operations
can be performed before the correctness of the results is compromised.

7

KS MS BR SE

𝐿𝑊𝐸(𝑛long)

Z𝑞

𝐿𝑊𝐸(𝑛short)

Z𝑞

𝐿𝑊𝐸(𝑛short)

Z2𝑁

𝐺𝐿𝑊𝐸(𝑘,𝑁)

Z𝑁,𝑞

𝐿𝑊𝐸(𝑛long)

Z𝑞

Fig. 3: Types and shapes of ciphertexts inside a PBS.

Key Switching (KS). TFHE also features a keyswitching algorithm, that allows
the server to homomorphically transform a ciphertext 𝑐1 encrypted under a
key 𝑠1 into a ciphertext 𝑐2 encrypted under a key 𝑠2. To do so, it requires a
keyswitching key 𝐾𝑆𝐾, which is simply an encryption of 𝑠1 under the key 𝑠2.
For more details, the reader is referred to [27]. This is particularly useful to
temporarily reduce the size of a ciphertext by keyswitching it to a shorter key
(but raising its noise), to enable some speed-ups in the bootstrapping algorithm.

Programmable Bootstrapping (PBS). Bootstrapping, introduced by Gentry in [45],
is a generic technique that allows the noise of a ciphertext to be homomorphi-
cally reset to a nominal level. While this operation can theoretically be applied
to any homomorphic encryption scheme, it is often deemed too slow for prac-
tical use. However, in TFHE, bootstrapping is relatively efficient compared to
other fully homomorphic encryption (FHE) schemes, especially for low-precision
messages, and it is implemented in a programmable manner. This means that
while the noise is being reset, any arbitrary function can be evaluated on the
ciphertext. We denote the evaluation of a PBS (Programmable Bootstrapping)
on a ciphertext 𝑐 which evaluates the function 𝑓 as PBS TFHE(𝑐, 𝑓) and provide
hereafter a high-level overview of how this process operates in practice.

Let (𝑎1, . . . , 𝑎𝑛, 𝑏) be the LWE encryption of a message with noise variance 𝜎2

and (𝑠1, . . . , 𝑠𝑛) ∈ B𝑛 represent the secret key. To reset the noise to a nominal
level following Gentry’s framework, the server must homomorphically evaluate
𝑏−

∑︀𝑛
𝑖=1 𝑎𝑖 · 𝑠𝑖 and subsequently round the result to the nearest integer in Z𝑝.

To facilitate this, the server is equipped with a bootstrapping key, which
consists of encryptions Enc(𝑠𝑖) of each bit 𝑠𝑖 of the secret key. Using this, the
computation of 𝜇 = 𝑏−

∑︀𝑛
𝑖=1 𝑎𝑖 · Enc(𝑠𝑖) is straightforward, leveraging the lin-

ear homomorphisms inherent to TFHE. However, since the 𝑎𝑖’s are sampled
uniformly at random from Z𝑞, they may have very large norms, leading to sub-
stantial noise growth. TFHE circumvents this issue with a technique known as
gadget decomposition, which helps mitigate noise growth during multiplications
with constants (see [27] for further details on gadget decomposition).

Once the linear part is computed, the server must homomorphically perform
the rounding operation, a more challenging task, as follows:

1. Keyswitching(KS): The ciphertexts are keyswitched to a smaller key to ac-
celerate the next steps.

2. ModSwitching(MS): The server switches the modulo of 𝜇 from 𝑞 to 2𝑁 , pro-
ducing �̃�. This transition uses that the order of 𝑋 in Z𝑁,𝑞[𝑋] is 2𝑁 .

3. It constructs an accumulator polynomial 𝑎𝑐𝑐(𝑋), whose coefficients encode
the outputs of the function evaluated alongside the PBS.

8

Fig. 4: Timing of a PBS with respect to the precision of the plaintext.

4. BlindRotate(BR): The server computes 𝑋−�̃� ·𝑎𝑐𝑐(𝑋) which rotates the poly-
nomial and specifically moves its coefficient 𝑣�̃� = 𝑚 to the first position.
If the LUT is properly encoded in the polynomial’s coefficients, the first
coefficient now contains an encryption of the LUT output.

5. SampleExtract(SE): The server then extracts this first coefficient into a new
LWE ciphertext, which has significantly less noise than the original one.
However, if 𝑚 > 𝑝

2 , the extracted coefficient will acquire an additional nega-
tive sign. This phenomenon is known as the negacyclicity problem. In Section
3.2, we discuss how we address this issue by using an odd value for 𝑝.

Figure 3 sums up the bootstrapping procedure, and clarifies the types of ci-
phertext used at each step. The PBS is more efficient than the bootstrapping
processes of other FHE schemes, but it is still by far the most computationally
expensive operation in TFHE, and its cost increases significantly with the mod-
ulus 𝑝 of the plaintext. Figure 4 illustrates its execution time on a laptop as a
function of the input message’s precision (number of bits).

3 Constraints for a TFHE-friendly Stream Cipher

3.1 State-of-the-Art

While transciphering can theoretically be instantiated with any symmetric ci-
pher, traditional ciphers like AES were soon found to be suboptimal [46]. This
prompted the exploration of specialized ciphers tailored for transciphering.

Early specialized approaches included the LowMC family of block ciphers [2]
and the Kreyvium stream cipher [19]. These ciphers offered reduced multiplica-
tive depths, making them more suitable for homomorphic encryption. Though
not initially designed for TFHE, Trivium and Kreyvium provide good perfor-
mance within the TFHE transciphering framework [7]. In 2016, the FLIP stream
cipher [58] introduced a novel concept based on a filter permutator that randomly
permutes key bits and applies a non-linear function to generate a keystream bit.
Its key innovation was the direct application of non-linear filtering on key bits,
which helped control the noise generated during homomorphic operations. Two
variants of FLIP, named FiLIP [57] and Elisabeth [32], aimed at a higher secu-
rity level and improved performance. Most notably, Elisabeth operates on arbi-

9

trary groups like Z24 to minimize costly field conversions in homomorphic evalua-
tions. It also uses negacyclic look-up tables to avoid the need for a padding bit in
TFHE, optimizing performance. However, in 2023, an algebraic attack success-
fully compromised Elisabeth [48]. In response, patched versions—Elisabeth-b,
Gabriel, and Margrethe—were proposed [54], but their TFHE evaluation cost
was at least double that of the original Elisabeth in single-thread computations.

The most recent advancement in transciphering is FRAST [30], which intro-
duces a TFHE-friendly round function based on a random S-box to reduce the
number of rounds. Using the double-blind rotation technique and WoP-PBS,
multiple S-box calls are processed at the cost of one. FRAST significantly boosts
throughput, though with slightly increased communication overhead and a setup
phase to convert the GLWE ciphertexts into so-called GGSW ciphertexts [47].

3.2 Constraints from TFHE

TFHE Operations. TFHE enables the evaluation of both linear functions and
look-up tables on encrypted data, each offering complementary properties.

Linear operations in TFHE are highly efficient but contribute to an increase
in ciphertext noise. Specifically, when performing a linear combination of cipher-
texts 𝑐1, . . . , 𝑐𝑛 with constant coefficients 𝛼1, . . . , 𝛼𝑛, the noise variance increases
in proportion to the squared ℓ2-norm of the coefficient vector, i.e.,

∑︀𝑛
𝑖=1 𝛼

2
𝑖 .

Therefore, to optimize efficiency and control the noise growth, a TFHE-friendly
cipher can make greedy use of linear operations while minimizing the norm of
the coefficient vectors to limit the resulting noise.

Conversely to linear operations, the programmable Bootstrapping (PBS) is a
slow operation, but it allows the computation of any (small-precision) function
chosen by the designer while reducing the noise in the ciphertext to a nominal
level at the same time. Therefore, while we should minimize the number of
these operations for the sake of efficiency, they are essential for introducing non-
linearity into the cipher and limiting the noise growth throughout the execution.
In practice, within our context, the use of PBS introduces further constraints
which we address below.

The arrangement of operations. The PBS produces ciphertexts with a nominal
noise level, which is typically lower than that of the input ciphertexts but still
significantly higher than the noise in a fresh ciphertext. This implies that if the
input bits are fresh encrypted data, they can undergo complex linear operations
(specifically with potentially high ℓ2-norms). In contrast, the linear functions
applied to the outputs of each PBS should involve somewhat limited linear op-
erations in their resulting ℓ2-norms in order to limit the noise growth.

The size of the plaintext space. The choice of the plaintext space Z𝑝 has a signifi-
cant impact on the PBS. Indeed, execution time of the PBS grows exponentially
with 𝑝, which is therefore usually limited to a few bits. Figure 4 illustrates the
quick degradation of the PBS performance with respect to the bit-size of 𝑝.

10

Although some recent works ([50,28,31,55]) introduce more sophisticated tech-
niques for efficiently evaluating larger LUTs, their performance in terms of bits
per second remains less favorable compared to using lower precision.

The parity of the plaintext space. A common choice for TFHE is using a small
power of 2 for the modulus 𝑝 of the plaintext space, aligning with the format
of (small-precision) binary numbers. However, selecting such an even modulus
introduces an additional constraint: any function 𝑓 : Z𝑝 → Z𝑝 used within a
PBS must be negacyclic, meaning it must satisfy 𝑓(𝑥 + 𝑝/2) = −𝑓(𝑥) for all
𝑥 ∈ Z𝑝. To circumvent this issue, a possible approach consists in keeping a bit
of padding to 0, effectively embedding 𝒫 = Z𝑝 into Z2𝑝. However, this padding
leads to an important overhead: linear operations are no longer virtually free, as
frequent bootstrappings become necessary to maintain the padding bit cleared.

An alternative is to use the Without Padding PBS (WoP-PBS) proposed
in [29], but the latter is slower than a standard PBS, which is not ideal from a
performance standpoint. Another option in the context of TFHE-friendly tran-
sciphering is to design a cipher with non-linear functions (S-boxes) that are inher-
ently negacyclic. This strategy, as exemplified in Elisabeth [32], imposes strict
constraints on the design of the S-boxes, which may introduce weaknesses [48].

Another solution is to adopt an odd modulus 𝑝, which completely eliminates
the negacyclicity problem. This approach, recently suggested in [15], requires
only a minor modification of the bootstrapping algorithm, specifically in the
construction of the accumulator polynomial, but allows for arbitrary PBS func-
tions 𝑓 : Z𝑝 → Z𝑝 without the need for a padding bit.

Using an odd modulus may seem unsuitable for manipulating bits or groups of
bits. Indeed, it may lead to data expansion, as an element of Z𝑝 cannot perfectly
encode a group of bits. To mitigate this issue, one can select an odd 𝑝 that is
slightly larger but close to 2ℓ for some ℓ, allowing for the efficient embedding of
ℓ-bit chunks into elements of Z𝑝.

Our design choices. We deduce the following guidelines for our design:

1. The plaintext space of the scheme will be reduced to a few bits to take
advantage of the relative speed of the PBS at small precision. Specifically,
we chose 𝑝 = 17 which meets our constraints as being odd (no negacyclicity)
and the closest to a low power of 2 (thus well suited to encode nibbles of
data). Besides, letting 𝑝 be a prime number eases the design and security
analysis thanks to the field structure of Z𝑝 = F𝑝.
Moreover, operating in F17 does not constrain the server-side application
to this field. Once the server retrieves the homomorphic ciphertexts, they
can be efficiently converted to any other space with a bootstrapping. We
elaborate more on this point in Section 6.2.

2. The non-linearity comes from a layer of S-boxes, each computing a function
F𝑝 → F𝑝 giving rise to one PBS evaluation. Given our fixed choice of 𝑝,
the number of PBS per element of the output stream represents the main
performance metric which we search to minimize.

11

3. The initial key material (stored as fresh TFHE ciphertexts) can go through
complex linear combinations before hitting the S-box layer.

4. Each S-box output should only go through lightweight linear operations (i.e.,
with low ℓ2-norms) before undergoing another PBS in order to make the noise
in input of the PBS sufficiently low to ensure correctness.

5. Each S-box output should only go through lightweight linear operations (i.e.,
with low ℓ2-norms) before being released. This way, the TFHE ciphertexts
obtained after the stream-cipher decryption keep a noise level as close to
nominal as possible.

4 Description of Transistor

Bringing everything together, we designed the stream cipher Transistor. Its
overall structure is presented in Section 4.1, its details are explained in Sec-
tion 4.2, and the influence of noise is discussed in Section 4.3.

4.1 Overall Structure

Usage. Transistor is a stream cipher that generates a keystream consisting of
elements from F𝑝 = F17, referred to as digits. It is intended for transciphering,
i.e., for the type of protocol we summarized in the introduction (see Figure 1).
More precisely, a 128-bit master key and an IV are used to initialize the internal
state of Transistor using a PRF (namely, SHAKE [67]), as suggested in [10].
This initialization is only performed on the client side, and in particular is not
evaluated homomorphically, meaning that its cost is negligible. On the other
hand, it ensures for example that related IVs cannot be exploited. The entire
resulting internal state is then encrypted using TFHE and sent alongside the
ciphertext. This ciphertext is obtained by casting the plaintext message to a
string of digits of F𝑝, which is added digit by digit to the keystream produced
by Transistor using the group law of F𝑝.

Internal State. The overall structure of Transistor is outlined in Figure 5.
The idea is to generate two pseudo-random sequences with a very long period

using two distinct LFSRs. One of them generates whitening subkeys, while the
other acts as a sort of key schedule. The output of the latter is fed into a Finite
State Machine (FSM) with its own state, and which operates on it using non-
linear operations. We thus have the following components:

– a register of 16 elements of F𝑝 (the FSM state),
– an LFSR over F𝑝 (the key schedule or key-LFSR 𝒦) of length |𝒦| = 64,
– an LFSR over F𝑝 (the whitening LFSR 𝒲), of length |𝒲| = 32,
– a non-linear round function from F16

𝑝 to itself (the round function), and
– a filter 𝜑 : F16

𝑝 → F4
𝑝 that extracts 4 digits from the FSM.

The FSM state is initialized to all zeros. On the other hand, each LFSR
is initialized using digits derived from the 128-bit master key and IV using
SHAKE [67].

12

𝒦 (Key schedule)

𝒲 (whitening LFSR)

⊞ SD SR MC

FSM state

𝜑

⊞ 𝑍𝑡

16

4

(a) General structure (rectangles correspond to registers).

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

(b) SD. (c) SR.

𝑀 𝑀 𝑀 𝑀

(d) MC. (e) 𝜑.

Fig. 5: A high level view of Transistor.

Security Claim. Transistor is a stream cipher providing 128 bits of security,
meaning any attack should require at least 2128 elementary operations, assuming
no more than 231 digits (about 1 GB) are generated with each IV. We allow up
to 2128 digits in total per key, corresponding to the multi-initial-state setting.

4.2 Detailed Description

Obviously taking inspiration from the AES, the state of the FSM is organized
into a two-dimensional array of size 4 × 4, where each entry corresponds to a
digit in F𝑝. With this representation, the successive operations applied to the
state can be defined as follows.

SubDigits (SD) is an S-box layer: the permutation 𝜋 is applied on each digit.

MixColumns (MC) applies to each column an MDS matrix 𝑀 over F𝑝.

ShiftRows (SR) rotates the 𝑖-th row by 𝑖 positions to the left.

Filter (𝜑) takes 4 digits from the state and returns them.

In what follows, we provide a more detailed description of each step, using the
notation summarized in Figure 6a. The keystream output at clock 𝑡 ≥ 0 consists
of a tuple 𝑍𝑡 ∈ F4

𝑝, called a block. The internal state of the FSM, just before
the filter is applied, is denoted by 𝑋𝑡 (so that 𝑆𝑡 = 𝜑(𝑋𝑡)). As a consequence,
𝑋𝑡+1 = SD (𝐾𝑡+1 + (MC ∘ SR(𝑋𝑡))), where 𝐾𝑡 is obtained by concatenating 16
successive digits generated by the key-schedule LFSR 𝒦. The FSM is initialized
with the all-zero value and its initial state is denoted by 𝑋−1 := 0.

S-box Layer (SD). We let 𝜋 be defined by its lookup table:

𝜋 = [1, 12, 6, 11, 14, 3, 15, 5, 10, 9, 13, 16, 7, 8, 0, 2, 4] (1)

13

𝑋𝑡 𝑋𝑡+1

𝐾𝑡+1𝑆𝑡𝜑

SR MC ⊞ SD

(a) Notation throughout clocks.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Numbering in the FSM.

Fig. 6: Our notations. Note that the numbering of the digits differs from the
one traditionally used for the AES.

so that 𝜋(0) = 1, 𝜋(1) = 12, and so on. It has the following polynomial repre-
sentation, and is thus of maximum degree:

𝜋(𝑥) = 1 + 4𝑥1 + 13𝑥2 + 7𝑥3 + 16𝑥4 + 15𝑥5 + 5𝑥7 + 5𝑥8

+ 11𝑥9 + 13𝑥10 + 12𝑥11 + 13𝑥12 + 15𝑥14 + 𝑥15 .

It was chosen by enumerating all APN permutations of F17, i.e., all permutations
𝐴 such that the equation 𝐴(𝑥+ 𝑎) = 𝐴(𝑥) + 𝑏 has at most 2 solutions 𝑥 for all
𝑎 ̸= 0 and all 𝑏. Then, we selected 𝜋 among those that offer a good balance
between minimizing the number of pairs (𝑎, 𝑏) for which the previous equation
has exactly two solutions, and minimizing the maximum modulus of the Walsh
spectrum (see Definition 2).

Linear Layer (MC). We opted for a 4× 4 Maximum Distance Separable (MDS)
to ensure optimal diffusion. The matrix we chose is

𝑀 =

[︂
2 1 1 1
1 −1 1 −2
1 1 −2 −1
1 −2 −1 1

]︂
. (2)

We verified that there is no MDS matrix in F17 with coefficients in {−1, 1}
by exhaustively testing all such matrices. As we were interested in MDS matrices
with minimal ℓ2-norm and we were able to find during the initial experiments
matrices with a squared ℓ2-norm of 7, it was evident from the definition of the
ℓ2-norm that matrices with minimal ℓ2-norm could not have coefficients 𝑥 with
|𝑥| > 2. Thus, by testing all matrices with coefficients in {−2,−1, 1, 2}, we
found a total of 30 720 MDS matrices with an ℓ2-norm of 7. We selected 𝑀 for
its symmetries, particularly because it is its own transpose.

Filter. The filter function 𝜑 maps F16
𝑝 (i.e., the full FSM state) to a tuple

(𝑎, 𝑏, 𝑐, 𝑑) in F4
𝑝. As summarized in Figure 5e, we have that 𝑎, 𝑏, 𝑐 and 𝑑 cor-

respond to the digits of the FSM state with indices 4, 6, 12, and 14 respectively
(using the numbering from Figure 6b).

LFSRs. The whitening LFSR𝒲 and the key schedule LFSR 𝒦 are simply LFSRs
over F𝑝 of maximum period, and have length 32 and 64 respectively. We obtain a
maximum-period LFSR over F𝑤

𝑝 using the coefficients of a primitive polynomial

14

as the taps. More precisely, we used the SageMath implementation of the finite
field F𝑝𝑤 , which resulted in a pseudo-Conway polynomial. The output of the
LFSR is taken from its last cell.

Detailed Algorithm. We provide a detailed algorithm in Appendix A. We specify,
among other things, the processing of the master key and the LFSR taps.

4.3 Controlling the Noise Evolution

We first detail the implementation of each building block of the scheme using
TFHE, as this is essential to justify our design choices and to understand the evo-
lution of the noise throughout the cipher. We then use this discussion to explain
how the noise influences the overall security and efficiency of Transistor.

LFSR. A naive approach for implementing an LFSR homomorphically would be
to maintain an encrypted state, and update it by computing a linear combination
with the feedback coefficients. However, this method would cause the noise in the
state to accumulate over time, necessitating periodic use of PBS operations to
refresh and control the noise growth. For this reason we introduce the principle
of the silent LFSR. Every output of an LFSR is a linear combination of the
digits in its initial state. By computing on the fly the coefficients of these linear
combinations in clear, we can evaluate the output of the LFSR at every clock
cycle without updating an encrypted version of the internal state. This way,
the noise variance in the output of the silent LFSR remains stable over time.
This principle is comparable to the approach of FLIP [61] and follow-up works,
whereby a key state is queried without being updated.

To bound the noise variance in the output of the silent LFSR, we consider the
worst-case scenario in which all the coefficients in the linear combinations are
of maximal absolute value, i.e., 𝑝−1

2 .1 The resulting noise variance is thus equal
to the original noise variance multiplied by the worst-case squared ℓ2-norm.
Specifically, in the output of the key schedule LFSR 𝒦 and of the whitening
LFSR 𝒲, the noise variances 𝜎2

𝒦 and 𝜎2
𝒲 satisfy

𝜎2
𝒦 ≤ |𝒦| ·

(︂
𝑝− 1

2

)︂2

· 𝜎2
fresh and 𝜎2

𝒲 ≤ |𝒲| ·
(︂
𝑝− 1

2

)︂2

· 𝜎2
fresh, (3)

where 𝜎2
fresh is the noise variance of the encrypted key material in the LFSRs.

SubDigits. Each digit of the state of the FSM goes through a PBS that evaluates
the permutation 𝜋. All PBSs can be evaluated in parallel for higher speed. We
denote by 𝜎2

PBS the noise variance at the output of SubDigits for encrypted digits.

ShiftRows. Since each digit in the state is encrypted in a separate ciphertext
digit, this step involves simply rearranging the ciphertext digits within the state.
Consequently, it incurs no additional noise growth and no performance impact.

1 Constant coefficients of F𝑝 are encoded as integers of the interval [− 𝑝−1
2

, 𝑝−1
2

] to
minimize their absolute value and hence their impact on the noise.

15

𝒦 (Key Schedule)

𝒲 (whitening LFSR)

⊞

𝜎2
fresh

𝜎2
fresh

𝜎2
𝒦

𝜎2
𝒲

𝜎2
PBS 𝜎2

PBS

𝜎2
MC

𝜎2
𝒦 + 𝜎2

MC

𝜎2
out = 𝜎2

𝒲 + 𝜎2
PBS

SD SR MC

𝜑

⊞ 𝑍𝑖

Fig. 7: Evolution of the noise variance in a homomorphic evaluation of
Transistor. Operations involving PBSs are in blue and dashed.

MixColumns. This operation involves a straightforward linear combination of the
digits of the state. The matrix 𝑀 has been specifically constructed to minimize
the ℓ2-norm, considering coefficients in F17. From the homomorphic perspective,
this choice is crucial, as the variance of the noise increases proportionally with
the square of this ℓ2-norm, that we denote 𝐿MC. Namely, the noise variance 𝜎2

MC

after MixColumns satisfies 𝜎2
MC = 𝐿2

MC · 𝜎2
PBS.

Sums. The output of MixColumns is then added to the next output of the LFSR
to be injected again into SubDigits. The noise variance after the addition step
corresponds to the sum of both noise variances. Similarly, the noise variance at
the output of the scheme, referred to as 𝜎2

out, is equal to the sum 𝜎2
𝒲 + 𝜎2

PBS.

Figure 7 illustrates the evolution of the noise variance throughout the oper-
ations of Transistor. Building on the previous equations, the main constraints
influencing the design of Transistor are related to the noise variance at both
the input of the PBS and the output of the scheme. Specifically, the noise vari-
ance 𝜎2

𝒦+ 𝜎2
MC at the input of the PBS (i.e., at input of SubDigits) must remain

sufficiently low, otherwise it could lead to a high probability of PBS failure.
Additionally, the noise variance 𝜎2

out = 𝜎2
𝒲 + 𝜎2

PBS at the output stream must
remain low enough for subsequent applications, ideally as close as possible to
the nominal noise variance at the PBS output 𝜎2

PBS. In practical settings, we
have 𝜎2

PBS ≫ 𝜎2
fresh, the noise variances from both LFSRs are negligible com-

pared to 𝜎2
PBS. For example in our implementation, the noise magnitude of 𝜎fresh

is around 214, while the noise magnitude of 𝜎PBS is around 252. Consequently,
𝜎2
out ≈ 𝜎2

PBS which validates the second constraint. Similarly, the noise variance
at the input of the PBS is close to that at the output of MixColumns. The latter
additionally remains low due to the minimized ℓ2-norm of the coefficients of the
MDS matrix 𝑀 , thereby validating the first constraint.

To wrap up, the design of Transistor allows to control the evolution of
the noise in the FSM while getting a very low number of PBS per element. To
complete our noise analysis, we need to set the parameters of the TFHE scheme
to ensure the correctness of the PBS. Concretely, the noise 𝜎2

𝒦+𝜎2
MC at the input

of SubDigits should be low enough to fail with a negligible probability. Of course,
these parameters must ensure that the PBS operates as fast as possible while

16

maintaining the security of the scheme. In Section 6.4, we detail our method for
selecting the parameters.

5 Security Analysis

In this section we analyze the resistance of Transistor against classical attacks
and derive lower bounds on the complexity required for these attacks to succeed.
The internal parameters, especially the LFSR dimensions, were chosen based on
the security analysis results presented here. Many attacks discussed in this sec-
tion assume that the adversary has access to the sequence (𝑆𝑡)𝑡≥0 prior to its ad-
dition with the whitening LFSR. The corresponding attacks against Transistor
have therefore a higher complexity since they need to be adapted in order to re-
move the influence of the whitening LFSR, either by guessing part of its internal
state (which increases time complexity), or by cancelling its outputs thanks to
a parity-check equation (which increases data complexity).

We first describe Time-Memory-Data trade-offs and Guess-and-Determine in
Section 5.1. Then, we develop our arguments against correlation-based key re-
covery attacks and the existence of distinguishers in two steps. First, we establish
an important property of Transistor: three consecutive outputs are statistically
independent from the content of the LFSRs (Section 5.2). We then show how
the capacity of a single linear approximation (resp. several linear approximations
with identical output masks) can be bounded using a trail-based approach com-
bined with a study of the S-box, and thus argue that (fast) correlation attacks
are not a threat for a properly used instance of Transistor (Section 5.4). In
Section 5.5, we argue that a multi-key approach is similarly inefficient.

Several attack directions are discussed in the appendix, namely algebraic
attacks (Appendix E.1), and the relationship between the security of Transistor
and LEX [13] (Appendix E.2).

5.1 Dimensioning the Internal State based on Generic Attacks

Time-Memory-Data Trade-Offs. Let 𝑃,𝑀, 𝑇,𝐷 denote the respective pre-
computation, memory, time and data complexities needed for recovering the in-
ternal state of a stream cipher. As independently introduced by Babbage [4] and
Golic [49], generic Time-Memory-Data Trade-Offs aim at leveraging a more in-
teresting balance between the four metrics than the extreme cases obtained with
an exhaustive search (𝑇 = 𝑁 , 𝐷 = 1) or a full code-book attack (𝑃 = 𝑀 = 𝑁 ,
𝑇 = 1), where 𝑁 is the number of possible internal states.

To do so, a table is first built and stored offline. This table contains pairs
(𝑋,𝐹 (𝑋)) (indexed by the second coordinate) where 𝐹 is the function which
maps an initial state 𝑋 to the first 𝑛 elements of the output sequence where 𝑛 is
chosen such that Im(𝐹) has size 𝑁 . Then, during the online phase, the attacker
hopes to find a collision between the images stored in the table and the ones
observed online. If the attacker observes 𝐷 sequences of length 𝑛, the standard

17

birthday-paradox argument states that 𝑀𝐷 ≈ 𝑁 is the condition for such a
collision to occur. Taking 𝑀 = 𝐷 = 𝑃 = 𝑇 =

√
𝑁 gives the classical trade-off.

In the case of Transistor without the whitening LFSR 𝒲, such an attack
can be mounted in two ways. First, we can choose 𝐹 as the function which maps
the LFSR state 𝒦 and the state of the FSM to the first outputs of 𝜑. In this
case, 𝑛 = |𝒦|+ 16, providing the first bound:

𝑝|𝒦|+16 ≥ 2𝜆𝐷 ,

where 𝜆 is the security level and 𝑝 = 17 for Transistor. In that case, the
number of observed sequences 𝐷 can actually be replaced by the number of
observed successive output digits. Indeed, by observing 𝑑≫ 𝑛 output digits, one
can build 𝑑− 𝑛+ 1 ≈ 𝑑 sequences of 𝑛 digits.

Yet, at any clock 𝑡 > 0, the FSM state only depends on the initial state 𝒦.
We can therefore consider 𝐹 as the function which maps the initial LFSR state
𝒦 (and the all-zero FSM state) to the first 𝑘/4 output blocks 𝑆0, 𝑆1 . . . 𝑆𝑘/4−1,
where 𝑘 denotes the size of 𝒦 in digits. In this case, 𝑛 = |𝒦| and therefore:

𝑝|𝒦| ≥ 2𝜆𝐷 .

However, this attack must be launched in the multi-key setting because each
observed output sequence must be obtained from an all-zero initial FSM state.
Then, 𝐷 also corresponds to the number of distinct keyed primitives attacked.

Both attacks can be applied to the full Transistor, that is, with the whiten-

ing LFSR 𝒲. To do so, we denote by 𝑃𝒲 = 𝑋 |𝒲| −
∑︀|𝒲|

𝑖=1 𝑐𝑖𝑋
|𝒲|−𝑖 the charac-

teristic polynomial of 𝒲, and by (𝑤𝑡)𝑡∈N, (𝑠𝑡)𝑡∈N, (𝑧𝑡)𝑡∈N the sequences of digits
generated by𝒲, 𝜑 and Transistor respectively, so that 𝑧𝑡 = 𝑤𝑡+𝑠𝑡. Therefore,
by linearity, we immediately deduce that,

∀𝑡 ≥ 0, 𝑧|𝒲|+𝑡 −
|𝒲|∑︁
𝑖=1

𝑐𝑖𝑧|𝒲|−𝑖+𝑡 = 𝑠|𝒲|+𝑡 −
|𝒲|∑︁
𝑖=1

𝑐𝑖𝑠|𝒲|−𝑖+𝑡.

The same attack as before can therefore be mounted by observing the sequence

(𝑠|𝒲|+𝑡−
∑︀|𝒲|

𝑖=1 𝑐𝑖𝑠|𝒲|−𝑖+𝑡)𝑡∈N, instead of (𝑠𝑡)𝑡∈N. Therefore, with the parameters
used in Transistor, the length of the keystream generated from the same key
is limited to 231 digits. As a result, TMDTO attacks have a time complexity
of 2296 in the single-IV setting, which drops to 2130 when keystreams generated
from 2130 IVs are available to the attacker.

Guess and Determine. We explain a basic Guess-and-Determine attack,
where the attacker links the FSM state 𝑋𝑡 (initialized as 𝑋−1 = 0) to the
filter output 𝑆𝑡 by guessing digits of the key-schedule sequence 𝐾𝑡.

Without the whitening LFSR, the attacker observes at each clock 𝑡 ≥ 0

𝑆𝑡 = 𝜑(𝑋𝑡) = SD
(︀
𝐾𝑡 + (MC ∘ SR(𝑋𝑡−1))

)︀
[4, 6, 12, 14].

18

If 𝑋𝑡−1 is known, he deduces

𝐾𝑡[4, 6, 12, 14] = SD−1(𝑆𝑡)− (MC ∘ SR(𝑋𝑡−1)) [4, 6, 12, 14].

After guessing the 12 missing digits 𝐾𝑡[0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15], he com-
putes the full 𝑋𝑡 = SD (𝐾𝑡 + (MC ∘ SR(𝑋𝑡−1))).

Starting from clock 𝑡 = |𝒦|/16, the key-schedule digits are linearly dependent
on the previous ones, and the attacker can verify that the output 𝑆𝑡 is correct
without making new guesses. Therefore, in total he has to guess 12

16 |𝒦| digits,
leading to a complexity 𝑝

3
4 |𝒦| ≈ 2196. When taking into account the whitening

LFSR, the attacker first has to guess it, leading to an attack with complexity
𝑝

3
4 |𝒦|+|𝒲| ≈ 2294.

5.2 Three consecutive outputs are statistically independent of the
secret key

The basic strategy in (fast) correlation attacks against stream ciphers [69,59]
consists in recovering some information about (a part of) the initial state of the
cipher from the knowledge of the keystream. In the following, we investigate this
type of attacks without the whitening LFSR and aim at recovering the internal
state of the key-LFSR 𝒦. To this end, we consider the so-called augmented
function with 𝑛 outputs, which generates 𝑛 consecutive output blocks of (𝑆𝑡)𝑡∈N
from the internal state of the FSM and from (𝑛− 1) consecutive 16-digit blocks
of the key-sequence:

𝐹 (𝑛) : F16
𝑝 × F16(𝑛−1)

𝑝 → F4𝑛
𝑝

(𝑋,𝐾1, . . . ,𝐾𝑛−1) ↦→ (𝑆0, 𝑆1, . . . , 𝑆𝑛−1) .
(4)

We here focus on the case where 𝑛 ≤ 5, otherwise 𝐹 (𝑛) depends on 64 ele-
ments 𝐾1, . . . ,𝐾64 only, since all 𝐾𝑡 for 𝑡 > 64, are derived from these elements.
In this case (𝑛 ≤ 5), it is obvious that 𝐹 (𝑛) is balanced, i.e., all preimages by 𝐹 (𝑛)

have size 𝑝4𝑛. In this context, an important quantity is the smallest length of
output sequence (𝑆𝑡)𝑡∈N that can provide information on the sequence produced
by the key-LFSR [3].

In the following, we show that this minimal length is at least 4. In other
words, we prove that the output of 𝐹 (3) is statistically independent from (i.e.,
not correlated to) the key-sequence. This property is equivalent to the following
theorem.

Theorem 1. For any 𝐾1,𝐾2 ∈ F16
𝑝 , the function 𝑋0 ↦→ 𝐹 (3)(𝑋0,𝐾1,𝐾2) is

balanced.

Proof. We consider an arbitrary image (𝑆0, 𝑆1, 𝑆2) ∈ F4×3
𝑝 , and we show that

there are exactly 𝑝4 solutions 𝑋0 to the equation

𝐹 (3)(𝑋0,𝐾1,𝐾2) = (𝑆0, 𝑆1, 𝑆2). (5)

19

Instead of directly solving for the initial state 𝑋0, we write the output in terms
of the state 𝑋1 after one round. Using the numbering of the digits as in Fig 6b,
we obtain:

𝜑(𝑋0) = 𝑆0 ⇐⇒ 𝜑
(︁
SR−1 ∘MC−1

(︁(︀
SD−1(𝑋1)−𝐾1)

)︁)︁
= 𝑆0

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀−1 ×

⎡⎢⎢⎣
𝜋−1(𝑋1[1])−𝐾1[1]
𝜋−1(𝑋1[5])−𝐾1[5]
𝜋−1(𝑋1[9])−𝐾1[9]
𝜋−1(𝑋1[13])−𝐾1[13]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
*

𝑆0[1]
*

𝑆0[2]

⎤⎥⎥⎦

𝑀−1 ×

⎡⎢⎢⎣
𝜋−1(𝑋1[3])−𝐾1[3]
𝜋−1(𝑋1[7])−𝐾1[7]
𝜋−1(𝑋1[11])−𝐾1[11]
𝜋−1(𝑋1[15])−𝐾1[15]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
*

𝑆0[0]
*

𝑆0[3]

⎤⎥⎥⎦
(6)

𝜑(𝑋1) = 𝑆1 ⇐⇒ 𝑋1[4, 6, 12, 14] = 𝑆1[0, 1, 2, 3] (7)

𝜑(𝑋2) = 𝑆2 ⇐⇒ 𝜑
(︁
SD
(︀
𝐾2 + (MC ∘ SR(𝑋1))

)︀)︁
= 𝑆2

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀 ×

⎡⎢⎢⎣
𝑋1[0]
𝑋1[5]
𝑋1[10]
𝑋1[15]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
*

𝜋−1(𝑆2[0])−𝐾2[4]
*

𝜋−1(𝑆2[2])−𝐾2[12]

⎤⎥⎥⎦

𝑀 ×

⎡⎢⎢⎣
𝑋1[2]
𝑋1[7]
𝑋1[8]
𝑋1[13]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
*

𝜋−1(𝑆2[1])−𝐾2[6]
*

𝜋−1(𝑆2[3])−𝐾2[14]

⎤⎥⎥⎦
(8)

We solve the system with the following steps:

1. Pick arbitrary values for 𝑋1[0, 2, 5, 7].
2. Set 𝑋1[4, 6, 12, 14] = 𝑆1[0, 1, 2, 3] following (7).
3. Deduce 𝑋1[8, 10, 13, 15] from (8) using linear algebra.
4. Deduce 𝑋1[1, 3, 9, 11] from (6) using linear algebra.

An important observation is that there is a single solution to the linear systems
being solved at steps 3 and 4, because 𝑀 is an MDS matrix (see Property 1
below). Therefore there are exactly 𝑝4 solutions to Equation (5). ⊓⊔

Property 1. [56, Page 319] Let 𝑀 be an MDS matrix of size 𝑛× 𝑛, and 𝑋 and
𝑌 vectors of length 𝑛. If we fix 𝑛− 𝑡 coordinates of 𝑋, and 𝑡 coordinates of 𝑌 ,
then the equation 𝑀 ×𝑋 = 𝑌 has a unique solution.

The fact that the knowledge of three consecutive keystream blocks does not
provide any information about the content of key-LFSR is an interesting se-
curity argument. As a comparison, the number of consecutive outputs of the
keystream generator for which there exists a biased linear relation with the con-
tent of the LFSR, is two in SNOW 2.0 [72], three in SNOW-V [68]. It is also four
in Rocca [66, Section 4.5] but this property has been derived from the automatic

20

search method introduced in [41]. Contrary to these other ciphers, which are
also based on the AES round function and use an MDS matrix, the structure of
Transistor enables us to derive this argument in a very simple way from the
MDS property of MixColumns.

5.3 Linear Approximations Involving Four Consecutive Outputs

Now, we want to estimate the minimal data complexity required for recovering
the internal state of the key-register from the knowledge of the output sequence
(𝑆𝑡)𝑡∈N, given that at least four consecutive outputs (𝑆𝑡, 𝑆𝑡+1, 𝑆𝑡+2, 𝑆𝑡+3) need
to be considered together. The so-called Xiao-Massey lemma [73] shows that, if
the output of the augmented function 𝐹 (𝑛) is correlated to its key-input, then
there exists a biased linear relation between the key-inputs and the outputs of
𝐹 (𝑛). Its generalization to the non-binary case can be easily derived from the
proof given by Brynielsson in [18].

It follows that, as soon as the key-LFSR and the considered segment of the
output sequence are not statistically independent, there exists a biased linear
relation between the digits of these two sequences. There might exist some other
relations between these two sequences, of higher degree, whose probability dis-
tribution is farther from the uniform distribution. However, it seems much more
difficult to exploit nonlinear relations in an attack for two reasons: in practice,
what is known to the attacker is the sum between (𝑆𝑡)𝑡∈N and the output of
the whitening LFSR. Any relation involving the digits of (𝑆𝑡)𝑡∈N in a nonlinear
manner would involve the outputs of the whitening LFSR in a nonlinear man-
ner, and would then probably require an exhaustive search for its initial state. A
second motivation for focusing on linear relations is that recovering the internal
state of the key-LFSR faster than exhaustive search is much easier if the known
biased relations are linear.

The minimal length of the keystream required to recover the initial state of
the cipher using a linear approximation then corresponds to the data complexity
of a linear attack. It is well known that this complexity is determined by the so-
called capacity [14], or squared imbalance [5], of the linear approximation. For an
attack exploiting multiple approximations, the relevant parameter is the capacity
of the set of all considered approximations [14,53, Def. 2], defined as follows.

Definition 1 (Capacity of a function (resp. of a set of functions) over
F𝑝). Let 𝐹 be a function from F𝑛

𝑝 to F𝑝 with output distribution

Pr
𝑋

$←F𝑛
𝑝

[𝐹 (𝑋) = 𝑦] =
1

𝑝
+ 𝜀𝑦 with |𝜀𝑦| ≪ 1, for all 𝑦 ∈ F𝑝 .

The capacity (aka squared imbalance) of 𝐹 is defined by

𝛥(𝐹) := 𝑝
∑︁
𝑦∈F𝑝

𝜀2𝑦 .

The capacity of a set of functions 𝐹1, . . . , 𝐹ℓ corresponds to the sum of the ca-
pacities of all 𝐹𝑖, 1 ≤ 𝑖 ≤ ℓ.

21

The capacity of a function can be derived from its Fourier transform, which is
defined as follows.

Definition 2 (Fourier transform over F𝑝). Let 𝐹 : F𝑛
𝑝 → F𝑘

𝑝 and 𝜔 be a

𝑝-th root of unity in C. For 𝑎 ∈ F𝑛
𝑝 and 𝑏 ∈ F𝑘

𝑝, the Fourier transform of 𝐹 is

̂︀𝐹 (𝑎, 𝑏) =
∑︁
𝑥∈F𝑛

𝑝

𝜔𝑏·𝐹 (𝑥)−𝑎·𝑥 .

The following result is a consequence of Plancherel’s formula and has been
generalized to any finite Abelian group in [6] (see Appendix B.2 for a proof).

Proposition 1 ([6]). Let 𝐹 be a function from F𝑛
𝑝 to F𝑝. Then, its capacity is

𝛥(𝐹) = 𝑝−2𝑛
∑︁
𝑏∈F*

𝑝

⃒⃒⃒ ̂︀𝐹 (0, 𝑏)
⃒⃒⃒2

.

The following proposition provides a general upper bound on the value of the
capacity 𝛥 of a linear approximation over 𝑛 rounds, for 𝑛 ≥ 4. This upper bound
corresponds to the product of the moduli of Fourier coefficients of all active S-
boxes in the corresponding linear trail. It is worth noting that, because of the
stream cipher setting, the capacity of a linear approximation of several rounds of
Transistor is determined by a single linear trail, and that there is no linear-hull
effect as we may find in a block cipher. The proof is given in Appendix B.

Proposition 2 (Capacity of a linear approximation over 𝑛 rounds).
We consider an 𝑛-round linear approximation of Transistor, for 𝑛 ≥ 4, defined

by masks 𝛼 ∈ F16(𝑛−1)
𝑝 and 𝛽 ∈ F4𝑛

𝑝 , 𝛽 ̸= 0, namely

𝐹𝛼,𝛽 : F16
𝑝 × F16(𝑛−1)

𝑝 → F𝑝

(𝑋,𝐾1, . . . ,𝐾𝑛−1) ↦→ 𝛽 · 𝐹 (𝑛)(𝑋,𝐾1, . . . ,𝐾𝑛−1)−
∑︀𝑛−1

𝑖=1 𝛼𝑖𝐾𝑖

where 𝐹 (𝑛) is the 𝑛-round augmented function as defined by (4). Then, its ca-
pacity satisfies

𝛥(𝐹𝛼,𝛽) ≤ (𝑝− 1)

(︂
ℒ(𝜋)
𝑝

)︂2𝑤𝑛

,

where ℒ(𝜋) is the maximal modulus of the Fourier coefficients of 𝜋, and 𝑤𝑛 =∑︀𝑛−1
𝑖=1 𝑤𝑡(𝛼𝑖) where 𝑤𝑡(·) denotes the number of nonzero digits of a vector with

coordinates in F𝑝.

As detailed in Appendix E.3, we have established a lower bound on the
minimal number of active S-boxes over 𝑛 rounds, 𝑤𝑛, using well-known MILP-
based techniques. We found that 𝑤4 ≥ 13, 𝑤5 ≥ 20, 𝑤6 ≥ 25, and 𝑤𝑛 ≥ 26
for 𝑛 ≥ 7, with the truncated trail examples given on Figure 12. These bounds
might not be tight as we have not tried to instantiate these paths, but a lower
bound is sufficient. The S-box has been chosen to minimize the maximal modulus
of its Fourier coefficients, which is ℒ(𝜋) = 6.5135 ≈ 22.70. We then deduce the
following bounds on the capacity of linear approximations.

22

β0

SD

α0

ϕ SR MC

MC⊤(α1) α1

β1

SD

α1

ϕ SR

γ

MC

MC⊤(α2) α2

β2

SD

α2

ϕ SR MC

MC⊤(α3) α3

β3

SD

α3

ϕ

δ

SR MC

MC⊤(α4) α4

Fig. 8: One of the four activity patterns for 4-round trails.

Theorem 2. The capacity of any 4-round linear approximation of Transistor
satisfies

𝛥(𝐹𝛼,𝛽) ≤ 2−31.98 ,

where this bound may2 only be tight for some linear trails with 13 active Sboxes.
The capacity of the set of all 4-round linear approximations of Transistor with
maximal capacity that share the same output mask 𝛽 satisfies

𝛥 ≤ 2−23.98 .

Proof. The first statement is a direct consequence of the previous proposition,
combined with the values 𝑤4 (obtained by MILP) and ℒ(𝜋) (computed directly
from the look-up table). The last statement comes from the fact that, by solving
the MILP model for 4 rounds, we obtain that there exist exactly four 4-round
truncated trails with 13 active Sboxes. These truncated trails are depicted on
Figure 12 in Appendix E.3 and correspond to the four possibilities for the activity
pattern of (𝛽2, 𝛽3). Each output mask then corresponds to a single truncated
trail, for example the one depicted below.

We then have to determine the maximum number of possible values for
(𝛼1, 𝛼2, 𝛼3) for a fixed output mask 𝛽 that follow this activity pattern. The
mask 𝛿 at the output of SD at Round 4 is equal to 𝛽3. The corresponding in-
put mask 𝛼3 has to be such that MixColumns𝑇 (𝛼3) has the required activity
pattern. Since 𝛼3 has a single active column 𝛼3,0 and that 3 digits are fixed in
(𝛼3,0,𝑀

𝑇 (𝛼3,0)), we deduce that 𝛼3 can take only (𝑝−1) possible values because
𝑀 is MDS (see Property 1). Similarly, 𝛼2 must be such that MixColumns𝑇 (𝛼2)
has the required activity pattern. Moreover, the digits at positions 4, 6, 12, 14

2 The bound may not be tight as we have not tried to instantiate these trails.

23

of the mask 𝛾 in Figure 8 are equal to the digits of 𝛽1 at the same positions.
Therefore, each of the three active columns of MixColumns𝑇 (𝛼2) has two digits
that are fixed. It follows that only the third column of 𝛼2 is not fixed, and can
take (𝑝− 1) different values. Since the value of 𝛼1 is entirely determined by 𝛽0,
it follows that the number of possible masks 𝛼 following this activity pattern is
at most (𝑝− 1)2. Def. 1 then leads to the result. ⊓⊔

5.4 Initial-State Recovery based on (Fast) Correlation Attacks

(Fast) correlation attacks [59,20,24,71] can be seen as linear attacks in the par-
ticular setting of stream ciphers. The minimal length of keystream required for
recovering the initial state of the underlying LFSR (of length |𝒦|) is then:

𝑁 =
|𝒦| ln 𝑝

𝛥
, (9)

where𝛥 is the capacity of the linear approximation used in the attack. The proof
of this result is provided in Appendix B.2 for the sake of completeness and in the
more general case where the approximation is of the form −𝑔(𝐾𝑡, . . . ,𝐾𝑡+𝑛−1)+
ℎ(𝑆𝑡, . . . , 𝑆𝑡+𝑛−1) for nonlinear 𝑔 and ℎ. It follows that any correlation attack
based on a single linear approximation requires at least 64 × ln(17) × 231.97 =
239.5 4-digit blocks of keystream, i.e., 241.5 digits of the output sequence. It is
worth noting that this bound is tight when the initial state of the key-LFSR
is recovered by performing an exhaustive search over all its possible values by
a maximum-likelihood statistical test. The corresponding time complexity then
exceeds the cost defined by the target security level. Other algorithms can be
used, for instance algorithms based on low-weight parity-check relations, but
the price to pay is a significant increase of the required length 𝑁 of output
sequence [59,20,24].

More interestingly, it has been shown by Todo et al. [71] that the use of
multiple linear approximations with the same output mask may significantly
improve the attack. The minimal keystream length required by this attack is
again derived from Equation 9 where 𝛥 is now the capacity of the set of all
considered linear approximations. Based on Theorem 2, it can be proved that
an attack using all linear approximations with maximal capacity together re-
quires at least 64 × ln(17) × 223.97 = 231.5 blocks of keystream (233.5 digits).
Here, we assume that the use of additional linear approximations with a lower
capacity does not improve the attack. It is important to note that this is an
information-theoretic bound and the attack describes in [71] requires a longer
keystream segment. Moreover, the previous analysis assumes that the output
of the whitening LFSR is known to the attacker. This can be achieved by an
exhaustive search for its initial state, implying that the time complexity of our
attack will be multiplied by a factor 𝑝|𝒲| ≃ 2131. However, we can also get rid
of the whitening LFSR by choosing some coefficients 𝛽0, . . . , 𝛽𝑛−1 correspond-
ing to a recurring relation satisfied by the sequence generated by 𝒲, such that∑︀𝑛−1

𝑖=0 𝛽𝑖 · 𝑍𝑡+𝑖 =
∑︀𝑛−1

𝑖=0 𝛽𝑖 · 𝑆𝑡+𝑖. By definition, such a recurring relation corre-
sponds to a multiple of the feedback polynomial of 𝒲. It has therefore degree

24

𝑑 ≥ 32, implying that it involves 𝑑 digits and therefore 4-digit blocks of (𝑆𝑡)𝑡∈N
at distance ⌈𝑑/4⌉ ≥ 8. As mentioned, we have 𝑤𝑛 ≥ 26 for 𝑛 ≥ 7, which implies
that exploiting any linear approximation compatible with a recurring relation
for the whitening LFSR requires the knowledge of at least 64× ln(17)×267 ≈ 275

blocks (where 2−67 is the upper bound on the capacity given by Proposition 2
for 𝑤𝑛 = 26), that is at least 277 digits of the output sequence.

5.5 Linear Distinguishers on the Keystream

Linear approximations can also lead to linear distinguishing attacks [51] (aka
linear masking attacks [72]). These attacks do not recover the initial state of
the key-register, but the counterpart is that they can use together keystream
segments produced from multiple initial states. They consist in exhibiting a
biased linear relation among the keystream digits of the form∑︁

𝑖∈T𝑧

𝛽𝑖 · 𝑍𝑡+𝑖 (10)

where T𝑧 defines a set of positions in the keystream. Obviously, the maximal
value in T𝑧 must be smaller than the maximal keystream length that can be
generated from the same key/IV pair, i.e., 231 digits. Such a relation is typically

derived from a parity-check equation for the key-LFSR, i.e.,
∑︀ℓ−1

𝑖=0 𝛾𝑖𝐾𝑡+𝑖 =
0,∀𝑡 ≥ 0 . Any multiple of the LFSR feedback polynomial equivalently defines a
parity-check equation, but the capacity of the resulting linear approximation of
the keystream highly increases with the number 𝑤 of monomials in this multiple.
Here, the feedback polynomial of the key-LFSR is a primitive polynomial of
degree |𝒦| = 64 over F𝑝. Since this polynomial is dense and does not have any
specific property, the number of its multiples of weight 𝑤, of degree at most 𝑑
and constant coefficient equal to 1 can be approximated by(︂

𝑑

𝑤 − 1

)︂
(𝑝− 1)𝑤−1𝑝−|𝒦| .

Then, the expected degree such that there exists a multiple of weight 𝑤 is

[(𝑤 − 1)!]
1

𝑤−1 𝑝
|𝒦|
𝑤−1−1

This degree is then smaller than 231 only for 𝑤 ≥ 9. Using such a parity-check
equation, a biased linear relation on the keystream as (10) will be the result
of the combination of at least 9 linear approximations like the ones studied in
Theorem 2. Estimating the resulting capacity is difficult (see e.g. [63]) but we can
safely assume that it is much lower than max𝛼,𝛽(𝛥(𝐹𝛼,𝛽))

4 ≃ 2−128. Therefore,
the corresponding attack would be more expensive than an exhaustive search for
the key. It is worth noting that the previous analysis does not take into account
the whitening LFSR. For an attack against the full Transistor, we have to use a
parity-check equation that holds for the key-LFSR and for the whitening LFSR
simultaneously, i.e., a multiple of the lcm of the two feedback polynomials 𝑃𝒦

25

and 𝑃𝒲 . However, the expected degree for such a multiple cannot be estimated
by replacing |𝒦| by |𝒦| + |𝒲| in the previous formula, because 𝑃𝒲 defines a
subfield of the field defined by 𝑃𝒦.

6 Performances of Transciphering with Transistor

This section focuses on the performances of transciphering with Transistor.
We first address the wrapping of a (Transistor) symmetric key as a compact
set of TFHE ciphertexts for which we additionally introduce a trade-off between
bandwidth and computation. Next, we explain how to manage different data
representations to be able to fit with the input format of the server applica-
tion. We then provide a detailed description of the homomorphic evaluation of
Transistor. We finally give some implementation benchmarks and comparison
to the state of the art.

6.1 Key Wrapping and Bandwidth in TFHE Transciphering

Assume one wants to generate a fresh TFHE ciphertext vector (𝑐1, . . . , 𝑐𝑡) for
a plaintext vector (𝑚1, . . . ,𝑚𝑡) ∈ Z𝑡

𝑝, where 𝑐𝑖 = (𝑎𝑖,1, . . . , 𝑎𝑖,𝑛, 𝑏𝑖), for every
𝑖 ∈ [1, 𝑡]. Since the 𝑎𝑖,𝑗 ’s are uniformly sampled at random over Z𝑞, a folklore
trick is to generate them pseudorandomly from a seed. We get the following
compressed encryption procedure (where 𝜆 denotes the security level in bits):

CompressEncrypt(𝑠,𝑚1, . . . ,𝑚𝑡)

1. Sample seed← {0, 1}𝜆

2. Expand ((𝑎𝑖,𝑗)1≤𝑗≤𝑛)1≤𝑖≤𝑡 ← PRG(seed)

3. ∀ 𝑖 ∈ [1, 𝑡]: 𝑏𝑖 ←
∑︀𝑛

𝑗=1 𝑎𝑖,𝑗 · 𝑠𝑗 + �̃�𝑖 + 𝑒𝑖 with 𝑒𝑖 ← 𝜒𝜎

4. Return (seed, 𝑏1, . . . , 𝑏𝑡)

Recovering standard TFHE ciphertexts 𝑐1, . . . , 𝑐𝑡 from the compressed form
(seed, 𝑏1, . . . , 𝑏𝑡) is simply done by expanding the 𝑎𝑖,𝑗 ’s from seed. The size of the
obtained compressed ciphertext vector is 𝜆+𝑡·log2(𝑞) against 𝑡·(𝑛+1)·log2(𝑞) for
a standard TFHE encryption, meaning a compression by a factor about (𝑛+1).

This compressed TFHE encryption method can be applied directly to trans-
mit homomorphically encrypted data from the user to the server. Alternatively,
it can be combined with transciphering to encrypt a symmetric key. The re-
sulting bandwidth requirements and the corresponding plaintext-to-ciphertext
expansion factor are summarized in Table 1, where they are further compared
with the naive (uncompressed) TFHE encryption. In particular, for Transistor,
a wrapped key is of size 𝜆 + (|𝒦| + |𝒲|) · log2(𝑞), (which in our case gives 784
bytes) for a security of 𝜆 = 128 bits (target security of Transistor), the stan-
dard choice of 𝑞 = 264 (which we use in our implementation) and |𝒦|+ |𝒲| = 96
per the specification of Transistor (see Section 4). This fixed cost is hence
very quickly amortized while the amount of data to encrypt grows. Moreover,

26

Table 1: Bandwidth of homomorphic ciphertexts (in bits).
Approach used Naive Compressed Transistor

Fixed cost 0 𝜆 𝜆+ (|𝒦|+ |𝒲|) · log2(𝑞)
Per message in Z𝑝 (𝑛+ 1) · log2(𝑞) log2(𝑞) log2(𝑝)

Expansion factor (𝑛+ 1) · log2(𝑞)/log2(𝑝) log2(𝑞)/log2(𝑝) 1

this approach can be applied to the server keys as well, which are actually en-
cryptions of the secret key’s bits. We took this optimization into account in our
estimations of the server key sizes in Table 4.

Compressing further. In Appendix D, we introduce an additional tweak to com-
press a TFHE encryption further by truncating its noisy bits.

6.2 Transciphering vs. Data Representation

Managing data representation is a common challenge when working with TFHE.
Since this scheme is only efficient at very low precision, an abstraction layer is
required to construct practical data types (e.g., 8-, 32-, or 64-bit integers) from
smaller encrypted chunks. Common constructions include radix-based decom-
positions and Chinese Remainder Theorem (CRT) representations, leading to
different efficiency trade-offs. Carry propagation in radix-based representations
is notoriously slow due to the large number of required bootstrappings, while
CRT representations impose constraints on feasible operations. These construc-
tions have been studied in [11].

As a result, there is no universal representation that is optimal for all homo-
morphic operations. Thankfully, the representation of data in the transciphering
algorithm can be chosen independently of that of the homomorphic application
running on the server. If the representation in Z𝑝 does not suit the application,
the server can convert the ciphertexts to the desired representation before run-
ning the application. We stress that this additional step of conversion would be
necessary for any transciphering algorithm, as the data format desired in output
of transciphering is completely application-dependent.

As a concrete example, assume that the data to be encrypted (i.e., the input
to the homomorphic computation) consists of elements from Z16. The overall
transciphering process unfolds as follows. On the client side, the plaintext is
first embedded from Z16 into Z17 before being encrypted using Transistor. On
the server side, the keystream is homomorphically generated and then used to
homomorphically decrypt the ciphertext. This results in a TFHE encryption of
the original plaintext, now embedded in Z17, meaning that the plaintext space for
the TFHE encryption is Z17. A programmable bootstrapping (PBS) operation
is then applied to switch the plaintext space from Z17 back to Z16.

In terms of computation, this process adds one PBS per Z16-element of the
original plaintext, in addition to the four PBS per element required for keystream

27

generation with Transistor. Moreover, embedding Z16 into Z17 increases the
size of the encrypted data by a factor of 1 + 1/16 = 1.0625.

This approach can be generalized to address other plaintext representations.
In particular, for larger chunks of bits, the bootstrapping operation would allow
to merge several elements of Z16 (embedded into Z17) into one element of Z2ℓ

with ℓ > 4. On the other hand, one may split an element of Z16 (or its Z17

embedding) into 4 elements of Z2 using a PBS with multiple look-up tables
(“PBSmanyLUT”) as proposed in [28].

6.3 Detailed Homomorphic Implementations

In the following, we provide a more detailed way of how we implemented the
homomorphic version of Transistor.

Homomorphic evaluation of LSFRs. The Transistor design involves two LS-
FRs operating on elements of F17. The standard way to implement an LSFR is to
evaluate the linear feedback function on the state at each clock cycle, thus pro-
ducing a new element that enters the state, while the state is shifted to output an
element. We suggest the silent LFSR approach for the homomorphic evaluation
of LFSRs. In this approach, the encrypted LFSR state is immutable to avoid any
noise growth in the underlying ciphertexts (hence keeping the LFSR “silent”).
We use the fact that every output element of the LFSR can be expressed as a
linear combination of the initial state. So, at each clock cycle, we compute in the
clear the coefficients of this linear combination and homomorphically evaluate
it on the immutable encrypted state. This process is depicted in Algorithm 1.

Homomorphic evaluation of Transistor. The complete homomorphic evalua-
tion of a round of on clock cycle of Transistor is depicted in Algorithm 2,
using 𝒦.clock and 𝒲.clock as subroutines (i.e., Algorithm 1 evaluated on the
key schedule and whitening LFSRs). The most computation intensive part of
the algorithm is by far the evaluation of the PBS in SubDigits which can be fully
parallelized to reduce the latency.

6.4 TFHE Parameters

We discuss hereafter the selection of the different TFHE parameters involved in
the homomorphic implementation of Transistor. Here is the list of the different
parameters to be considered:

– 𝑞: the modulo used for the ciphertexts,
– 𝑛short: the dimension of the LWE ciphertexts used within the PBS algorithm,
– 𝑘: the dimension of GLWE ciphertexts,
– 𝑁 : the degree of the polynomials in GLWE ciphertexts,
– 𝑛long = 𝑘 ·𝑁 : the dimension of the LWE ciphertexts extracted from GLWE

ciphertexts,

28

Algorithm 1 LSFR.clock - Produce a pseudo random element of the state.

State:

⎧⎪⎪⎨⎪⎪⎩
ℓ : Size of the state of the LSFR.
(𝑢1, . . . , 𝑢ℓ) : Encrypted initial state of the LSFR.

(𝜆
(0)
1 , . . . , 𝜆

(0)
ℓ) : Coefficients of retroaction in the definition of the LSFR.

(𝜆
(𝑖)
1 , . . . , 𝜆

(𝑖)
ℓ) : Previous coefficients used in the linear combination.

Result:

{︃
𝑜(𝑖) : Encryption of the 𝑖-th pseudorandom element of F17.

(𝜆
(𝑖+1)
1 , . . . , 𝜆

(𝑖+1)
ℓ) : Updated coefficients of the linear combination.

𝑜(𝑖) ← 0
/* Evaluation of the linear combination */

for 𝑘 ∈ {1, . . . , ℓ} do
𝑜(𝑖) ← SumTFHE(𝑜(𝑖), ClearMultTFHE(𝑢𝑘, 𝜆

(𝑖)
𝑘))

end
/* Update of the next coefficients */

for 𝑘 ∈ {2, . . . , ℓ} do
𝜆
(𝑖+1)
𝑘 ← 𝜆

(𝑖)
𝑘−1 + 𝜆

(𝑖)
ℓ · 𝜆

(0)
𝑘

end

𝜆
(𝑖+1)
1 ← 𝜆

(𝑖)
ℓ · 𝜆

(0)
1

return 𝑜(𝑖)

– 𝜎short, 𝜎long: the standard deviation of the Gaussian distribution of fresh
noise in the ciphertexts of dimension respectively 𝑛short and 𝑛long,

– 𝐵𝐾𝑆 and 𝐵𝐵𝑅: the bases used in the gadget decompositions occurring in
respectively the Keyswitching and the BlindRotate phases,

– ℓ𝐾𝑆 and ℓ𝐵𝑅: the levels of those decompositions.

Throughout the homomorphic evaluation of Transistor, the manipulated
ciphertexts can be of three different types: LWE ciphertexts of dimension 𝑛short,
LWE ciphertexts of dimension 𝑛long, or GLWE ciphertexts of dimension 𝑘 and
polynomial degree 𝑁 . Figure 9 shows the ciphertext format at the different
steps of the homomorphic evaluation.

Optimization of the TFHE parameters. To generate a set of parameters, we use
the method developed in [12]. Given the negligible noise contribution from the
LFSRs, the FSM can be modeled using the atomic pattern introduced in [12]
(specifically the instance referred to as 𝒜(CJP21)), which is a pattern of homo-
morphic operators taking a set of ciphertexts in input, computing linear combi-
nations of those ciphertexts and applying a programmable bootstrapping to each
of them. The FSM round in Transistor which composes a multiplication by a
constant matrix (MixColumns), followed by a bootstrapping step (SubDigits) is
precisely an instance of such an atomic pattern. The framework proposed in [12]
generates parameters that guarantee a specified security level 𝜆 for the LWE
encryption and target error probability 𝑝err, while optimizing the PBS to be as
fast as possible. Table 2 shows the parameters used for our experiments, all
ensuring 128 bits of security. The obtained security levels 𝜆short et 𝜆long have
been estimated using the lattice estimator [1].

29

Algorithm 2 Transistor.clock - Produce 𝑟 encypted elements of the key
stream

State:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝒦 : the LSFR used for the pseudo-keyschedule and its state (cf Algorithm 1).
𝒲 : the LSFR used for the whitening.

𝑋 =

⎛⎝ 𝑥1,1 . . . 𝑥1,
√
𝑚

.
𝑥√

𝑚,1 . . . 𝑥√
𝑚,

√
𝑚

⎞⎠ : Encrypted state of the FSM

Result:
{︀
𝑌 = (𝑦1, . . . , 𝑦𝑟) : Encryption of 𝑟 elements of the key stream

/* Compute the pseudo-key schedule and adds it to the FSM */

for 𝑖 ∈ [1,
√
𝑚] do

for 𝑗 ∈ [1,
√
𝑚] do

𝑘𝑖,𝑗 ← 𝒦.clock()
𝑥𝑖,𝑗 ← SumTFHE(𝑥𝑖𝑗 , 𝑘𝑖,𝑗)

end

end
/* Compute SubDigits with a layer of PBS */

for 𝑖 ∈ [1,
√
𝑚] do

for 𝑗 ∈ [1,
√
𝑚] do

𝑥𝑖,𝑗 ← PBS TFHE(𝑥𝑖,𝑗 , 𝑆)

end

end
/* Extract the output bits and whiten them */

(𝑦1, . . . , 𝑦𝑟)← 𝜑(𝑋)
for 𝑖 ∈ [1, 𝑟] do

𝑤𝑖 ←𝒲.clock()
𝑦𝑖 ← SumTFHE(𝑦𝑖, 𝑤𝑖)

end
/* Compute ShiftRows, (same as in clear) */

𝑋 ← SR(𝑋)
/* Compute MixColumns */

for 𝑖 ∈ [1,
√
𝑚] do

for 𝑗 ∈ [1,
√
𝑚] do

𝑧𝑖,𝑗 ← 0
for 𝑘 ∈ [1,

√
𝑚] do

𝑧𝑖,𝑗 ← SumTFHE(𝑧𝑖,𝑗 , ClearMultTFHE(𝑥𝑘,𝑗 ,𝑀𝐶𝑖,𝑘))

end

end

end
return 𝑌

Encryption security. The security level (in bits) of the LWE ciphertexts is a func-
tion of the modulus 𝑞, the dimension 𝑛 and the noise standard deviation 𝜎. While
no explicit formula exists for this function, the lattice estimator tool allows to
produce an estimation of this function by simulating the main attacks of the lit-

30

𝒦 (silent) 𝒲 (silent)

⊞

KS

MS

BR

SE

SR+MC

SD ⊞𝜑 𝑠𝑡

𝐿𝑊𝐸(𝑛long)

𝐿𝑊𝐸(𝑛long)

𝐿𝑊𝐸(𝑛short)

𝐿𝑊𝐸(𝑛short)

𝐺𝐿𝑊𝐸(𝑘,𝑁)𝐿𝑊𝐸(𝑛long)

𝐿𝑊𝐸(𝑛long)

𝐿𝑊𝐸(𝑛long)

𝐿𝑊𝐸(𝑛long)

Fig. 9: Types and shapes of ciphertexts in homomorphic Transistor. The
SubDigits is broken down into its elementary components

Table 2: TFHE Parameters used in our experiments
.

𝑝err 𝑞 𝑛short 𝑘 𝑁 𝜎short 𝜎long 𝐵𝐵𝑅 ℓBR 𝐵𝐾𝑆 ℓKS 𝜆short 𝜆long

2−40 264 788 2 1024 247 214 223 1 24 3 131.8 128.9

2−128 264 774 1 2048 247 214 223 1 23 5 131.8 128.9

erature [1], which we denote 𝒪 (for security oracle). The selected TFHE parame-
ters are constrained to satisfy 𝒪(𝑞, 𝑛, 𝜎) ≥ 𝜆 for both (𝑞, 𝑛, 𝜎) = (𝑞, 𝑛short, 𝜎short)
and (𝑞, 𝑛, 𝜎) = (𝑞, 𝑛long, 𝜎long).

Correctness of the PBS. To compute the error probability 𝑝err, we have to
evaluate the variances occurring inside the programmable bootstrapping of the
SubDigits layer. We provide such an analysis in Appendix C.2. In the following,
we denote the maximum error probability of the bootstrapping by 𝑝err := 2−𝜅.
We aim to choose parameters such that the PBS outputs a correct ciphertext

31

Table 3: Performances of our two instances of Transistor.

𝑝err Time for one PBS Latency (one round) Throughput

2−40 11.9 ms 195 ms 83.84 bits/s

2−128 15.28 ms 251 ms 65.10 bits/s

with probability at least 1− 𝑝err. This translates to the following constraint:

𝜎2
in-BR ≤ 𝐶(𝜅) ·

(︂
1

4𝑝

)︂2

with 𝐶(𝜅) :=

(︂
1√

2 · erfc−1(2−𝜅)

)︂2

.

Under the Gaussian assumption, the noise in input of the BlindRotate is lower
than erfc−1(2−𝜅) ·

√︀
𝜎2
in-BR with probability 1− 2−𝜅. The above constraint thus

implies that, with probability 1−2−𝜅, the noise is lower than 1/4𝑝 which ensures
the correctness of the PBS.

As |𝒲| ≤ |𝒦|, we can check that we always have 𝜎2
out ≤ 𝜎2

in-PBS which implies
that the output is always bootstrappable with correctness probability at least
1− 𝑝err in the subsequent bootstrapping.

6.5 Performances

We provide hereafter some benchmarks of our implementation of Transistor

for two sets of parameters tailored for two different error probabilities. We first
consider 𝑝err = 2−40, which is a common choice in the literature to benchmark
homomorphic implementations. Our results for this error probability allow a fair
comparison with the state of the art. While such an error probability theoreti-
cally allows transciphering to be error-free with a large amount of data with good
probability, some recent works have shown that non-negligible error probabili-
ties could be exploited by an adversary in some contexts [21,22]. Thus, we also
provide another set of parameters and associated benchmark for 𝑝err = 2−128.

Our implementation relies on a customized version of tfhe-rs [74] which has
been adapted to support odd 𝑝 (size of the plaintext space) as described in [15].
The experiments were carried on a processor 12th Gen Intel(R) Core(TM) i5-
1245U with 4.4 GHz. Table 3 summarizes the obtained timings for the two sets
of parameters. The throughput is computed assuming that log2(17) bits are
encoded on one element of F17. Encoding 4 bits on each element would scale the
throughput by a factor 4/ log2(17) ≈ 0.98.

Although our current implementation does not leverage the inherent paral-
lelism of Transistor, it is important to note that it can be easily parallelized
across 16 threads. Specifically, during the SubDigits steps, which dominate the
overall runtime, the 16 PBS operations can be executed concurrently. This par-
allelization would result in nearly a 16-fold reduction in total execution time.

Without taking into account the server key (whose sizes are shown in Table
4), and using compressed encryption (Section 6.1), transciphering 1 KB of plain
data requires 1.78 KB of data to be sent, instead of 64 KB. For larger amounts

32

Table 4: Size of the server keys for the two considered sets of parameters.
Theoretical sizes Sizes for 𝑝err = 2−40 Sizes for 𝑝err = 2−128

KSK 𝑛long · 𝑙KS · log2 𝑞 49 KB 82 KB

BSK 𝑛short · 𝑙BS · log2 𝑞 ·𝑁 · (𝑘+1) 6.5 MB 12.7 MB

of message, the volume of the encrypted symmetric key becomes negligible with
respect to the message: for 1 MB of plain data, we use 1.0008 MB, and for 1
GB, this goes down to 1.000001 GB. The two sets of parameters yield the same
bandwidth consumption, but not the same running time as shown in Table 3.

By applying the “free truncation optimization” introduced in Appendix D,
we can reduce the volume of the encrypted symmetric key by a factor 0.7. This
is particularly useful when transciphering a small volume of data (the volume
of the encrypted key being preponderant). For example, to transcipher 1 KB of
data, using this technique decreases the volume from 1.78 KB to 1.54 KB.

in Table 4 we provide the sizes for the server keys, namely the key-switching
key (KSK) and the bootstrapping key (BSK) while using the ciphertext com-
pression technique described in Section 6.1. Those keys are only generated and
communicated to the server once (during some user enrollment step).

6.6 Comparisons to the State of the Art

In Section 3.1, we gave an overview of the recent landscape of TFHE-friendly
symmetric ciphers. Here, we compile a few metrics to compare their performances
with the ones of Transistor.

Our design is faster than FiLIP [57] by several orders of magnitude. But
FiLIP was designed to minimize the output noise and not the computation
time. Regarding the implementations of Trivium and Kreyvium presented in
[7], the performances have been measured on a massive AWS instance. Thus,
it is not possible to give a fair comparison with our work. However, we stress
that Transistor does not require any set-up time, which is a clear advantage
compared to these ciphers.

In Table 5, we compare the performances on a similar laptop of Transistor
with FRAST [30], the previous fastest solution in the state of the art. In this paper,
the chosen set of parameters is tailored to target a security level of 128 bits and
an error probability 𝑝err = 2−80. We observe that our instance of Transistor for
𝑝err = 2−128 is 3 times faster in terms of throughput with a much lower latency
and no setup (against a 25-second setup for FRAST). As FRAST was already faster
than Elisabeth and its patches, we did not include them in the comparison.

7 Conclusion

Transistor is a new stream cipher design tailored to TFHE transciphering, that
significantly outperforms the state-of-the-art of TFHE-friendly stream ciphers.

33

Table 5: Execution timings of FRAST and Transistor.

Cipher 𝑝err Setup Latency Throughput

FRAST [30] 2−80 25 s (8 threads) 6.2 s 20.66 bits/s

Transistor 2−128 No 251 ms 65.10 bits/s

After analyzing the constraints of the TFHE setting in the context of a symmetric
cipher, we designed Transistor by combining an LFSR-based key schedule, an
LFSR-based whitening, and a non-linear FSM with an AES-like structure. We
report implementation results of Transistor using state-of-the-art TFHE, using
a trick to implement silent LFSRs. This general structure can be easily adapted
to other contexts, and we believe it will find applications beyond TFHE.

Our initial security evaluation of Transistor provides a solid theoretical
background for this type of stream ciphers. We introduce arguments based on
the minimum number of rounds needed to have a non-zero correlation between
ciphertext and master key, an inherent property of the round function of the
FSM which we consider to be of independent interest. We expect that future
work will explore in more details how this property is related to the design of
the round function, and how to optimize it without increasing the cost of the
cipher.

Acknowledgements

This work was supported by the French Agence Nationale de la Recherche
through the SWAP project under Contract ANR-21-CE39-0012. Léo Perrin is
supported by the European Research Council (ERC ReSCALE, grant agreement
no. 101041545 “ReSCALE”) and Jules Baudrin through ERC project 101096871
(BRIDGE). This work was also supported by project Cryptanalyse from PEPR
Cybersécurité (22-PECY-0010).

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015). https://doi.
org/10.1515/jmc-2015-0016

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 430–454. Springer, Berlin, Heidelberg, Germany, Sofia, Bul-
garia (Apr 26–30, 2015). https://doi.org/10.1007/978-3-662-46800-5_17

3. Anderson, R.J.: Searching for the optimum correlation attack. In: Preneel, B. (ed.)
FSE’94. LNCS, vol. 1008, pp. 137–143. Springer, Berlin, Heidelberg, Germany,
Leuven, Belgium (Dec 14–16, 1995). https://doi.org/10.1007/3-540-60590-8_
11

34

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/3-540-60590-8_11
https://doi.org/10.1007/3-540-60590-8_11
https://doi.org/10.1007/3-540-60590-8_11
https://doi.org/10.1007/3-540-60590-8_11

4. Babbage, S.: A space/time tradeoff in exhaustive search attacks on stream ciphers.
European Convention on Security and Detection, IEE Conference Publication No.
408 (May 1995)

5. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Berlin, Heidelberg, Germany, Jeju Island, Korea (Dec 5–9, 2004). https:
//doi.org/10.1007/978-3-540-30539-2_31

6. Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers.
In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC 2007. LNCS, vol. 4876, pp.
184–211. Springer, Berlin, Heidelberg, Germany, Ottawa, Canada (Aug 16–17,
2007). https://doi.org/10.1007/978-3-540-77360-3_13

7. Balenbois, T., Orfila, J., Smart, N.P.: Trivial transciphering with trivium and
TFHE. In: Brenner, M., Costache, A., Rohloff, K. (eds.) Proceedings of the
11th Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
Copenhagen, Denmark, 26 November 2023. pp. 69–78. ACM (2023). https://doi.
org/10.1145/3605759.3625255, https://doi.org/10.1145/3605759.3625255

8. Bariant, A., Boeuf, A., Lemoine, A., Ayala, I.M., Øygarden, M., Perrin,
L., Raddum, H.: The algebraic FreeLunch: Efficient Gröbner basis attacks
against arithmetization-oriented primitives. In: Reyzin, L., Stebila, D. (eds.)
CRYPTO 2024, Part IV. LNCS, vol. 14923, pp. 139–173. Springer, Cham, Switzer-
land, Santa Barbara, CA, USA (Aug 18–22, 2024). https://doi.org/10.1007/
978-3-031-68385-5_5

9. Beläıd, S., Bon, N., Boudguiga, A., Sirdey, R., Trama, D., Ye, N.: Further improve-
ments in AES execution over TFHE: Towards breaking the 1 sec barrier. Cryptol-
ogy ePrint Archive, Paper 2025/075 (2025), https://eprint.iacr.org/2025/075

10. Berbain, C., Gilbert, H.: On the security of IV dependent stream ciphers. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 254–273. Springer, Berlin, Hei-
delberg, Germany, Luxembourg, Luxembourg (Mar 26–28, 2007). https://doi.
org/10.1007/978-3-540-74619-5_17

11. Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.:
Parameter optimization and larger precision for (T)FHE. Journal of Cryptology
36(3), 28 (Jul 2023). https://doi.org/10.1007/s00145-023-09463-5

12. Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J.B., Tap,
S.: Parameter optimization and larger precision for (t)fhe. Journal of Cryptology
36(3), 28 (Jul 2023). https://doi.org/10.1007/s00145-023-09463-5, https:
//link.springer.com/10.1007/s00145-023-09463-5

13. Biryukov, A.: The design of a stream cipher LEX. In: Biham, E., Youssef,
A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Berlin, Heidel-
berg, Germany, Montreal, Canada (Aug 17–18, 2007). https://doi.org/10.1007/
978-3-540-74462-7_6

14. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Berlin,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–19, 2004). https://doi.
org/10.1007/978-3-540-28628-8_1

15. Bon, N., Pointcheval, D., Rivain, M.: Optimized Homomorphic Evaluation of
Boolean Functions. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems 2024(3), 302–341 (Jul 2024). https://doi.org/10.46586/tches.

v2024.i3.302-341, https://tches.iacr.org/index.php/TCHES/article/view/

11680

35

https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-540-77360-3_13
https://doi.org/10.1007/978-3-540-77360-3_13
https://doi.org/10.1145/3605759.3625255
https://doi.org/10.1145/3605759.3625255
https://doi.org/10.1145/3605759.3625255
https://doi.org/10.1145/3605759.3625255
https://doi.org/10.1145/3605759.3625255
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.1007/978-3-031-68385-5_5
https://eprint.iacr.org/2025/075
https://doi.org/10.1007/978-3-540-74619-5_17
https://doi.org/10.1007/978-3-540-74619-5_17
https://doi.org/10.1007/978-3-540-74619-5_17
https://doi.org/10.1007/978-3-540-74619-5_17
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://link.springer.com/10.1007/s00145-023-09463-5
https://link.springer.com/10.1007/s00145-023-09463-5
https://doi.org/10.1007/978-3-540-74462-7_6
https://doi.org/10.1007/978-3-540-74462-7_6
https://doi.org/10.1007/978-3-540-74462-7_6
https://doi.org/10.1007/978-3-540-74462-7_6
https://doi.org/10.1007/978-3-540-28628-8_1
https://doi.org/10.1007/978-3-540-28628-8_1
https://doi.org/10.1007/978-3-540-28628-8_1
https://doi.org/10.1007/978-3-540-28628-8_1
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.46586/tches.v2024.i3.302-341
https://tches.iacr.org/index.php/TCHES/article/view/11680
https://tches.iacr.org/index.php/TCHES/article/view/11680

16. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–
325. ACM, Cambridge, MA, USA (Jan 8–10, 2012). https://doi.org/10.1145/
2090236.2090262

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014). https://doi.org/10.1145/2633600, https://doi.org/10.1145/2633600

18. Brynielsson, L.: A short proof of the xiao-massey lemma. IEEE Trans. Inf. Theory
35(6), 1344 (1989)

19. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 313–
333. Springer, Berlin, Heidelberg, Germany, Bochum, Germany (Mar 20–23, 2016).
https://doi.org/10.1007/978-3-662-52993-5_16

20. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Berlin, Heidelberg, Germany, Bruges, Belgium
(May 14–18, 2000). https://doi.org/10.1007/3-540-45539-6_40

21. Checri, M., Sirdey, R., Boudguiga, A., Bultel, J.P., Choffrut, A.: On the prac-
tical cpad security of ”exact” and threshold fhe schemes and libraries. In:
IACR Cryptology ePrint Archive (2024), https://api.semanticscholar.org/

CorpusID:267749350

22. Cheon, J.H., Choe, H.S., Passelègue, A., Stehlé, D., Suvanto, E.: Attacks against
the indcpa-d security of exact fhe schemes. IACR Cryptol. ePrint Arch. 2024, 127
(2024), https://api.semanticscholar.org/CorpusID:267749108

23. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 409–437. Springer, Cham, Switzerland, Hong Kong,
China (Dec 3–7, 2017). https://doi.org/10.1007/978-3-319-70694-8_15

24. Chepyzhov, V.V., Johansson, T., Smeets, B.J.M.: A simple algorithm for fast corre-
lation attacks on stream ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 181–195. Springer, Berlin, Heidelberg, Germany, New York, NY, USA (Apr 10–
12, 2001). https://doi.org/10.1007/3-540-44706-7_13

25. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Berlin, Hei-
delberg, Germany, Hanoi, Vietnam (Dec 4–8, 2016). https://doi.org/10.1007/
978-3-662-53887-6_1

26. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer,
Cham, Switzerland, Hong Kong, China (Dec 3–7, 2017). https://doi.org/10.
1007/978-3-319-70694-8_14

27. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: Fast fully
homomorphic encryption over the torus. Journal of Cryptology 33(1),
34–91 (Jan 2020). https://doi.org/10.1007/s00145-019-09319-x, http://

link.springer.com/10.1007/s00145-019-09319-x

28. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved Programmable Bootstrap-
ping with Larger Precision and Efficient Arithmetic Circuits for TFHE, Lecture

36

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1007/3-540-45539-6_40
https://doi.org/10.1007/3-540-45539-6_40
https://api.semanticscholar.org/CorpusID:267749350
https://api.semanticscholar.org/CorpusID:267749350
https://api.semanticscholar.org/CorpusID:267749108
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/3-540-44706-7_13
https://doi.org/10.1007/3-540-44706-7_13
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
http://link.springer.com/10.1007/s00145-019-09319-x
http://link.springer.com/10.1007/s00145-019-09319-x

Notes in Computer Science, vol. 13092, p. 670–699. Springer International Pub-
lishing, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_23, https:
//link.springer.com/10.1007/978-3-030-92078-4_23

29. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 670–699.
Springer, Cham, Switzerland, Singapore (Dec 6–10, 2021). https://doi.org/10.
1007/978-3-030-92078-4_23

30. Cho, M., Chung, W., Ha, J., Lee, J., Oh, E., Son, M.: FRAST: tfhe-friendly cipher
based on random s-boxes. IACR Trans. Symmetric Cryptol. 2024(3), 1–43 (2024).
https://doi.org/10.46586/TOSC.V2024.I3.1-43

31. Clet, P.E., Zuber, M., Boudguiga, A., Sirdey, R., Gouy-Pailler, C.: Putting up
the swiss army knife of homomorphic calculations by means of TFHE func-
tional bootstrapping. Cryptology ePrint Archive, Report 2022/149 (2022), https:
//eprint.iacr.org/2022/149

32. Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.X.: Towards case-optimized
hybrid homomorphic encryption - featuring the elisabeth stream cipher. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp.
32–67. Springer, Cham, Switzerland, Taipei, Taiwan (Dec 5–9, 2022). https:

//doi.org/10.1007/978-3-031-22969-5_2

33. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Berlin,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2003). https://doi.
org/10.1007/978-3-540-45146-4_11

34. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer,
Berlin, Heidelberg, Germany, Warsaw, Poland (May 4–8, 2003). https://doi.org/
10.1007/3-540-39200-9_21

35. Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006),
http://www.elementsofinformationtheory.com/

36. De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Berlin, Heidelberg,
Germany, Samos Island, Greece (Aug 30 – Sep 2, 2006). https://doi.org/10.
1007/11836810_13

37. Deo, A., Joye, M., Libert, B., Curtis, B.R., de Bellabre, M.: Homomorphic eval-
uation of LWR-based PRFs and application to transciphering. Cryptology ePrint
Archive, Report 2024/665 (2024), https://eprint.iacr.org/2024/665

38. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption
in less than a second. In: EUROCRYPT (1). pp. 617–640. Springer
(2015). https://doi.org/10.1007/978-3-662-46800-5_24, https://www.iacr.

org/archive/eurocrypt2015/90560159/90560159.pdf

39. Dunkelman, O., Keller, N.: A new attack on the LEX stream cipher. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 539–556. Springer, Berlin, Hei-
delberg, Germany, Melbourne, Australia (Dec 7–11, 2008). https://doi.org/10.
1007/978-3-540-89255-7_33

40. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814,
pp. 457–475. Springer, Berlin, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2016). https://doi.org/10.1007/978-3-662-53018-4_17

37

https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://link.springer.com/10.1007/978-3-030-92078-4_23
https://link.springer.com/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.46586/TOSC.V2024.I3.1-43
https://doi.org/10.46586/TOSC.V2024.I3.1-43
https://eprint.iacr.org/2022/149
https://eprint.iacr.org/2022/149
https://doi.org/10.1007/978-3-031-22969-5_2
https://doi.org/10.1007/978-3-031-22969-5_2
https://doi.org/10.1007/978-3-031-22969-5_2
https://doi.org/10.1007/978-3-031-22969-5_2
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1007/3-540-39200-9_21
http://www.elementsofinformationtheory.com/
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/11836810_13
https://eprint.iacr.org/2024/665
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://www.iacr.org/archive/eurocrypt2015/90560159/90560159.pdf
https://www.iacr.org/archive/eurocrypt2015/90560159/90560159.pdf
https://doi.org/10.1007/978-3-540-89255-7_33
https://doi.org/10.1007/978-3-540-89255-7_33
https://doi.org/10.1007/978-3-540-89255-7_33
https://doi.org/10.1007/978-3-540-89255-7_33
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-662-53018-4_17

41. Eichlseder, M., Nageler, M., Primas, R.: Analyzing the linear keystream biases
in AEGIS. IACR Trans. Symm. Cryptol. 2019(4), 348–368 (2019). https://doi.
org/10.13154/tosc.v2019.i4.348-368

42. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Ny-
berg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer,
Berlin, Heidelberg, Germany, St. John’s, Newfoundland, Canada (Aug 15–16,
2003). https://doi.org/10.1007/3-540-36492-7_5

43. Ekdhal, P., Johansson, T.: SNOW - a new stream cipher. In: Proceedings of the
first Nessie workshop (2000)

44. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. p. 144 (2012), http://eprint.iacr.org/2012/144

45. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC 2009. pp. 169–178. ACM (2009). https://doi.org/10.1145/

1536414.1536440

46. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–
867. Springer, Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23,
2012). https://doi.org/10.1007/978-3-642-32009-5_49

47. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013). https:
//doi.org/10.1007/978-3-642-40041-4_5

48. Gilbert, H., Boissier, R.H., Jean, J., Reinhard, J.R.: Cryptanalysis of elisabeth-4.
In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part III. LNCS, vol. 14440,
pp. 256–284. Springer, Singapore, Singapore, Guangzhou, China (Dec 4–8, 2023).
https://doi.org/10.1007/978-981-99-8727-6_9

49. Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.)
EUROCRYPT’97. LNCS, vol. 1233, pp. 239–255. Springer, Berlin, Heidelberg,
Germany, Konstanz, Germany (May 11–15, 1997). https://doi.org/10.1007/

3-540-69053-0_17

50. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
tfhe. IACR Transactions on Cryptographic Hardware and Embedded Systems
p. 229–253 (Feb 2021). https://doi.org/10.46586/tches.v2021.i2.229-253,
https://tches.iacr.org/index.php/TCHES/article/view/8793

51. Hell, M., Johansson, T.: Advanced linear Cryptanalysis of block and stream ci-
phers, chap. Linear attacks on stream ciphers. IOS Press (2011)

52. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream
ciphers. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs - The
eSTREAM Finalists, Lecture Notes in Computer Science, vol. 4986, pp. 179–190.
Springer (2008). https://doi.org/10.1007/978-3-540-68351-3_14

53. Hermelin, M., Nyberg, K.: Multidimensional linear distinguishing attacks and
boolean functions. Cryptogr. Commun. 4(1), 47–64 (2012). https://doi.org/10.
1007/S12095-011-0053-3, https://doi.org/10.1007/s12095-011-0053-3

54. Hoffmann, C., Méaux, P., Standaert, F.X.: The patching landscape of elisabeth-
4 and the mixed filter permutator paradigm. In: Chattopadhyay, A., Bhasin, S.,
Picek, S., Rebeiro, C. (eds.) INDOCRYPT 2023, Part I. LNCS, vol. 14459, pp.
134–156. Springer, Cham, Switzerland, Goa, India (Dec 10–13, 2023). https://
doi.org/10.1007/978-3-031-56232-7_7

38

https://doi.org/10.13154/tosc.v2019.i4.348-368
https://doi.org/10.13154/tosc.v2019.i4.348-368
https://doi.org/10.13154/tosc.v2019.i4.348-368
https://doi.org/10.13154/tosc.v2019.i4.348-368
https://doi.org/10.1007/3-540-36492-7_5
https://doi.org/10.1007/3-540-36492-7_5
http://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-981-99-8727-6_9
https://doi.org/10.1007/978-981-99-8727-6_9
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.46586/tches.v2021.i2.229-253
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/S12095-011-0053-3
https://doi.org/10.1007/S12095-011-0053-3
https://doi.org/10.1007/S12095-011-0053-3
https://doi.org/10.1007/S12095-011-0053-3
https://doi.org/10.1007/s12095-011-0053-3
https://doi.org/10.1007/978-3-031-56232-7_7
https://doi.org/10.1007/978-3-031-56232-7_7
https://doi.org/10.1007/978-3-031-56232-7_7
https://doi.org/10.1007/978-3-031-56232-7_7

55. Kluczniak, K., Schild, L.: Fdfb: Full domain functional bootstrapping to-
wards practical fully homomorphic encryption. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems p. 501–537 (Nov 2022). https://doi.
org/10.46586/tches.v2023.i1.501-537, https://tches.iacr.org/index.php/

TCHES/article/view/9960
56. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-

Holland Publishing Company (1977)
57. Méaux, P., Carlet, C., Journault, A., Standaert, F.X.: Improved filter permu-

tators for efficient FHE: Better instances and implementations. In: Hao, F.,
Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 68–
91. Springer, Cham, Switzerland, Hyderabad, India (Dec 15–18, 2019). https:

//doi.org/10.1007/978-3-030-35423-7_4
58. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers

for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.S. (eds.)
EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 311–343. Springer, Berlin, Hei-
delberg, Germany, Vienna, Austria (May 8–12, 2016). https://doi.org/10.1007/
978-3-662-49890-3_13

59. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers (extended
abstract). In: Günther, C.G. (ed.) EUROCRYPT’88. LNCS, vol. 330, pp. 301–314.
Springer, Berlin, Heidelberg, Germany, Davos, Switzerland (May 25–27, 1988).
https://doi.org/10.1007/3-540-45961-8_28

60. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanal-
ysis using mixed-integer linear programming. In: Wu, C., Yung, M., Lin, D.
(eds.) Information Security and Cryptology - 7th International Conference, In-
scrypt 2011, Beijing, China, November 30 - December 3, 2011. Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 7537, pp. 57–76. Springer
(2011). https://doi.org/10.1007/978-3-642-34704-7_5, https://doi.org/10.
1007/978-3-642-34704-7_5

61. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards Stream Ci-
phers for Efficient FHE with Low-Noise Ciphertexts, Lecture Notes in Com-
puter Science, vol. 9665, p. 311–343. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49890-3_13, http://link.

springer.com/10.1007/978-3-662-49890-3_13
62. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be

practical? In: Cachin, C., Ristenpart, T. (eds.) Proceedings of the 3rd ACM Cloud
Computing Security Workshop, CCSW 2011, Chicago, IL, USA, October 21, 2011.
pp. 113–124. ACM (2011), https://dl.acm.org/citation.cfm?id=2046682

63. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Berlin, Heidelberg,
Germany, Graz, Austria (Mar 15–17, 2006). https://doi.org/10.1007/11799313_
10

64. Perrin, L.: Security analysis of XHASH8/12. Cryptology ePrint Archive, Report
2024/605 (2024), https://eprint.iacr.org/2024/605

65. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-
24, 2005. pp. 84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603,
https://doi.org/10.1145/1060590.1060603

66. Sakamoto, K., Liu, F., Nakano, Y., Kiyomoto, S., Isobe, T.: Rocca: An effi-
cient AES-based encryption scheme for beyond 5g. IACR Trans. Symm. Cryptol.
2021(2), 1–30 (2021). https://doi.org/10.46586/tosc.v2021.i2.1-30

39

https://doi.org/10.46586/tches.v2023.i1.501-537
https://doi.org/10.46586/tches.v2023.i1.501-537
https://doi.org/10.46586/tches.v2023.i1.501-537
https://doi.org/10.46586/tches.v2023.i1.501-537
https://tches.iacr.org/index.php/TCHES/article/view/9960
https://tches.iacr.org/index.php/TCHES/article/view/9960
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/3-540-45961-8_28
https://doi.org/10.1007/3-540-45961-8_28
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
http://link.springer.com/10.1007/978-3-662-49890-3_13
http://link.springer.com/10.1007/978-3-662-49890-3_13
https://dl.acm.org/citation.cfm?id=2046682
https://doi.org/10.1007/11799313_10
https://doi.org/10.1007/11799313_10
https://doi.org/10.1007/11799313_10
https://doi.org/10.1007/11799313_10
https://eprint.iacr.org/2024/605
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.46586/tosc.v2021.i2.1-30
https://doi.org/10.46586/tosc.v2021.i2.1-30

67. SHA-3 standard: Permutation-based hash and extendable-output functions. Na-
tional Institute of Standards and Technology, NIST FIPS PUB 202, U.S. Depart-
ment of Commerce (Aug 2015). https://doi.org/10.6028/NIST.FIPS.202

68. Shi, Z., Jin, C., Zhang, J., Cui, T., Ding, L., Jin, Y.: A correlation attack on
full SNOW-V and SNOW-vi. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022, Part III. LNCS, vol. 13277, pp. 34–56. Springer, Cham, Switzer-
land, Trondheim, Norway (May 30 – Jun 3, 2022). https://doi.org/10.1007/
978-3-031-07082-2_2

69. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only.
IEEE Trans. Computers 34(1), 81–85 (1985). https://doi.org/10.1109/TC.

1985.1676518

70. Tap, S.: Constructing new tools for efficient homomorphic encryption. Theses,
Université de Rennes (Dec 2023), https://theses.hal.science/tel-04587370

71. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited - cryptanalysis on full Grain-128a, Grain-128, and Grain-v1. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 129–
159. Springer, Cham, Switzerland, Santa Barbara, CA, USA (Aug 19–23, 2018).
https://doi.org/10.1007/978-3-319-96881-0_5

72. Watanabe, D., Biryukov, A., De Cannière, C.: A distinguishing attack of
SNOW 2.0 with linear masking method. In: Matsui, M., Zuccherato, R.J. (eds.)
SAC 2003. LNCS, vol. 3006, pp. 222–233. Springer, Berlin, Heidelberg, Ger-
many, Ottawa, Ontario, Canada (Aug 14–15, 2004). https://doi.org/10.1007/
978-3-540-24654-1_16

73. Xiao, G., Massey, J.L.: A spectral characterization of correlation-immune combin-
ing functions. IEEE Trans. Inf. Theory 34(3), 569–571 (1988). https://doi.org/
10.1109/18.6037

74. Zama: TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data (2022), https://github.com/

zama-ai/tfhe-rs

40

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/978-3-031-07082-2_2
https://doi.org/10.1007/978-3-031-07082-2_2
https://doi.org/10.1007/978-3-031-07082-2_2
https://doi.org/10.1007/978-3-031-07082-2_2
https://doi.org/10.1109/TC.1985.1676518
https://doi.org/10.1109/TC.1985.1676518
https://doi.org/10.1109/TC.1985.1676518
https://doi.org/10.1109/TC.1985.1676518
https://theses.hal.science/tel-04587370
https://doi.org/10.1007/978-3-319-96881-0_5
https://doi.org/10.1007/978-3-319-96881-0_5
https://doi.org/10.1007/978-3-540-24654-1_16
https://doi.org/10.1007/978-3-540-24654-1_16
https://doi.org/10.1007/978-3-540-24654-1_16
https://doi.org/10.1007/978-3-540-24654-1_16
https://doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

A Full Specification of Transistor

A reference implementation in Sage is available online at

https://github.com/CryptoExperts/Transistor/

A.1 LFSRs

An LFSRs of length ℓ at time 𝑡 is a list of digits 𝑥𝑡
0, ..., 𝑥

𝑡
ℓ−1 that is clocked as

follows:

1. 𝑥𝑡+1
0 ← −

∑︀ℓ−1
𝑖=0 𝑥

𝑡
𝑖𝑐𝑖,

2. 𝑥𝑡+1
𝑖 ← 𝑥𝑡

𝑖−1 for 0 < 𝑖 < ℓ,
3. the output is 𝑥𝑡

ℓ−1,

where 𝐶 = (𝑐𝑖)0≤𝑖<ℓ is the list of its taps, each being a digit of F17. We define
clock𝐶 to be the function applying the operations above to a list 𝑥𝑡

0, ..., 𝑥
𝑡
ℓ−1 to

update it, and returning 𝑥𝑡
ℓ−1.

For the key schedule 𝒦, we use the following taps:

𝐶(𝒦) = {9, 4, 6, 4, 8, 6, 6, 16, 3, 9, 15, 12, 8, 12, 11, 4, 4, 8, 1, 8, 8, 9, 4, 6, 6, 7, 6, 3,
16, 14, 14, 6, 10, 15, 14, 13, 10, 1, 1, 10, 13, 11, 14, 10, 7, 4, 15, 8, 16, 3, 13,

14, 15, 16, 3, 16, 9, 3, 6, 12, 15, 9, 12, 3} ,

and for the whitening LFSR 𝒲 we use

𝐶(𝒲) = {8, 14, 14, 14, 1, 6, 12, 10, 14, 14, 14, 5, 2, 5, 6, 13, 6, 15, 14, 3,
13, 16, 1, 13, 9, 1, 7, 15, 13, 6, 14, 3}

A.2 Master Key Processing

We generate the digits in 𝒦 first, and then those in 𝒲. To generate them, we
concatenate the 128-bit long master key with an IV and then a byte set to 1.
The result is fed into SHAKE128, and the output byte stream of this primitive
is used to generate digits of F17 using rejection sampling: if a byte 𝑥 is equal to
255, we discard it; otherwise, we generate the digit ⌊𝑥/15⌋. Since 15× 17 = 255,
this results in an unbiased transformation.

A.3 Running Transistor

Using Transistor to generate a keystream is done as follows.

1. Use the procedure described in Section A.2 to fill the key schedule and
whitening LFSRs.

2. Set the FSM state to be all zero.
3. Then, while keystream blocks are needed, we repeat the following:

(a) Clock the key schedule 16 times and add its content (modulo 17) into
the FSM in the order specified in Figure 6b.

41

https://github.com/CryptoExperts/Transistor/

(b) (SubDigits) Apply the S-box 𝜋 (see Equation (1)) to each element of the
FSM.

(c) (𝜑) Take the elements with indices in {4, 6, 12, 14}, clock the whitening
LFSR four times, and add its successive outputs to these elements. The
result forms a keystream tuple of four digits.

(d) (ShiftRows) Shift the elements of the 𝑖-th row of the FSM by 𝑖 positions
to the left.

(e) (MixColumns) Apply the matrix 𝑀 (see Equation (2)) to each column of
the FSM.

B Complexity of Correlation Attacks over F𝑝

B.1 Proof of Proposition 2

Proof. For 𝑛 rounds, the Fourier coefficient ̂︂𝐹𝛼,𝛽(0, 𝜆) corresponds to a Fourier
coefficient of the following function

𝐻(𝑛) : F16
𝑝 × F16(𝑛−1)

𝑝 → F4(𝑛−1)
𝑝 × F16

𝑝

(𝑋0,𝐾1, . . . ,𝐾𝑛−1) ↦→ (𝑆0, . . . , 𝑆𝑛−2, 𝑋𝑛−1) .

In other words, the output of 𝐻(𝑛) corresponds (up to a reordering of the 16 last
digits) to the concatenation of the output of the augmented function 𝐹 (𝑛) and
of the remaining 12 internal digits that are not output by 𝜑. Then, 𝐻(𝑛+1) can
be seen as the composition of 𝐻(𝑛) with the round function

F16
𝑝 × F16

𝑝 → F4
𝑝 × F16

𝑝

(𝑋𝑛−1,𝐾𝑛) ↦→ (𝜑(𝑋𝑛−1),SD(𝐿(𝑋𝑛−1) +𝐾𝑛))

Let 𝐺 be any function of the form

𝐺 : Fℓ
𝑝 → F𝑘

𝑝 × F16
𝑝

𝑈 ↦→ (𝐺1(𝑈), 𝐺2(𝑈))
.

𝑈 𝑋

𝐾𝐺1

𝐺2

𝜑

𝐿 ⊞ SD𝑎 𝐿⊤(𝛼) + 𝜑*(𝛽′) 𝐿⊤(𝛼)

𝜑*(𝛽′)

𝛼

𝛼

𝛼 𝑏

𝛽′𝛽

Fig. 10: Masks propagation through a composition with Transistor’s round
function. Input and output masks are written in blue while inner masks whose
value are deduced are written in red.

42

Then, the Fourier transform of the composition

𝐹 : (𝑈,𝐾) ↦→ (𝐺1(𝑈), 𝜑(𝐺2(𝑈)),SD(𝐿(𝐺2(𝑈)) +𝐾))

can be easily derived from the Fourier transform of 𝐺, as shown on Figure 10.
Indeed, the detailed computation of the Fourier coefficient

ℐ := ̂︀𝐹 (𝑎, 𝛼;𝛽, 𝛽′, 𝑏)

for the input mask (𝑎, 𝛼) and output mask (𝛽, 𝛽′, 𝑏) is as follows.

ℐ =
∑︁

𝑈∈Fℓ
𝑝,𝐾∈F16

𝑝

𝜔𝛽·𝐺1(𝑈)+𝛽′·𝜑(𝐺2(𝑈))+𝑏·SD(𝐿(𝐺2(𝑈))+𝐾)−𝛼·𝐾−𝑎·𝑈

=
∑︁
𝑈∈Fℓ

𝑝

𝜔𝛽·𝐺1(𝑈)+𝛽′·𝜑(𝐺2(𝑈))−𝑎·𝑈

⎛⎝ ∑︁
𝑍∈F16

𝑝

𝜔𝑏·SD(𝑍)−𝛼·𝑍+𝛼·𝐿(𝐺2(𝑈))

⎞⎠
where we set 𝑍 = 𝐿(𝐺2(𝑈)) +𝐾. We then deduce

ℐ =
∑︁
𝑈∈Fℓ

𝑝

𝜔𝛽·𝐺1(𝑈)+𝛽′·𝜑(𝐺2(𝑈))−𝑎·𝑈+𝛼·𝐿(𝐺2(𝑈))̂︁SD(𝛼, 𝑏)
= ̂︁SD(𝛼, 𝑏) ∑︁

𝑈∈Fℓ
𝑝

𝜔𝛽·𝐺1(𝑈)+𝜑*(𝛽′)·𝐺2(𝑈)−𝑎·𝑈+𝐿𝑇 (𝛼)·𝐺2(𝑈)

= ̂︁SD(𝛼, 𝑏) ̂︀𝐺(𝑎;𝛽, 𝐿𝑇 (𝛼) + 𝜑*(𝛽′))

where 𝜑* : F4
𝑝 → F16

𝑝 is the function outputting an internal state whose digits are
all zero, expect the digits affected by 𝜑, which are equal to the inputs. Finally,
we observe that 𝐻(1) is the identity function implying that ̂︀𝐻(1)(𝑎, 𝑏) = 𝑝16 if
𝑎 = 𝑏 and 0 otherwise. It follows that the Fourier coefficients of 𝐻(𝑛) are either
zero, or given by

̂︀𝐻(𝑛)(𝑎, 𝛼1, . . . 𝛼𝑛−1;𝛽0, . . . , 𝛽𝑛−2, 𝑏) = 𝑝16
𝑛−1∏︁
𝑖=1

̂︁SD(𝛼𝑖, 𝑏
′
𝑖) ,

for some 𝑏′1, . . . , 𝑏
′
𝑛−1. Therefore,

𝑝−16𝑛 ̂︀𝐻(𝑛)(𝑎, 𝛼1, . . . , 𝛼𝑛−1;𝛽0, . . . , 𝛽𝑛−2, 𝑏) =

𝑛−1∏︁
𝑖=1

̂︁SD(𝛼𝑖, 𝑏
′
𝑖)

𝑝16
.

The result then directly follows by observing that ̂︁SD(𝛼𝑖, 𝑏
′
𝑖) is the product of

the Fourier coefficients of the 16 S-boxes composing SD. ⊓⊔

B.2 Data Complexity of Fast Correlation Attacks

It is well-known that the capacity of a linear approximation determines the
minimal length of the sequence obtained by a given linear combination of the

43

digits of (𝑆𝑡)𝑡∈N that is required for recovering the initial state of the key-LFSR
from the linear approximation

𝑛−1∑︁
𝑖=1

𝛼𝑖 ·𝐾𝑡+𝑖 +

𝑛−1∑︁
𝑖=0

𝛽𝑖 · 𝑆𝑡+𝑖,∀𝑡 ≥ 0 .

However, the same result holds even when the approximation is not linear as
stated in the following theorem.

Theorem 3. Let 𝐹 be a function from F𝜅
𝑝 × F𝑚

𝑝 to F𝑛
𝑝 . Let 𝑔 : F𝜅

𝑝 → F𝑝 and
ℎ : F𝑛

𝑝 → F𝑝 such that the probability distribution of

(𝑈, 𝑉) ↦→ ℎ(𝐹 (𝑈, 𝑉))− 𝑔(𝑈)

is close to the uniform distribution, i.e., for all 𝑧 ∈ F𝑝,

Pr
(𝑈,𝑉)

$←F𝜅
𝑝×F𝑚

𝑝

[ℎ(𝐹 (𝑈, 𝑉))− 𝑔(𝑈) = 𝑧] =
1

𝑝
+ 𝜀𝑧 with 𝜀𝑧 ≪ 1 .

Let (𝑈𝑡)𝑡∈N be a sequence of elements in F𝜅
𝑝 defined by 𝑈𝑡+1 = 𝛷(𝑈𝑡), where 𝛷 is

a function from F𝜅
𝑝 to itself. Let (𝑉𝑡)𝑡∈N be a sequence of elements in F𝑚

𝑝 . Then,
the minimal length 𝑁 of the sequence (𝐵𝑡)𝑡∈N := (ℎ(𝐹 (𝑈𝑡, 𝑉𝑡))𝑡∈N required for
recovering 𝑈0 is

𝑁 =
𝜅 ln 𝑝

𝛥

with

𝛥 = 𝑝
∑︁
𝑦∈F𝑝

𝜀2𝑦 =
∑︁
𝑎∈F*

𝑝

⃒⃒⃒⃒
⃒⃒𝑝−𝜅 ∑︁

𝑈∈F𝜅
𝑝 ,𝑉 ∈F𝑚

𝑝

𝜔𝑎(ℎ(𝐹 (𝑈,𝑉))−𝑔(𝑈))

⃒⃒⃒⃒
⃒⃒
2

.

Proof. Let
𝒞 = {(𝑔(𝛷𝑡(𝑈0)))0≤𝑡<𝑁 , 𝑈0 ∈ F𝜅

𝑝} .

This set is a (non-linear) code over F𝑝 of length 𝑁 and size 𝑝𝜅. As originally
observed by Meier and Staffelbach [59], recovering 𝑈0 from (𝐵0, . . . , 𝐵𝑁−1) boils
down to decoding this code. Indeed, (𝐵0, . . . , 𝐵𝑁−1) can be seen as the result of
the transmission of the 𝑁 -digit word (𝑔(𝑈0), . . . , 𝑔(𝛷

𝑁−1(𝑈0))) through a noisy
transmission channel. This transmission channel is memoryless, since each digit
is affected in the same way:

𝐵𝑡 = 𝑔(𝛷𝑡(𝑋0)) + 𝜂𝑡

where the probability distribution of all 𝜂𝑡 is given by

𝜋𝑧 := Pr[𝜂𝑡 = 𝑧] = Pr
(𝑈,𝑉)

$←F𝜅
𝑝×F𝑚

𝑝

[ℎ(𝐹 (𝑈, 𝑉))− 𝑔(𝑈) = 𝑧] =
1

𝑝
+ 𝜀𝑧 .

This transmission channel is called symmetric in the sense that its transition
matrix, formed by the probabilities that an input value 𝑖 is transformed to 𝑗,

44

is a circulant matrix whose rows correspond to the probability distribution
(𝜋0, . . . , 𝜋𝑝−1). Therefore, Shannon’s channel-coding theorem [35, Section 7.7]
implies that this code can be decoded with a non-negligeable success probability
if and only if its rate, i.e., the ratio between the logarithm of its size and its
length, is smaller than the channel capacity:

𝜅

𝑁
≤ 𝐶channel .

The capacity of any 𝑝-ary symmetric channel is given by [35, Th. 7.2.1]

𝐶channel = 1−𝐻𝑝(𝜋0, 𝜋1, . . . , 𝜋𝑝−1)

where 𝐻𝑝 denotes the 𝑝-ary entropy, i.e.,

𝐻𝑝(𝜋0, 𝜋1, . . . , 𝜋𝑝−1) := −
∑︁
𝑧∈F𝑝

𝜋𝑧 log𝑝(𝜋𝑧) .

We use that, for 𝜀≪ 1,

ln

(︂
𝜀+

1

𝑝

)︂
= ln(1 + 𝑝𝜀)− ln 𝑝 = 𝑝𝜀− ln 𝑝+ 𝑜(𝜀) .

It follows that∑︁
𝑧∈F𝑝

(︂
𝜀𝑧 +

1

𝑝

)︂
ln

(︂
𝜀𝑧 +

1

𝑝

)︂
≃ 𝑝

∑︁
𝑧∈F𝑝

𝜀2𝑧 − ln 𝑝
∑︁
𝑧∈F𝑝

(︂
𝜀𝑧 +

1

𝑝

)︂
.

We then deduce that

𝐶channel = 1 +
1

ln 𝑝

⎛⎝𝑝
∑︁
𝑧∈F𝑝

𝜀2𝑧 − ln 𝑝

⎞⎠ =
1

ln 𝑝

⎛⎝𝑝
∑︁
𝑧∈F𝑝

𝜀2𝑧

⎞⎠ .

It is well-known (see Prop. 1) that the same quantity can also be derived from
the Fourier transform of the function

𝑓 : (𝑈, 𝑉) ↦→ ℎ(𝐹 (𝑈, 𝑉))− 𝑔(𝑈) .

Indeed, if 𝜋′ denotes the function from F𝑝 to R defined by 𝜋′(𝑥) = 𝜋𝑥 − 1
𝑝 = 𝜀𝑥,

we have
𝛥 = 𝑝

∑︁
𝑦∈F𝑝

|𝜋′(𝑦)|2 =
∑︁
𝑎∈F𝑝

|̂︀𝜋′(𝑎)|2
where the last equality corresponds to Plancherel’s formula. Moreover, the Fourier
transform of 𝜋′ an be computed as follows: if 𝑎 ̸= 0,

̂︀𝜋′(𝑎) = ∑︁
𝑥∈F𝑝

𝜋′(𝑥)𝜔−𝑎𝑥 =
∑︁
𝑥∈F𝑝

𝜋𝑥𝜔
−𝑎𝑥 − 𝑝−1

∑︁
𝑥∈F𝑝

𝜔−𝑎𝑥

= 𝑝−(𝜅+𝑚)
∑︁
𝑥∈F𝑝

#𝑓−1(𝑥)𝜔−𝑎𝑥 = 𝑝−(𝜅+𝑚)
∑︁

𝑈,𝑉 ∈F𝜅
𝑝×F𝑚

𝑝

𝜔−𝑎𝑓(𝑈,𝑉)

= 𝑝−(𝜅+𝑚) ̂︀𝑓(0,−𝑎) ,
45

and ̂︀𝜋′(0) = 0. It follows that

𝛥 =
∑︁
𝑎∈F*

𝑝

⃒⃒⃒
𝑝−(𝜅+𝑚) ̂︀𝑓(0, 𝑎)⃒⃒⃒2 .

⊓⊔

C More Resources About TFHE

C.1 Complexity assumptions

Here, we define the assumptions on which the security of TFHE relies.

Definition 3. (LWE problem over the discretized torus). Let 𝑞, 𝑛 ∈ N and let

𝑠 = (𝑠1, . . . , 𝑠𝑛)
$← B𝑛. Let 𝜒 be an error distribution over Z𝑞. The decisional

Learning With Errors over discretized torus problem is to distinguish between
samples drawn from the distributions:

𝒟0 = {(𝑎, 𝑟) | 𝑎 $← T𝑛
𝑞 , 𝑟

$← T𝑞}

and:

𝒟1 = {(𝑎, 𝑏) | 𝑎 = (𝑎1, . . . , 𝑎𝑛)
$← T𝑛

𝑞 , 𝑒
$← 𝜒, 𝑏 =

𝑛∑︁
𝑗=1

𝑎𝑗 · 𝑠𝑗 + 𝑒}.

The search version of the problem is to recover 𝑠 from samples of 𝒟1.

Both the search and decisional problems are reducible to each other [65], and
their average case is as hard as the worst-case lattice problems.

TFHE also relies on the generalized version of LWE over rings, introduced
in [16], known as GLWE.

Definition 4. (GLWE problem over the discretized torus). Let 𝑁, 𝑞, 𝑘 ∈ N with

𝑁 a power of two and let 𝑠 = (𝑠1, . . . , 𝑠𝑘)
$← B𝑁 [𝑋]𝑘. Let 𝜒 be an error distribu-

tion over Z𝑁,𝑞[𝑋]. The General decisional Learning With Errors over discretized
torus problem is to distinguish between samples drawn from the following distri-
butions

𝒟0 = {(𝑎, 𝑟) | 𝑎 $← T𝑁,𝑞[𝑋]𝑘, 𝑟
$← T𝑁,𝑞[𝑋]}

and:

𝒟1 = {(𝑎, 𝑏) | 𝑎 = (𝑎1, . . . , 𝑎𝑘)
$← T𝑁,𝑞[𝑋]𝑘, 𝑒

$← 𝜒, 𝑏 =

𝑘∑︁
𝑗=1

𝑎𝑗 · 𝑠𝑗 + 𝑒}.

The search version is analogous to the LWE one.

The complexity analysis is analogous to the LWE version. In practice, the error
distribution 𝜒 is a centered Gaussian distribution parametrized by its standard
deviation 𝜎.

46

C.2 Analysis of the variances inside a PBS

We recall that the PBS is composed of four successive operations: Keyswitch,
ModulusSwitch, BlindRotate and SampleExtract.

The critical variance is the variance in input of the BlindRotate (BR). If
the noise at this point of the algorithm is too high, the PBS will output the
encryption of a wrong value with high probability. This critical variance satisfies:

𝜎2
in-BR = 𝜎2

in-PBS + 𝜎2
KS + 𝜎2

MS

where 𝜎2
in-PBS is the variance in input of the PBS, which according to Section 4.3

satisfies:

𝜎2
in-PBS = 𝜎2

𝒦 + 𝜎2
MC = |𝒦| ·

(︂
𝑝− 1

2

)︂2

· 𝜎2
long + 𝐿2

MC · 𝜎2
PBS ,

and where 𝜎2
KS and 𝜎2

MS are additive terms introduced by the KeySwitch and
the ModSwitch respectively and which depend on the internal parameters of the
PBS. The former is defined by:

𝜎2
KS = 𝑛long ·

(︃
𝑞2

12𝐵2ℓKS

KS

− 1

12

)︃
·
(︀
Var(𝑠𝑖) + E2(𝑠𝑖)

)︀
+

𝑛long

4
·Var(𝑠𝑖) + 𝑛long · ℓKS · 𝜎2

KSK ·
𝐵KS + 2

12

where 𝑠𝑖 refers to the secret key’s bits used for encryption, and 𝜎KSK is the
noise introduced in the key-switching keys (so 𝜎short in our case).

For 𝜎MS, we have:

𝜎2
MS =

𝑞2

4𝑁2
·
(︂

1

12
− 4𝑁2

12𝑞2
+

𝑛short

24
+

𝑛short · 4𝑁2

48𝑞2

)︂
The full noise analysis leading to these formulas can be found in [70].

D Further Compressing the TFHE Ciphertexts

We introduce hereafter a tweak to compress a TFHE encryption further than
the folklore compression. By definition of the TFHE encryption process, the least
significant bits of the body 𝑏𝑖 =

∑︀𝑛
𝑗=1 𝑎𝑖,𝑗 ·𝑠𝑗+�̃�𝑖+𝑒𝑖 are randomized by the error

𝑒𝑖 and can hence be discarded without loss of information. We can thus tweak
the above compressed encryption process by returning (seed,Trℓ(𝑏1), . . . ,Trℓ(𝑏𝑡))
where Trℓ(·) denotes the truncation of the ℓ least significant bits. To decompress
such ciphertexts, besides pseudorandomly generating the masks from the seed,
one just needs to pad the truncated bodies with ℓ bits to 0. By the randomness
of the mask, the effect of this truncation plus 0-padding is to add a uniform
random error of ℓ bits to the body, namely an error of standard deviation:

𝜎2
0 =

(2ℓ − 1)2

12
≈ 22ℓ

12
≈ 0.08 · 22ℓ .

47

This optimization comes in two flavors:
1. The “free” variant. The number of truncated bits ℓ is selected to have a small

impact on the noise distribution. For instance in Transistor, the noise of
the fresh ciphertexts is summed with the noise coming from the FSM. Thus,
we can compute ℓ to keep 𝜎2

𝒲 < 𝜎2
PBS. Our experiments shows 𝜎2

PBS = 252,
so running the numbers we find that we can truncate up to ℓ = 19 bits,
allowing to reduce the volume of the TFHE ciphertexts to send by a factor
1− 19

64 ≈ 0.7.

2. The communication-computation trade-off. In this variant, one selects a high
value of ℓ. The truncated body should at least contain log2(𝑝) bits to keep
the plaintext information, plus a margin of a few bits in order to remain
bootstrappable. Denoting this margin 𝛿, the truncated body should be of at
least log2(𝑝) + 𝛿 bits and ℓ can be up to log2(𝑞)− (log2(𝑝) + 𝛿). Taking the
maximum level of truncation, inducing the maximum level of bootstrappable
noise, implies some adaptation of the underlying homomorphic computation.
Specifically, it should start with applying a noise-reduction bootstrapping to
the decompressed ciphertexts before performing the original evaluation. We
hence obtain a trade-off with reduced bandwidth against additional boot-
strappings.

In the context of transciphering with Transistor, the trade-off provided
by the second option gives rise to an initialization procedure which consists in
decompressing and bootstrapping the wrapped key.

E Additionnal Cryptanalysis

E.1 Algebraic Analysis

Algebraic cryptanalysis consists of formulating nonlinear equations that an at-
tacker can derive from the information observed in terms of the secret key ma-
terial. Several techniques, such as Gröbner basis methods or linearization, exist
for solving such systems of equations, and we discuss them in this section. Based
on this analysis, we claim that Transistor is resistant to algebraic attacks and
their improvements.

Gröbner Basis. Such an attack consists of four main steps: formulating the
equations that model the intended cryptanalysis, computing their Gröbner basis,
applying a “change of monomial ordering” to transform the Gröbner basis into
a more useful form, and finally solving the result using univariate techniques.
The complexity of the first and last steps is usually negligible, meaning that we
should evaluate the time complexity of at least one of the other two steps.

However, as recently shown in [8], it is possible to write the equations in
such a way as to entirely bypass the computation of the Gröbner basis. This is
achieved by choosing a custom monomial ordering that ensures the equations,
as formulated, immediately form a Gröbner basis. This approach can be applied
here by assigning increasing weights to the successive outputs of the key schedule,

48

so that the leading monomials in each equation involve only a single key variable.
This method is effective for at least the first four clock cycles, as the clock outputs
are independent.

At this stage, we have 16 independent equations of degree 15 (the degree of
𝜋). Adding the equations corresponding to the next 20 clocks, we get as many
equations as unknowns, which, in particular, should lead to a 0-dimensional ideal.
As conjectured in [64], the ideal degree of this system can be lower-bounded by
1516 ≈ 262.5. This bound would be exact if the 80 remaining equations somehow
failed to contribute to an increase in this quantity, or if the ideal degree was in
some way decreased by one of these equations (despite the 0-dimension). Given
that change of order algorithms are at least quadratic in the ideal degree, we
can safely claim security against Gröbner-basis-based algebraic attacks.

Linearization. Such attacks may, a priori, pose a threat, as they have led to the
downfall of two FHE-friendly stream ciphers, namely FLIP [58] and Elisabeth [32],
which were broken in [40] and [48], respectively. The structure of these ciphers
made such attacks an inherent risk: in both cases, a low-degree function is ap-
plied to a constant key register to generate keystream words. As a result, in these
ciphers, the nonlinear equations derived from the keystream sequence have a con-
stant degree. Considering all monomials (or linear combinations of monomials) as
new independent variables in this representation enables powerful attacks [40,48].
These attacks are the result of two fundamental weaknesses: the constant de-
gree of the system and low diffusion, as the registers are never updated, only a
bit-permutation is applied at each clock cycle.

These issues are directly addressed in the design of Transistor. First, the
round function of the FSM applies the S-box 𝜋 to every digit. This S-box has a
univariate representation in F𝑝 that is both dense and of degree 15. Furthermore,
the content of the FSM accumulates high-degree equations within the key-LFSR.
As a result, the multivariate polynomial representation of the keystream digits
will not have a constant degree; instead, it will be very dense and of high degree.

Using Annihilators. Another powerful technique is to directly use an annihilator
of the filtering function, where this annihilator has a lower degree than the
original function [34,33]. This allows the attacker to collect and solve a system
of equations with a smaller degree than the original one. That is, similar to
Gröbner basis-like attacks, this approach operates on the ideal generated by the
polynomials. In the case of Transistor, we can argue and defend the role of
the whitening LFSR 𝒲. Indeed, this LFSR has a length of 32 digits, meaning
that an annihilator at the output must consider the sum of 8 outputs by 𝜑 and
cancel them with a polynomial. Therefore, without additional information, such
an annihilator would need to multiply approximately 32 digits, leading to an
increase in the degree. This strategy must also account for the degree increase
in successive outputs of 𝜑, as discussed above.

Other Techniques. Last but not least, algebraic attacks can be improved in sev-
eral ways using the Guess-and-Determine strategy or the so-called Hybrid ap-

49

proach in Gröbner basis computations. In our case, one could guess key-register
cells, whitening-key cells, or cells in the FSM. Although this is a valid approach,
the remaining equations (depending on the guessing strategy) would either have
an increased degree or require guessing too many cells, making the attack im-
practical.

E.2 Comparison With LEX

LEX [13] is a stream cipher designed by Biryukov in 2006 and selected to the third
phase of the eSTREAM competition. LEX employed a rather unusual design for
a stream cipher, based on the AES block cipher and a technique called leak
extraction. The idea of the leak extraction is to produce the key stream by
extracting parts of the underlying block cipher state.

The description of LEX is very simple and elegant. It is based on a slightly
tweaked version of the AES where the AddRoundKey operation before the first
round is omitted and where the MixColumns of the last round is not. For simplic-
ity, we will still refer to this tweaked version as AES. First, the publicly known
𝐼𝑉 is encrypted by the AES under the secret key 𝐾 to produce an initial state
𝑆 = AES𝐾(𝐼𝑉). Then, the state 𝑆 is repeatedly encrypted using the OFB mode
and the same secret key 𝐾. At each round of encryption, four words of the
internal state are extracted to compose the key stream produced by LEX. The
positions of the extracted words depend on the round number and are depicted
in Figure 11.

Fig. 11: Extraction of internal state words for odd and even rounds of LEX. The
extracted words are the ones being colored.

In 2008, Dunkelman and Keller presented an attack against LEX [39] able
to recover the 128-bit secret key with 236.3 bytes of key-stream produced by the
same key and a time complexity of 2112 simple operations. This attack worked by
exploiting a particular difference pattern of probability 2−64 in the AES internal
state that could be detected by observing a 32-bit condition in the output key
stream. The attack can be decomposed in the three following steps:

1. The attacker observes the output stream for a specific 32-bit pattern to
occur (the four output words at a certain round should all be zero). This

50

potentially indicates a special difference pattern (8 particular words with
zero-difference) in the internal state of AES.

2. Once this difference pattern is detected, the attacker recovers the values
of 16 bytes of the internal state in both AES encryptions. This is achieved
by guessing the difference in eight additional state words and by exploiting
simple properties of the MixColumns and the S-box.

3. Finally, using the recovered 16 bytes, the attacker proceeds with a guess-and-
determine approach to retrieve the secret key. The key step here is exploiting
relations derived from the AES-128 key schedule that link bytes from three
consecutive subkeys, reducing the number of required guesses to just two
subkey bytes. This limits the guessing process to only 10 bytes (80 bits) in
total.

Transistor’s structure ressembles LEX in several aspects, the most notable
being the extraction of four words at each iteration. Additionally, Transistor’s
round function is inspired by the AES round function. For these reasons, it is
natural to question whether the attack described in [39] could be adapted to
Transistor. However, as we will argue next, Transistor differs from LEX in
some crucial design choices, making the Dunkelman and Keller attack very dif-
ficult to apply:

– The output of the FSM at every round is masked by the whitening LFSR
𝒲 making it hard to directly recover the values of the internal state as done
in the attack of LEX.

– The LFSR 𝒦 playing the role of the key schedule, produces uncorrelated
outputs, making it hard to find simple relations between key values in con-
secutive rounds. A crucial element in the success of the attack against LEX
was exactly the fact that by guessing only two key bytes, the attacker was
able to recover many more key values by exploiting such relations holding
over several rounds. As we showed in the previous sections, it is not possible
for an attacker to extract any information on the secret key by observing
the output of the FSM over 3 or 4 consecutive rounds.

E.3 Truncated Linear Trails from MILP

In order to find a lower bound for the number of S-boxes active in a linear trail
over 4 rounds of Transistor, we apply the approach introduced by Mouha et
al. [60] in the most direct way. As we are interested in the (in)activity of the
Sboxes throughout the rounds, we only need to assign binary variables to output
digits, but also to internal digits of the state before the Sbox layer, and before
the MixColumn operation. For each round, we then have 4+16+16 = 36 binary
variables that are related one to others by the following constraints.

3-fork constraint. Any output digit corresponds to a digit of the internal state
after the Sbox layer, so it is naturally related to the activity of a digit be-
fore MixColumn, by taking care of the reorganization of the digits through
ShiftRows. But because the activity pattern is unchanged through the Sbox

51

layer, it is also related to a digit before the Sbox layer. The constraint be-
tween three such variables is that if one is active, then at least two of them
are. This corresponds to a 3-fork constraint that can be modeled as in [60,
Sec 2.2].

MDS constraint. A given column before and after MixColumns are related
by the following MDS constraint: if a digit is active, then at least 5 of them
are. This can be modeled in a manner similar to the 3-fork. In our case, the
binary variables associated to the state after MixColumns at round 𝑟 are the
one corresponding to the state before the Sbox layer at round 𝑟 + 1.

Border constraints. We also add some border constraints to ensure that the
initial inner state is fully inactive, and that the same holds for the final inner
state. This way, we make sure that the considered linear equations do not
depend on the unknown FSM state, but only on the key and output digits.
We also impose that at least a digit among the ones output at the first round,
and at least one among the ones of the last round must be active.

Finally, with the described constraints, the objective is to minimize the number
of active Sboxes, that is, the number of active digits before the Sbox layer. Note
that any solution to this problem is actually a worst-case scenario in our case:
a returned activation pattern is not guaranteed to be actually instantiable. We
solved this simple MILP model using the SageMath interface for Mixed Integer
Linear Programing solving within seconds on a standard laptop. Our code is
available online.3

Most notably, we have found that

𝑤4 ≥ 13, 𝑤5 ≥ 20 and 𝑤6 ≥ 25

with the potential trail examples depicted on Fig. 12. We also verified that
𝑤𝑛 ≥ 26 for 𝑛 ∈ {7, 8, . . . 26}. For larger values of 𝑛, either a trail has at least
one active Sbox per round, or it splits into two smaller trails with at least 13
active Sboxes. Therefore, we deduce that 𝑤𝑛 ≥ 26 for all 𝑛 ≥ 7.

3 https://github.com/CryptoExperts/Transistor/

52

https://github.com/CryptoExperts/Transistor/

out 0

SR

out 1

SR

out 2

SR

out 3

SR

(a) 4-round trail.

out 0

SR

out 1

SR

out 2

SR

out 3

SR

(b) 4-round trail.

out 0

SR

out 1

SR

out 2

SR

out 3

SR

(c) 4-round trail.

out 0

SR

out 1

SR

out 2

SR

out 3

SR

(d) 4-round trail.
out 0

SR

out 1

SR

out 2

SR

out 3

SR

out 4

SR

(e) 5-round trail.

Fig. 12: Activity patterns for linear trails over 4 and 5 rounds.

53

	Transistor: a TFHE-friendly Stream Cipher
	Introduction
	Preliminaries
	Notation
	Preliminaries on TFHE
	Complexity Assumptions.
	Plaintext Space and Encryption.
	Homomorphic Operations.

	Constraints for a TFHE-friendly Stream Cipher
	State-of-the-Art
	Constraints from TFHE
	Our design choices.

	Description of Transistor
	Overall Structure
	Detailed Description
	Controlling the Noise Evolution

	Security Analysis
	Dimensioning the Internal State based on Generic Attacks
	Time-Memory-Data Trade-Offs.
	Guess and Determine.

	Three consecutive outputs are statistically independent of the secret key
	Linear Approximations Involving Four Consecutive Outputs
	Initial-State Recovery based on (Fast) Correlation Attacks
	Linear Distinguishers on the Keystream

	Performances of Transciphering with Transistor
	Key Wrapping and Bandwidth in TFHE Transciphering
	Transciphering vs. Data Representation
	Detailed Homomorphic Implementations
	TFHE Parameters
	Performances
	Comparisons to the State of the Art

	Conclusion
	Full Specification of Transistor
	LFSRs
	Master Key Processing
	Running Transistor

	Complexity of Correlation Attacks over Fp
	Proof of Proposition 2
	Data Complexity of Fast Correlation Attacks

	More Resources About TFHE
	Complexity assumptions
	Analysis of the variances inside a PBS

	Further Compressing the TFHE Ciphertexts
	Additionnal Cryptanalysis
	Algebraic Analysis
	Comparison With LEX
	Truncated Linear Trails from MILP

