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Abstract. The random probing model formalizes a leakage scenario where each wire in a circuit leaks
with probability p. This model holds practical relevance due to its reduction to the noisy leakage model,
which is widely regarded as the appropriate formalization for power and electromagnetic side-channel
attacks.
In this paper, we present new techniques for designing efficient masking schemes that achieve tighter
random probing security with lower complexity. First, we introduce the notion of cardinal random
probing composability (Cardinal-RPC), offering a new trade-off between complexity and security for
composing masking gadgets. Next, we propose a novel refresh technique based on a simple iterative
process: randomly selecting and updating two shares with fresh randomness. While not perfectly secure
in the standard probing model, this method achieves arbitrary cardinal-RPC security, making it a
versatile tool for constructing random-probing secure circuits. Using this refresh, we develop additional
basic gadgets (e.g., linear multiplication, addition, and copy) that satisfy the cardinal-RPC notion.
Despite the increased complexity, the gains in security significantly outweigh the overhead, with the
number of iterations offering useful flexibility.
To showcase our techniques, we apply them to lattice-based signatures. Specifically, we introduce a
new random-probing composable gadget for sampling small noise, a key component in various post-
quantum algorithms. To assess security in this context, we generalize the random probing security model
to address auxiliary inputs and public outputs. We apply our findings to Raccoon, a masking-friendly
signature scheme originally designed for standard probing security. We prove the secure composition
of our new gadgets for key generation and signature computation, and show that our masking scheme
achieves a superior security-performance tradeoff compared to previous approaches based on random
probing expansion. To our knowledge, this is the first fully secure instantiation of a post-quantum
algorithm in the random probing model.

Keywords: Post-quantum signature · Masking countermeasure · Random Probing Model · Raccoon
Signature Scheme

1 Introduction

Most widely used cryptographic algorithms are considered secure against black-box attacks, where the adver-
sary’s knowledge is restricted to certain inputs and outputs. However, as discovered in the late 1990s, their
implementations on physical devices can be vulnerable to more sophisticated side-channel attacks. These
attacks leverage physical emanations from the device, such as execution time, temperature, power consump-
tion, or electromagnetic emissions during the algorithm’s execution. One of the most prevalent techniques
to defend against side-channel attacks is masking, introduced independently in 1999 by Chari, Jutla, Rao,
and Rohatgi [14], and by Goubin and Patarin [22]. In essence, the approach involves splitting each sensitive
variable in an implementation into n shares, with n− 1 generated uniformly at random and the final share
derived from the original value and the previous ones. Masking ensures that an adversary cannot recover the
secret without all the shares.
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The probing model. To prove the security of masking schemes, it is essential to model the side-channel leakage
an attacker could exploit, which leads to the concept of leakage models. One of the most well-known models
is the d-probing model, introduced by Ishai, Sahai, and Wagner in [24], which states that an attacker can
gain access to the exact values of d intermediate variables, where d is a security parameter, but nothing
more. The underlying intuition is that while all processed data may leak, combining noisy variables requires
an exponential number of measurements as their number increases [14].

Most masking approaches consist in carefully composing small gadgets that are individually proven
secure. This often necessitates using refresh gadgets, which functionally act as the identity function and help
reduce share dependencies by introducing additional randomness. However, masking schemes secure in the
d-probing model can become prohibitively expensive as the number of shares increases. While the complexity
of linear operations scales linearly with the number of shares, the main bottleneck arises from non-linear
operations, such as multiplying shared variables in Zq, which is common in post-quantum schemes. These
operations significantly affect overall efficiency, complicating the balance between security and performance
as the number of shares grows.

Masking-friendly post-quantum schemes. The use of masking in post-quantum NIST standards comes with a
significant performance cost. While the slowdown remains manageable for the Crystals-Kyber key encapsu-
lation mechanism [30], the impact on performance is much more severe for the Crystals-Dilithium signature
scheme [26], as highlighted in [4,15]. For other schemes, such as Falcon [28], designing efficient and prov-
able masking in the d-probing model presents even greater challenges. To tackle the security-performance
challenge, recent efforts have focused on designing masking-friendly schemes that reconsider the unmasked
design to limit the use of non-linear operations. These schemes instead primarily rely on gadgets that can
be efficiently masked and provably secure within the d-probing model. A first attempt to modify Falcon’s
sampler in this purpose [21] was invalidated in [27]. A more successful approach has emerged with the design
of Raccoon [16], a masking-friendly analog to Crystals-Dilithium. While Raccoon produces larger signa-
ture sizes, it offers a significant speedup—by orders of magnitude for masked implementation. Similarly, a
masking-friendly version of Falcon has been introduced in [20]. Both designs abandon the use of complex
Gaussian distributions in favor of a simpler noise distribution based on small uniform additions.

The stronger random probing model. Although these schemes have made progress in reconciling security
and efficiency, the d-probing model, on which they rely, has raised concerns about its practical relevance [6].
The noisy leakage model, introduced by Prouff and Rivain [29] and inspired by [14], better reflects real-
world devices by assuming all data leaks with noise. In 2014, Duc, Dziembowski, and Faust demonstrated
that masking schemes that are secure under the conceptually-simpler random probing model are also secure
against in the noisy leakage model [18].

In this model, each wire leaks with a constant probability p, reflecting side-channel noise in practice. A
circuit is secure in this model if the leakage can be simulated without knowledge of the secret, with a negligible
failure probability, as originally formalized in [1]. This model enables provable security bounds against
attackers, similar to traditional black-box security proofs. Furthermore, the random probing model not only
addresses probing attacks but also captures horizontal attacks [6], which exploit repeated manipulations of
variables. Overall, this model provides significantly stronger theoretical security guarantees compared to the
standard probing model. Several attempts have been made to design masking schemes secure in the random
probing model [24,1,3,23,2,8]. However, most of these schemes are either impractical or fail to tolerate a
constant leakage probability p. A notable breakthrough was made by Ananth, Ishai, and Sahai [2], who
introduced an expansion strategy built upon secure multi-party computation protocols. This approach was
later refined by Belaïd et al. [8,10,11], resulting in simpler random probing expandable gadgets that achieve
arbitrary levels of random probing security for a fixed leakage probability p. Cassiers et al. further developed
a tighter composition framework applied to the AES S-box in [13], though it struggles to scale to larger
circuits and numbers of shares. In parallel, Berti, Faust, and Orlt [12] introduced a generic compiler based
on leakage diagrams, by employing a refresh gadget derived from Dziembowski et al. [19]. While promising,
this approach requires specific gadgets with carefully crafted composition properties to achieve efficient
secure composition, making its generalization challenging. Jahandideh, Mennink, and Batina [25] proposed
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an algebraic approach to evaluate random probing security, but it relies on estimations and assumes the
adversary targets a single secret, limiting its applicability. As a result, extending these solutions to general
secure circuit constructions remains non-trivial. All in all, no concrete instantiations exist for post-quantum
schemes, which are expected to become widely adopted in the near future.

Our contributions. The primary goal of this paper is to make random probing security more practical for
real-world implementations. We introduce new techniques which we apply to the use case of lattice-based
signatures. Specifically, we focus our study on Raccoon [16], whose masking-friendly structure makes it
an ideal starting point. Our work addresses all the key steps necessary to achieve this goal, ranging from
extending security definitions to designing elementary gadgets and providing a comprehensive composition
proof. More specifically, the contributions of this paper are as follows:

1. We first extend existing random-probing security notions, which already include various flavors (e.g. for
composition and expansion), by adding two key features:
– We extend the random-probing security framework to handle auxiliary inputs in the circuit. Such

inputs are not masked and must hence tolerate some amount of leakage. In Raccoon’s masking proof,
auxiliary inputs (a.k.a. “unshared inputs”) capture the small uniform randomness used for sampling
noise. Additionally, we consider the possibility to expose public outputs, such as the public key in
the key generation algorithm and the signature in the signing algorithm, as proposed in [5] in the
context of standard probing security. The extended random-probing security notions are presented
in Section 3.1.

– We generalize the notion of random probing composability (RPC). Instead of a fixed threshold on
the number of input and output shares, we consider all possible cardinalities of leaked output shares
and required input shares for the simulation. This refined notion, termed cardinal-RPC, is detailed
in Section 3.2. We also combine the concepts of auxiliary inputs/public outputs with cardinal-RPC
in Section 3.3.

2. A crucial step in designing random probing secure gadgets is defining a refreshing gadget that randomizes
the shares before performing the target operation. One of our key contributions is the design of a new
random probing-friendly refresh gadget. The concept is simple: start with an encoding of zero and, in
each iteration, add and subtract a random value to two randomly selected shares. After a certain number
of iterations, the input to be refreshed is share-wise added to the result. As the number of iterations
increase, the “quality” of the refreshing improves until a threshold is reached. In Section 4.1, we quantify
this quality by introducing the new intermediary notion of random probing partitioned (RPP). We use
this to prove that our new refresh is cardinal-RPC, with a tunable security advantage depending on
the number of iterations. Taking a step forward, we integrate our new refresh design and composability
definition into the necessary basic gadgets: addition, copy and linear multiplication (i.e. multiplication
by a public value). We prove the cardinal-RPC security of these gadgets. These designs and proofs are
detailed in Section 4.2.

3. In Section 5, we introduce the noise generation gadget essential for Raccoon. This design leverages new
elementary gadgets to create an algorithm that combines small uniform random samples for generating
Raccoon’s secrets. We employ two approaches for designing the secure gadget: (1) using random probing
expandable (RPE) gadgets from [8,10,11] and (2) using our new cardinal-RPC composition framework and
gadgets. This section demonstrates a significant enhancement in complexity and randomness consumption
with our composition proof and new gadgets.

4. Finally, in Section 6, we combine all concepts and gadgets to present a random-probing-secure instanti-
ation of Raccoon, using parameters from the original scheme [16]. We evaluate both scenarios: (1) using
expansion and (2) applying our general composition proof. Our detailed complexity analysis demon-
strates that our new gadgets significantly enhance efficiency while achieving high levels of security. For
example, for the Raccoon-128-16 instance with a leakage probability of 2−24, we achieve 128-bit probing
security with a randomness consumption that is between 10 and 20 times lower than with the expansion
strategy of [8] (the number of multiplications remaining similar in both approaches, while the number
of additions scales with the randomness consumption).
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All security and complexity results for our new proposal can be reproduced using the Python script available
at https://github.com/CryptoExperts/EC25-random-probing-Raccoon.

2 Preliminaries

2.1 Notations

A probabilistic polynomial time algorithm (PPT) runs in time polynomial in the security parameter. Along
the paper, K shall denote a finite field or a finite ring.1 Sequences indexes are starting at 1. By convention,
when the maximum index is 0, the sequence is empty, for example x1, · · · , x0 = ∅. For some tuple x =
(x1, . . . , xn) ∈ Kn and for some set I ⊆ [n], the tuple (xi)i∈I is denoted x|I . For an integer n, we denote
P(n) the set of partitions of n, which is defined as:

P(n) =
{
(n1, . . . , nℓ)

∣∣ ℓ ∈ N ∧ n1 ≥ n2 ≥ · · · ≥ nℓ ∧ n1 + · · ·+ nℓ = n
}
.

Distributions. Two probability distributions, D1 and D2, are ε-close, denoted as D1 ≈ε D2, if their statistical
distance is upper bounded by ε, namely

SD(D1;D2) :=
1

2

∑
x

|pD1
(x)− pD2

(x)| ≤ ε ,

where pD1
(·) and pD2

(·) represent the probability mass functions of D1 and D2, respectively. For two random
variables X1 and X2, we write X1

id
= X2 when ε = 0 i.e. when X1 and X2 are identically distributed.

Envelopes. In the proofs throughout this paper, exact probabilities are often challenging to compute directly,
so we instead rely on upper bounds. The notion of probability envelope will be heavily used in this paper.
Specifically, for a random variable X following a discrete distribution D, we define E as an upper envelope
of the distribution. That is, for any value x, the probability that X takes the value x (i.e. P(X = x)) is
bounded above by E(x), written as X ≲ E . As we will consider probability distributions conditioned to
different disjoint events, we will often consider collections of probability envelopes with sometimes complex
indices. For instance, we consider collections E = (E(j1,...,jm)) indexed by tuples (j1, . . . , jm) ∈ [0, n]m. In
other words, each possible tuple value gives rise to an envelope associated with a distribution indexed by the
same tuple.

Sharing. We use the general notation of JxK = (x1, . . . , xn) ∈ Kn for a sharing of a secret value x.

2.2 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted by LinDec, refers to the function Kn → K defined
as

LinDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for any n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every n, ℓ ∈ N, on input
(Jx1K, . . . , JxℓK) ∈ (Kn)ℓ the n-linear decoding mapping acts as

LinDec : (Jx1K, . . . , JxℓK) 7→ (LinDec(Jx1K), . . . , LinDec(JxℓK)) .
1 Along the paper, K denotes the base structure (ring or field) of the arithmetic circuits. We use the notation K as

those circuits are defined over a field most of the time. But in the context of our application to Raccoon, K shall
be the ring Zq with q a non-prime integer.
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Definition 1 (Linear Sharing from [8]). Let n, ℓ ∈ N. For any x ∈ K, an n-sharing of x is a random
vector JxK ∈ Kn such that LinDec(JxK) = x. It is said to be uniform if for any set I ⊆ [n] with |I| < n the
tuple JxK|I is uniformly distributed over K|I|. An n-linear encoding is a probabilistic algorithm LinEnc which
on input a tuple x = (x1, . . . , xℓ) ∈ Kℓ outputs a tuple JxK = (Jx1K, . . . , JxℓK) ∈ (Kn)ℓ such that JxiK is a
uniform n-sharing of xi for every i ∈ [ℓ].

An arithmetic circuit on a finite field (or finite ring) K is a labeled directed acyclic graph whose edges are
wires and vertices are arithmetic gates processing operations on K. The circuit is built from a base set of gates
B = {g : Kℓ → Km}, such as addition gates (x1, x2) 7→ x1 + x2, multiplication gates (x1, x2) 7→ x1 · x2, and
copy gates x 7→ (x, x). A randomized arithmetic circuit includes a random gate that outputs a fresh uniform
random value from K. For a randomized circuit C, when we write C(ρ, ·), this refers to the corresponding
de-randomized circuit with the random tape ρ ∈ {0, 1}∗ as input.

In the following, we shall call an (n-share, ℓ-to-m) gadget, a randomized arithmetic circuit that maps an
input JxK ∈ (Kn)ℓ to an output JyK ∈ (Kn)m such that x = LinDec(JxK) ∈ Kℓ and y = LinDec(JyK) ∈ Km

satisfy y = g(x) for some function g. We recall the definition of a circuit compiler in Appendix A (introduced
in [8]).

2.3 Random Probing Security

Let p ∈ [0, 1] be some constant leakage probability parameter, a.k.a. the leakage rate. In the p-random
probing model, an evaluation of a circuit C leaks the value carried by each wire with a probability p, all the
wire leakage events being mutually independent.

As in [8], we formally define the random-probing leakage of a circuit from the two following algorithms:

– The leaking-wires sampler takes as input a randomized arithmetic circuit C and a probability p ∈ [0, 1],
and outputs a set W, denoted as

W ← LeakingWires(C, p) ,

where W is drawn by including each wire label from the circuit C with probability p to W (where all
the probabilities are mutually independent).

– The assign-wires sampler takes as input a deterministic arithmetic circuit C, a fixed random tape ρ ∈
{0, 1}∗, a set of wire labels W (subset of all the wire labels of C), and a shared input JxK, and it outputs
a |W|-tuple w ∈ K|W|, denoted as

w ← AssignWires(C, ρ,W, JxK) ,

where w corresponds to the exact assignments of the wires with label inW for an evaluation of C(ρ, JxK).

Note that w is deterministically fixed from C, ρ,W and JxK. Let us now induce a distribution for w as a
random probing leakage with fixed leaked wires.

Definition 2 (Random Probing Leakage for Fixed Leaked Wires). Let C be a deterministic arith-
metic circuit, p be a probability, W be a set of wire labels and JxK be a shared input of C. Let |ρ| be the size
of the random tape for C and R be a uniform random variable on {0, 1}|ρ|. We define the leakage for W as
the following random variable

LW(C, JxK) := AssignWires(C,R,W, JxK) .

Following [7], we shall say that a pair of vectors (JxK, JyK) ∈ (Kn)2 is admissible for a randomized 1-to-1
circuit C if there exists a random tape ρJxK,JyK such that JyK = C(ρJxK,JyK, JxK).

Definition 3 (Induced Random Probing Leakage for Fixed Leaked Wires). Let C be a deterministic
arithmetic circuit, p be a probability andW be a set of wire labels. Let (JxK, JyK) be an admissible pair of vectors
for C and RJxK,JyK be a uniform random variable on the set of random tapes ρ such that JyK = C(ρ, JxK). We
define the leakage for W as the following random variable

LW(C, JxK, JyK) := AssignWires(C,RJxK,JyK,W, JxK) .
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Let us now introduce the formal definition of the so-called random probing security (RPS for short).

Definition 4 (Random Probing Security). A randomized arithmetic circuit C is (p, ϵ)-random probing
secure with respect to encoding Enc if there exists a PPT simulator2 Sim such that for every input x, the
distribution of Sim(C) is ϵ-close to the distribution of LW(C, JxK) where

W ← LeakingWires(C, p) Drawing the leaking wires.

JxK← Enc(x). Drawing an encoding of the input.

Informally, while the random probing allows to consider that a large amount of wires can leak at the
same time, the leakage itself is balanced by the probability of such an event. For example, if W corresponds
to the labels of all the shares of the input x, the simulator will not be able to draw a correct sample without
knowing x. However, this event happens with a probability pn (n being the number of shares) which becomes
negligible as n grows.

3 Extensions of the Random Probing Security

In this section we introduce the notion of random probing security with auxiliary inputs and public outputs
(RPS-AI-O) as well as associated notions for the secure composition of gadgets. We also introduce the notion
of cardinal random probing composability (cardinal-RPC) which provides a new trade-off between complexity
and tightness for the composition compared to existing notions. We finally provide general composition results
in this framework.

3.1 Random Probing Security with Auxiliary Inputs and Public Outputs

The notion of random probing security with auxiliary inputs and public outputs is a generalization of the
RPS notion (Definition 4). It considers a randomized arithmetic circuit with shared inputs and outputs (as
in the standard RPS notion) with two extra powers for the simulator.

1. First, the circuit admits additional auxiliary inputs which are not in shared form and for which partial
information is potentially leaked. This partial information is captured by letting the simulator requesting
a set of coordinates for each auxiliary input. The cardinality of these sets follow a list of distributions
which is a parameter of the achieved notion.

2. Secondly, additional (unmasked) outputs are fully given to the simulator.

We introduce these new features in order to relax the RPS and achieve better complexity-security trade-
offs for cryptosystems using random nonces that can be partly leaked without compromising the security.
A typical example is the masked lattice-based signature scheme Raccoon. In this signature, some random
nonces can be exposed to a probing attacker without harming the security. In security proofs, these random
nonces are treated not as shares but as additional inputs [17]. This is formalized in the following definition.

2 In concrete instantiations, the simulator Sim starts with generating a set of leaking wires through, as explicited in
other definitions. Specifically, Sim will be decomposed with another PTT algorithm Sim∗ as follows

Sim(C) : W ← LeakingWires(C, p)

out← Sim∗(C,W).
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Experiment 1: RPS-AI-O

(I1, · · · , Ik)← Sim1(C) The simulator chooses indexes for the auxiliary

inputs.

out← Sim2(a1|I1 , · · · ,ak|Ik ,z) The simulator is given the values of the auxiliary

inputs. Next, it returns simulated values for the

leaking wires.

return (I1, · · · , Ik, out)

Definition 5 (Random Probing Security with Auxiliary Inputs and Public Outputs). Let n, ℓ,m,
k, d, α ∈ N. Let C be a randomized arithmetic circuit with the following input/output partition3

C :

masked inputs︷ ︸︸ ︷
(Kn)ℓ ×

auxiliary inputs︷ ︸︸ ︷
(Kα)k →

masked outputs︷ ︸︸ ︷
(Kn)m ×

public outputs︷︸︸︷
Kd

(JxK, a1, · · · ,ak) 7→ (JyK, z).

Let E = E1, · · · Ek be a set of probability distribution envelopes over the discrete set [0, α].
The circuit C is (p, ϵ,E)-random probing secure with auxiliary inputs and public outputs ((p, ϵ,E)-RPS-

AI-O) with respect to encoding Enc if there exists a PPT stateful two-stage simulator (Sim1,Sim2) such that,
for every admissible pair ((JxK,a1, · · · ,ak), (JyK, z)), the outputs of Experiment 1 are such that

1. |I1| ≲ E1, · · · , |Ik| ≲ Ek, and
2. out ≈ε LW(C, (JxK,a1, · · · ,ak), (JyK, z))︸ ︷︷ ︸

Induced random probing leakage

where W ← LeakingWires(C, p) and JxK← Enc(x).

3.2 Cardinal Random Probing Composability

The notion of random probing composability (RPC) was initially introduced in [8]. In essence, a circuit
composed of individual gadgets that satisfy the RPC property will itself be RPC, and, as a result, random
probing secure. Specifically, a gadget is (t, p, ϵ)-RPC with some integer t < n and p, ϵ ∈ [0, 1] if, given t
output shares, the probability that more than t shares of each input are required to simulate the leakage of
the gadget –where each wire leaks with probability p– along with the t output shares, is upper bounded by ϵ.
Based on this property, a circuit C composed of (t, p, ϵi)-RPC gadgets (Gi)1≤i≤|C| will itself be (t, p, ϵ)-RPC
with ϵ = 1−

∏
1≤i≤|C|(1− ϵi). The formal RPC definition and the latter composition theorem are formally

recalled in Appendix A.
In this paper, we shall refer to the original RPC notion as threshold-RPC because it is defined with

respect to a threshold t on the tolerated leakage on the input and output sharings. An alternative notion,
based on so-called probe distribution tables (PDT) and targeting tighter composition, was put forward in [13].
Instead of fixing a threshold t for both the number of output shares (to be simulated) and the number of
input shares (required for the simulations), the PDT of a gadget considers each specific pair of sets of input
shares and output shares. Specifically, each cell (I, J) in the table represents the probability that a particular
set of input shares I (represented by the row) is required to simulate the leakage of a gadget – with each wire
leaking with probability p – along with a corresponding set of output shares J (represented by the column).
Based on such PDT for each gadget, the authors of [13] define several composition rules to upper bound the
random probing security of the global circuit.

Similarly, we shall refer to the PDT notion as general-RPC because it is the most general RPC notion in
the sense that it encompasses the original (threshold-)RPC notion as well as the cardinal-RPC notion that
3 To be more generic, one can consider different dimensions for the auxiliary inputs i.e. Kα1 , . . . ,Kαk instead of
(Kα)k. The definition can be straightforwardly adapted.
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Experiment 2: Cardinal-RPC

W ← LeakingWires(G, p) Drawing the leaking wires.

I1, · · · Iℓ ← Sim1(G,W, J1, · · · Jm) The simulator is given the indexes of the

leaking outputs. It chooses indexes for

the inputs.

out1, out2 ← Sim2

(
Jx1K|I1 , · · · , JxℓK|Iℓ

)
The simulator is given the shares at desired

indexes and returns simulated values for the

leaking wires (out1) and outputs (out2)

return (I1, · · · Iℓ, out1, out2)

we propose here. The definition of general-RPC with our formalism is given in Appendix A. This notion
provides tighter composition than the threshold-RPC notion, which can be viewed as a special case of the
former. Specifically, the t-threshold-RPC security parameter ϵ of a gadget can be easily recalculated from
its PDT. For each column with an output set of cardinality at most t, we compute the sum of the rows
corresponding to input sets with cardinality strictly greater than t. The largest of these sums across all
eligible columns determines the threshold-RPC security parameter ϵ.

The cardinal-RPC notion provides a practical trade-off between the threshold RPC notion and the general
RPC notion. In essence, rather than using a fixed threshold t and for the number of shares required for
each output and input, the cardinal-RPC notion considers the possible cardinalities for each of them. This
makes it simpler than the general RPC notion, which considers all possible sets of shares for each input and
output—a number that grows exponentially with the number of shares. On the other hand, the combinations
of cardinalities only grow polynomially with the number of shares.

In the following definition, we use a collection of probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m

over [0, n]ℓ. It means that there are (n+ 1)m functions Ej1,···jm such that

∀j1, · · · jm, i1, · · · , iℓ ∈ [0, n]m+ℓ, Ej1,···jm(i1, · · · , iℓ) ∈ [0, 1] .

Definition 6 (Cardinal Random Probing Composability). Let n, ℓ,m ∈ N. Let E represent a collec-
tion of probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m over [0, n]ℓ. An n-share gadget G : (Kn)ℓ →
(Kn)m is (p,E)-cardinal random probing composable ((p,E)-cardinal-RPC) for some p ∈ [0, 1] if there exists
a PPT stateful two-stage simulator (Sim1,Sim2) such that for every shared input [[x]] ∈ (Kn)ℓ and for every
set collection (J1, . . . , Jm) where J1 ⊆ [n], . . . , Jm ⊆ [n], the outputs of Experiment 2 are such that

1. (|I1|, · · · , |Iℓ|) ≲ E|J1|,···|Jm|, and
2.

(out1, out2)
id
=

 LW (G, JxK, JyK)︸ ︷︷ ︸
Induced Random probing leakage

, (Jy1K|J1
, · · · , JymK|Jm

)︸ ︷︷ ︸
Output leakage

 ,

where W ← LeakingWires(G, p) and JyK← G(JxK).

We emphasize the broadness of Definition 6: every gadget can be cardinal RPC for some probability and
envelope. Hence, it only makes sense to claim that a gadget is (p,E)-cardinal-RPC for some explicit p and E.

The security advantage for the threshold-RPC property can be derived from the distribution envelope of
the cardinal-RPC property in a similar way that it is derived from the PDT of the general RPC notion as
explained above. This implication is formally stated in Lemma 1 hereafter.

Although cardinal-RPC provides a looser bound compared to general-RPC, the two notions become
equivalent in the case of a uniformly ℓ-to-m cardinal-RPC gadget. A gadget is uniformly cardinal-RPC
when, for any (t1, . . . , tℓ) ∈ [0, n]ℓ, all input shares of cardinality (t1, . . . , tℓ)—necessary for simulating both
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Experiment 3: Cardinal-RPC-AI-O

(JyK,z)← G(JxK,a) Drawing the public outputs.

W ← LeakingWires(C, p) Drawing the leaking wires.

(I1, · · · , Iℓ), (L1, · · · , Lk)← Sim1(G,W,z, J1, · · · , Jm) The simulator is given

the indexes of the leaking

outputs. It chooses

indexes for the shared

and auxiliary inputs.

out1, out2 ← Sim2(Jx1K|I1 , · · · , JxℓK|Iℓ ,a1|L1 , · · · ,ak|Lk ) The simulator is given the

shares at desired indexes

and returns simulated

values for the leaking

wires and outputs.

return (out1, out2, (I1, · · · , Iℓ), (L1, · · · , Lk))

the leakage and the specified output—occur with equal probability. Furthermore, this equal probability
distribution also applies to outputs of the same cardinality, ensuring symmetry in the simulation. The formal
definition is given in Appendix A.

3.3 Cardinal-RPC with Auxiliary Inputs and Public Outputs

We now extend the previously introduced notion of cardinal-RPC to gadgets with auxiliary inputs and
public outputs. The following definition is naturally obtained from cardinal-RPC (Definition 6) and RPS-
AI-O (Definition 5).

Definition 7 (Cardinal RPC with Auxiliary Inputs and Public Outputs).
Let n, ℓ,m, k, α, d ∈ N. Let E represent a collection of probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m

over [0, n]ℓ. Let E ′ represent a collection of probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m over [0, α]k.
Let G be a gadget with the following input/output partition

G :

masked inputs︷ ︸︸ ︷
(Kn)ℓ ×

auxiliary inputs︷ ︸︸ ︷
(Kα)k →

masked outputs︷ ︸︸ ︷
(Kn)m ×

public outputs︷︸︸︷
Kd

(JxK, a1, · · · ,ak) 7→ (JyK, z).

The gadget G is (p,E,E ′)-cardinal random probing composable with auxiliary inputs and public out-
puts ((p,E,E ′)-cardinal-RPC-AI-O) for some p ∈ [0, 1] if there exists a PPT stateful two-stage simulator
(Sim1,Sim2) such that for every shared input [[x]] ∈ (Kn)ℓ, auxiliary input a1, · · · ,ak ∈ (Kα)k, and for every
set collection (J1, . . . , Jm) where J1 ⊆ [n], . . . , Jm ⊆ [n], the outputs of Experiment 3 are such that

1. (|I1|, · · · , |Iℓ|) ≲ E|J1|,···|Jm|,
2. (|L1|, · · · , |Lk|) ≲ E ′|J1|,···|Jm|, and
3.

(out1, out2)
id
=

 LW(G, (JxK,a), (JyK, z))︸ ︷︷ ︸
Induced Random probing leakage

, (Jy1K|J1
, · · · , JymK|Jm

)︸ ︷︷ ︸
Output leakage


where W ← LeakingWires(C, p) and (JyK, z)← G(JxK,a).

Similarly, one can define threshold-RPC-AI-O from the original threshold-RPC definition. See Defini-
tion 17 in appendix for details.
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For composition proofs

Cardinal-RPC
Def 6

Threshold-RPC
Def 13

RPS: Target security
Def 4

General-RPC

RPE: for automated expansion
Def 18

Fig. 1: Schematic implications between security notions

3.4 Summary of the notions

There exist many implications between the presented security notions. The main ones are shown in the
schematic graph of Figure 1.

Lemma 1 (Cardinal-RPC =⇒ Threshold-RPC). Let n, ℓ,m ∈ N. Let E represent a collection of
probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m over [0, n]ℓ. If an n-share gadget G : (Kn)ℓ → (Kn)m is
(p,E)-cardinal-RPC for some p ∈ [0, 1], then it is (t, p, ϵ)-threshold-RPC for the same probability p and for
any integer t ∈ [0, n− 1], with

ϵ ≤ max
(J1,···Jm)∈J(t)

 ∑
(I1,I2,...,Iℓ)∈I(t)

E|J1|,··· ,|Jm| (|I1|, . . . , |Iℓ|)


with I(t) = [(I1, I2, . . . , Iℓ) ∈ [0, n]ℓ such that ∃i ∈ [1, ℓ], |Ii| > t],

and J(t) = [(J1, J2, . . . , Jm) ∈ [0, n]m such that |J1| ≤ t, |J2| ≤ t, . . . , |Jm| ≤ t].

Naturally, an n-share cardinal-RPC gadget is also cardinal-RPC-AI-O with auxiliary inputs of cardinality
that is a multiple of n. This implication is established in Lemma 2 and follows directly from the definitions
and the application of the law of total probability.

Lemma 2 (Cardinal-RPC-O =⇒ Cardinal-RPC-AI-O). Let n, ℓ,m, k, d ∈ N. Let E represent a
collection of probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m over [0, n]ℓ+k. If a gadget G : (Kn)ℓ+k →
(Kn)m × Kd is (p,E)-cardinal-RPC-O, then it is also (p,Ex,Ea)-cardinal-RPC-AI-O where Ex and Ea are
defined, for all j1, · · · jm, for all i1, · · · , iℓ ∈ [0, n]ℓ, for all i′1, · · · , i′k ∈ [0, n]k as

Exj1,···jm(i1, · · · , iℓ) =
∑

(t1,··· ,tk)∈[0,n]k

Ej1,···jm(i1, · · · , iℓ, t1, · · · , tk),

Eaj1,···jm(i′1, · · · , i′k) =
∑

(t1,··· ,tℓ)∈[0,n]ℓ

Ej1,···jm(t1, · · · , tℓ, i′1, · · · , i′k).

While the cardinal-RPC-AI-O property is introduced for compositional purposes, it is important to
highlight that a cardinal-RPC-AI-O circuit is also threshold-RPC-AI-O (following similar arguments to
those of Lemma 1) and RPS-AI-O, as formalized in Lemma 3.

Lemma 3 (Cardinal-RPC-AI-O =⇒ RPS-AI-O). Following Definition 7, let n, ℓ,m, k, α ∈ N. Let G
be a gadget with the following input/output partition (Kn)ℓ × (Kα)k → (Kn)m × Kd. Let E be a collection
of probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m over [0, n]ℓ. Let E ′ be a collection of probability
envelopes indexed by (j1, · · · jm) ⊆ [0, n]m over [0, α]k. If the gadget G is (p,E,E ′)-cardinal-RPC-AI-O, then
is also (p, ϵ,E∗)-RPS-AI with

ϵ = 1−
∑

(n1,n2,...,nℓ)∈[0,n−1]ℓ

E(0,...,0)(n1, n2, . . . , nℓ) and (E∗1 , · · · , E∗k ) = E ′(0,...,0) .

10



Proof. Let us assume that there exists a simulator (Sim1, Sim2) for Experiment 3 and build a simulator
(Sim∗

1, Sim
∗
2) for Experiment 1. These simulators (Sim∗

1, Sim
∗
2) are defined as follows.

Sim∗
1(G,W, z) : (I1, · · · , Iℓ), (L1, · · · , Lk)← Sim1(C,W, z, ∅, · · · , ∅)

keep (|I1|, · · · , |Iℓ|) in the internal state
return (L1, · · · , Lk)

Sim∗
2(a1|I1 , · · · ,ak|Ik) : get (|I1|, · · · , |Iℓ|) from the internal state

for i ∈ [1, ℓ]:

ri ← ($, · · · , $) ∈ [1, n]|Ii|

out1, out2 ← Sim2(r1, · · · , rℓ,a1|I1 , · · · ,ak|Ik)
return out2

The simulators (Sim∗
1, Sim∗

2) will succeed if the cardinals of I are all in [0, n − 1]. Indeed, in that case,
the shares can be simulated as uniform random values without knowledge of the inputs. The distinguishing
advantage ϵ is then

ϵ ≤ 1−
∑

(n1,n2,...,nℓ)∈[0,n−1]ℓ

E(0,··· ,0)(n1, n2, . . . , nℓ).

The probability envelopes are an application of Condition 2 of Definition 7 with J = (∅, · · · , ∅). □

Property 1 (RPx-AI-O =⇒ RPx). Let RPx be a security notion ∈ {RPS, threshold-RPC, cardinal-RPC}
(see Definitions 4, 13 and 6 respectively ). The security RPx is a particular case of RPx-AI-O (see Defini-
tions 5, 17 and 7 respectively) where d = k = 0.

Definition 8 (RPx-AI and RPx-O). Let RPx be a security notion ∈ {RPS, RPC, threshold-RPC,
cardinal-RPC}. We denote by RPx-AI (resp. RPx-O) the particularly case of RPx-AI-O where d = 0 (resp.
k = 0).

3.5 Composition Results

In the following, to construct cardinal-RPC-AI-O secure circuits, we will begin by considering the auxiliary
inputs as regular shared inputs of base cardinal-RPC gadgets, using a padding that we will define later.
Next, we will compose these cardinal-RPC gadgets using Lemma 4 and variants.

Lemma 4. Let n ∈ N and p ∈ [0, 1]. Let G1 : (Kn)2 → Kn be a (p, E1)-cardinal-RPC gadget for E1 a
collection of n+1 probability envelopes over [0, n]2, and let G2 : (Kn)2 → Kn be a (p, E2)-cardinal-RPC gadget
for E2 a collection of n + 1 probability envelopes over [0, n]2. The sequential composition G3 : (Kn)3 → Kn

depicted in Figure 2 is (p,E3)-cardinal-RPC where E3 is a collection of n+1 probability envelopes over [0, n]3

verifying ∀tin = (t1in, t
2
in, t

3
in) ∈ [0, n]3 and ∀tout ∈ [0, n],

E3tout(tin) =
n∑

i=0

E1i (t1in, t2in) · E2tout(t
3
in, i).

Proof. Let us assume that there exists simulators (Sim1
1, Sim

1
2) for Experiment 2 for G1 and (Sim2

1, Sim
2
2) for

G2. We aim at building a simulator (Sim∗
1, Sim

∗
2) for Experiment 2 for G3.

11



G1

G2x1

x2

z

x3

Fig. 2: Composition between G1 : (Kn)2 → Kn and G2 : (Kn)2 → Kn.

Let us define (Sim∗
1, Sim

∗
2) as follows.

Sim∗
1(G,W, J) : Separate W in W1, W2 for leaking wires in G1 and G2

(I21 , I
2
2 )← Sim2

1(C,W2, J)

(I11 , I
1
2 )← Sim1

1(C,W1, I
2
2 )

return (I11 , I
1
2 , I

2
1 ).

Sim∗
2(Jx1K|I1 , Jx2K|I2 , Jx3K|I3) : out11, out

1
2 ← Sim1

2

(
Jx1K|I1 , Jx2K|I2

)
out21, out

2
2 ← Sim2

2

(
Jx3K|I3 , out12

)
return (out11, out

2
1), out

2
2

Let us compute the distribution envelope. We denote by Ii,j = |Iij | and O = |J | where Iij and J are defined
in Sim∗

1. By definition, ∀tin = (t1in, t
2
in, t

3
in) ∈ [0, n]3, E3tout

(tin) is an upper bound on the following probability

pc = P(I1,1 = t1in ∧ I1,2 = t2in ∧ I2,1 = t3in|O = tout).

From the law of total probability and the Bayes formula, we have

pc =

n∑
i=0

P
((
I1,1 = t1in ∧ I1,2 = t2in ∧ I2,1 = t3in ∧ I2,2 = i

)
|O = tout

)
=

n∑
i=0

P
((
I1,1 = t1in ∧ I1,2 = t2in

)
|
(
O = tout ∧ I2,1 = t3in ∧ I2,2 = i

))
· P
((
I2,1 = t3in ∧ I2,2 = i

)
|O = tout

)
We now introduce the random variable Y which represents the subset of output shares from G1 that are
required for the subsequent simulation:

pc =

n∑
i=0

∑
Y⊆[0,n]

P
((
I1,1 = t1in ∧ I1,2 = t2in

)
|
(
O = tout ∧ I2,1 = t3in ∧ I2,2 = i ∧ Y = Y

))
· P
(
(Y = Y ) |O = tout ∧ I2,1 = t3in ∧ I2,2 = i

)
· P
((
I2,1 = t3in ∧ I2,2 = i

)
|O = tout

)
The events I1,1 = t1in and I1,2 = t2in in the first term depend only on the output set Y (and its cardinality)
and not on the subsequent leakage anymore, hence we can simplify the expression:

pc =

n∑
i=0

∑
Y⊆[0,n]
|Y |=i

P
((
I1,1 = t1in ∧ I1,2 = t2in

)
| (Y = Y )

)
· P
(
(Y = Y ) |O = tout ∧ I2,1 = t3in ∧ I2,2 = i

)
· P
((
I2,1 = t3in ∧ I2,2 = i

)
|O = tout

)
12



Algorithm 1 RPZeroEncγ

Output: JzK = (z1, . . . , zn) ∈ Kn such that z1 + · · ·+
zn = 0

1. JzK = (0, 0, . . . , 0) {n zeros}
2. for i = 1 to γ do
3. Select two distinct indices i1, i2 ∈ [1, n] uni-

formly at random
4. r

$←− K
5. zi1 ← zi1 + r
6. zi2 ← zi2 − r
7. end for
8. return JzK

Algorithm 2 RPRefreshγ(JaK)
Input: JaK = (a1, . . . , an) ∈ Kn

Output: JsK = (s1, . . . , sn) ∈ Kn such that s1 + · · ·+
sn = a1 + · · ·+ an

1. JzK← RPZeroEncγ()
2. for i = 1 to n do
3. si ← ai + zi
4. end for
5. return JsK

To obtain an upper bound, we use the worst-case scenario for the first term, which corresponds to the envelope
function of G1, and we bound the third term using the envelope function of G2, denoted by E2tout

(t3in, i):

pc ≤
n∑

i=0

E1i (t1in, t2in) · E2tout
(t3in, i) ·

∑
Y⊆[0,n]
|Y |=i

P
(
(Y = Y ) |O = tout ∧ I2,1 = t3in ∧ I2,2 = i

)
The last summation term equals one, which concludes the proof. □

4 New Random Probing Composable Gadgets

Now that we have defined our new security notions, we introduce cardinal-RPC base gadgets, which will be
used to construct random probing secure circuits. We begin with our new refresh algorithm in Section 4.1,
which is based on a novel zero encoding and will serve as the foundation for our elementary linear opera-
tions—addition, multiplication by a constant, and copy— detailed in Section 4.2

4.1 A New Versatile Cardinal-RPC Refresh Gadget

Definition 9 (ZeroEncoding). Let n ∈ N. A zero-encoding algorithm, denoted ZeroEnc, is a probabilistic
algorithm sampling an n-sharing of 0. In other words, JzK← ZeroEnc() such that

∑
zi = 0 (with probability

1).

We here introduce our new refresh gadget, referred to as RPRefresh, for random-pair refresh, which is
described in Algorithm 2. This gadget is based on the general construction which consists in refreshing the
input sharing by the addition of a sharing of 0. The novelty of our refresh gadget lies in the underlying
gadget RPZeroEnc to generate a sharing of 0, which is detailed in Algorithm 1. This gadget is parameterized
by a number γ of iterations, which influences both its complexity and its security (up to a certain limit).

The process begins with the initialization of a constant all-0 sharing. During each iteration, two share
indices are generated uniformly at random4 and a fresh random value is respectively added to and subtracted
from the corresponding shares. After all iterations have been completed, the sharing of zero produced by
RPZeroEnc is added to the input value in RPRefresh, share by share.

While its conceptual idea is simple, this refreshing technique never outputs a perfectly fresh sharing of
zero because of the probabilistic nature of the refreshed indexes. In a first step, let us discuss the quality of
the output while leaving probing security apart.
4 We deviate here from the classical circuit model by introducing the generation of random indices. However, this

can be interpreted as sampling a specific circuit (instantiated with our uniform indices) that we fully disclose to
the attacker.
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Definition 10 (Partition ZeroEncoding). For P = (n1, . . . , nℓ) ∈ P(n) an integer partition, we define
PartitionZeroEnc(P ) as a particular type of distribution producing a sharing JzK = Jz1K ∥ . . . ∥ JzℓK where JziK
is a fresh ni-sharing of 0 for every i ∈ [1, ℓ]. In other words,

PartitionZeroEnc(n1, . . . , nℓ) = z1, · · · , zn1︸ ︷︷ ︸∑
zi=0

, zn1+1, · · · , zn1+n2︸ ︷︷ ︸∑
zi=0

, · · · , zn−nℓ+1, · · · , zn︸ ︷︷ ︸∑
zi=0

.

The two extreme cases in Definition 10 are (worst case) for P = (1, . . . , 1) where PartitionZeroEnc(1, . . . , 1) =
(0, . . . , 0) (the poorest output quality), and (ideal case) for the singleton P = (n) where PartitionZeroEnc(n)
is a uniform sharing of 0 (the best output quality).

Lemma 5. Let n, γ ∈ N. Let ρ be a random tape. There exists a partition Pγ,ρ ∈ P(n), a permutation
function σγ,ρ : [1, n]→ [1, n] and another random tape ρ′γ,ρ such that

RPZeroEncγ(ρ) = σγ,ρ(PartitionZeroEnc(Pγ,ρ, ρ
′
γ,ρ))

where RPZeroEnc is depicted in Algorithm 1.

This lemma follows from the definition of RPZeroEnc. Let γ ∈ N and the random tape ρ be fixed parameters.
Here is an intuition of an iterative construction of the partition, denoted P , and the permutation, denoted
σ. Before the first iteration, the variable JzK = (0, · · · , 0) is exactly the output of

RPZeroEnc(1, 1, · · · , 1︸ ︷︷ ︸
n times

) .

Suppose now that the generated indices in the first iteration are (i1, i2) = (1, 2), then we have JzK =
(r1,−r1, . . . , 0) for r1 ← $ which is identically distributed to

RPZeroEnc(2, 1, · · · , 1︸ ︷︷ ︸
n−2 times

) .

If the generated indices were different from (1, 2), we would have a distribution identical to σ(PartitionZeroEnc(2, 1, · · · , 1))
for the same partition but with some coordinate permutation σ. Now for the second iteration, let r2 ← $,

if (i1, i2) = (1, 2), JzK = (r1 + r2, r1 − r2, 0 . . . , 0),

if (i1, i2) = (2, 3), JzK = (r1 ,−r1 + r2, r2, 0 . . . , 0),

if (i1, i2) = (3, 4), JzK = (r1 ,−r1 , r2,−r2, 0 . . . , 0).

In these cases, JzK will be statistically indistinguishable to

RPZeroEnc(2, 1, · · · , 1︸ ︷︷ ︸
n−2 times

) if (i1, i2) = (1, 2),

RPZeroEnc(3, 1, · · · , 1︸ ︷︷ ︸
n−3 times

) if (i1, i2) = (2, 3),

RPZeroEnc(2, 2, 1, · · · , 1︸ ︷︷ ︸
n−4 times

) if (i1, i2) = (3, 4).

All the cases are captured with a coordinate permutation in a similar way. On and on, one can construct
a partition iteratively depending on the randomness of RPZeroEnc. The permutation σ captures the possi-
bility of RPZeroEnc shuffling the order of the refreshed indices. As the number of iterations accumulates,
the distribution of JzK becomes increasingly less partitioned, approaching the ideal partition P = (n). This
iterative construction is formalized in a more general case (in the presence of leakage) in Lemma 6.
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Experiment 4: Random Probing Partition

W ← LeakingWires(ZeroEnc, p) Drawing the leaking wires.

ρ← $ Drawing a random tape.

JzK← ZeroEnc(ρ) Drawing JzK an encoding of 0.

leak ← AssignWires(ZeroEnc, ρ,W, ∅) Computing the leaked values.

JwK← Sim(W, leak) The leakages are given to the simulator. It

outputs an encoding of 0 whose randomness

is "weakened" due to the leakage.

(P, σ) := ϕ(W) Computing a partition and a permutation

corresponding to the leaking wires.

JuK← σ
(
PartitionZeroEnc(P )

)
Drawing an encoding of 0 corresponding to the

"remaining" randomness to compensate

the randomness that was given in the leakage.

return (P, JzK, JwK, JuK)

Let us now address the random probing security of RPZeroEnc. We will show below in Theorem 1 that
RPZeroEnc is cardinal-RPC (we recall that this security notion was presented in Definition 6). To be able
to establish the cardinal-RPC property, one needs to take into account the possible leaked iterations in the
quality of the refreshing. Naturally, the more leaked randomness, the less qualitative the refreshing is. We
introduce the intermediary notion of random probing partitioned (RPP) to characterize this quality with
respect to the number of iterations and the leakage probability. We later prove the cardinal-RPC security of
the refresh (Theorem 1) from the RPP security of the zero-encoding gadget.

Definition 11 (Random-Probing-Partition). Let n ∈ N and P(n) be the set of partitions of n. Let E
be a distribution envelope over P(n). An n-share zero-encoding gadget ZeroEnc : ∅ → Kn is (p, E)-random-
probing-partitioned (RPP) for some p ∈ [0, 1] if there exists a deterministic algorithm ϕ and a PPT simulator
Sim such that the outputs of the random experiment 4 satisfy:

1. P ≲ E, and
2. JzK and JwK + JuK are identically distributed.

Intuition of Definition 11. Note that Definition 11 is different from other security notions introduced in this
paper. It does not ensure that the random probing leakage can be simulated. The simulator is instead given
the leakage and the leaking wires. The idea of Definition 11 is to show that the output of ZeroEnc is such
that

JzK ≈ JwK︸︷︷︸
leaked 0-encoding

+ JuK︸︷︷︸
fresh partitioned 0-encoding

.

The sharing JuK hence captures the “remaining” randomness of the output sharing JzK given the internal
leakage of the gadget. Let us further stress that JuK follows the random distribution σ

(
PartitionZeroEnc(P )

)
which randomness is highly related to the partition P . The envelope E upper-bounds the distribution of the
partition P defined by (P, σ ) = ϕ(LeakingWires(ZeroEnc, p)).

The rationale for characterizing RPZeroEnc under the RPP notion is the following. Assume that, after a
number of non-leaking iterations, we get a distribution JzK = σ(PartitionZeroEnc(P )) for some partition P
and coordinate permutation σ. If, during a subsequent iteration, the value of the random r leaks, the output
Jz′K of this iteration can be expressed as: Jz′K = JzK + JwK where JwK is a vector with one coordinate set to
r, one to −r, and the rest to 0. Given the leakage of r, one can perfectly simulate this JwK. This gives the
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intuition behind the RPP property of RPZeroEnc: non-leaking iterations contribute to reducing the partition
structure of JuK = σ(PartitionZeroEnc(P )), while leaking iterations result in updates to the JwK component,
accumulating the leaked randomness. We note that the leakage can also concern zi1 or zi2 which results in
an update of both JuK (or (P, σ)) and JwK.

Before formally establishing the RPP security of RPZeroEnc in the next lemma, we introduce the concept
of transition set of a partition. Assume the output of an iteration corresponds to a partition P . The transition
set Tj(P ) contains all partitions P ′ that can be obtained after an iteration with i1 = i2 = j while the transition
set Tj1,j2(P ) contains all partitions P ′ that can be obtained when i1 = j1 ̸= i2 = j2. These transition sets are
identified in Table 1 and Table 2 , considering the different possible scenarios in terms of leakage. In these
tables, expressions such as (zi1 ⊕ zi2) ∧ r in the leakage column should be interpreted as a scenario where
either zi1 or zi2 leaks (but not both) and r does not leak.

Lemma 6 (RPZeroEnc is RPP). Let n, γ in N and p ∈ [0, 1]. The n-share zero-encoding gadget RPZeroEncγ

is (p, Eγ)-RPP for some distribution envelope Eγ defined over P(n) constructively as follows. For γ = 0, we
simply have E0(1) = 1 and E0(P ) = 0 for all P ∈ P(n)\{1}, where 1 = (1, 1, . . . , 1). Then, for all γ > 0, we
define Eγ+1 from Eγ as follows:

1. for all P ∈ P(n), we initiate Eγ+1(P ) to 0,
2. for all P ∈ P(n), for all j ∈ {1, . . . , |P |}, for all P ′ ∈ Tj(P ) from Table 1,

Eγ+1(P ′) = Eγ+1(P ′) + P(P → P ′) · Eγ(P ),

3. for all P ∈ P(n), for all j1, j2 ∈ {1, . . . , |P |} with j1 < j2, for all P ′ ∈ Tj1,j2(P ) from Table 2,

Eγ+1(P ′) = Eγ+1(P ′) + P(P → P ′) · Eγ(P ).

Proof. The RPZeroEnc algorithm begins with a shared vector initialized to (0, . . . , 0). Since all shares are
constant and known, and based on Definition 11, the only possible partition with strictly positive probability
is the vector of ones.

At iteration γ + 1, two indices i1 and i2 are drawn uniformly at random from {1, . . . , n}. These indices
can either belong to the same part nj of a partition P = (n1, n2, . . . , nk) with probability

ps =
nj · (nj − 1)

n(n− 1)

or to two different parts nj1 and nj2 with probability

pd = 2 · nj1 · nj2

n(n− 1)
.

Next, a random value r is drawn uniformly from K and added to the two elements zi1 and zi2 . If neither
of these elements leaks and both indices belong to the same part nj , then the partition remains unchanged.
However, if all these three elements are leaking and both indices belong to the same part nj , then zi1 and
zi2 are excluded from their zero encodings, forming two new independent parts. This scenario corresponds
to the first row of Table 1 and occurs with probability

ps · p2 · (1− (1− p)3),

where zi1 and zi2 each leak with probability p, and the value r, being manipulated three times, leaks with
probability 1− (1− p)3.

All possible leakage scenarios, whether the indices are drawn from the same part or from different parts,
are detailed in Tables 1 and 2. This demonstrates the construction of our envelope. □
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Table 1: Intermediate probabilities for Lemma 6, starting from a partition P = (n1, . . . , nk) and when the
drawn indices i1 and i2 belong to the same subset of cardinal nj where ps :=

nj ·(nj−1)
n(n−1) .

Leakage New partition P ′ ∈ Tj(P ) Probability P(P → P ′)

zi1 ∧ zi2 ∧ r (1, 1, n1, . . . , nj−1, nj − 2, nj+1, . . . , nk) ps · p2 · (1− (1− p)3)

zi1 ∧ zi2 ∧ r (2, n1, . . . , nj−1, nj − 2, nj+1, . . . , nk) ps · p2 · (1− p)3

(zi1 ⊕ zi2) ∧ r (1, n1, . . . , nj−1, nj − 1, nj+1, . . . , nk) 2 · ps · (p− p2) · (1− (1− p)3)(
(zi1 ⊕ zi2) ∧ r

)
(n1, . . . , nk)

2 · ps · p · (1− p)4

∨(zi1 ∧ zi2) + ps · (1− p)2

Table 2: Intermediate probabilities for Lemma 6, starting from a partition P = (n1, . . . , nk) and when the
drawn indices i1 and i2 belong to two blocks of cardinals nj1 and nj2 , where pd := 2 · nj1 ·nj2

n(n−1) .

Leakage New partition P ′ ∈ Tj1,j2(P ) Probability P(P → P ′)

zi1 ∧ zi2 ∧ r
(1, 1, n1, . . . , nj1−1, nj1 − 1, nj1+1,
. . . , nj2−1, nj2 − 1, nj2+1, . . . , nk)

pd · p2 · (1− (1− p)3)

zi1 ∧ zi2 ∧ r
(2, n1, . . . , nj1−1, nj1 − 1, nj1+1,
. . . , nj2−1, nj2 − 1, nj2+1, . . . , nk)

pd · p2 · (1− p)3

zi1 ∧ zi2 ∧ r (1, n1, . . . , nj1−1, nj1 − 1, nj1+1, . . . , nk) pd · p · (1− p) · (1− (1− p)3)

zi1 ∧ zi2 ∧ r (1, n1, . . . , nj2−1, nj2 − 1, nj2+1, . . . , nk) pd · p · (1− p) · (1− (1− p)3)

zi1 ∧ zi2 ∧ r
(n1, . . . , nj1−1, nj1 − 1, nj1+1,
. . . , nj2−1, nj2 + 1, nj2+1, . . . , nk)

pd · p · (1− p)4

zi1 ∧ zi2 ∧ r
(n1, . . . , nj1−1, nj1 + 1, nj1+1,
. . . , nj2−1, nj2 − 1, nj2+1, . . . , nk)

pd · p · (1− p)4

zi1 ∧ zi2 ∧ r (n1, . . . , nk) pd · (1− p)2 · (1− (1− p)3)

zi1 ∧ zi2 ∧ r
(n1, . . . , nj1−1, nj1+1,
. . . , nj2−1, nj1 + nj2 , nj2+1, . . . , nk)

pd · (1− p)5

In order to simplify the security analysis of RPRefresh, we now introduce an artificial extension of
RPZeroEnc, called RPZeroEnc+, in which all the output shares are individually manipulated after γ itera-
tions. In terms of leakage, this means that all the output shares of RPZeroEnc can now leak with probability
p, in addition to the internal leakage already accounted for in Lemma 6.

Lemma 7 (RPZeroEnc+ is RPP). Let n, γ in N and p ∈ [0, 1]. The n-share zero-encoding gadget RPZeroEncn,γ+

is (p, Eγ)-RPP for some distribution envelope Eγ defined over P(n) constructively as follows. The distribution
envelope Eγ is initialized to 0 for all the possible partitions. Then, for all k, for all partition P = (n1, . . . , nk)
in P(n), for all (d1, . . . , dk) such that d1 ≤ n1, . . . , dk ≤ nk,

Eγ(P ′) = Eγ(P ′) + EγRPZeroEnc(P ) ·
k∏

i=1

(
ni

di

)
· pdi · (1− p)ni−di

with EγRPZeroEnc the distribution envelope for the RPP property of RPZeroEnc given in Lemma 6 and P ′ =
(1, . . . , 1, n1 − d1, . . . , nk − dk).

Proof. Let us consider a partition P = (n1, . . . , nk) for some k ∈ [1, n]. We recall that the elements ni for
i ∈ [1, k] represent the cardinals of shares of JzK which form a perfect zero-encoding given the probed wires.
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We begin by computing the intermediate probability pint that for each part ni of P , exactly di(≤ ni) shares
of JzK leak. Since each share of JzK leaks independently with probability p, we apply the binomial distribution
to obtain:

pint =

k∏
i=1

(
ni

di

)
· pdi · (1− p)ni−di .

As a result, from partition P , we derive a new partition P ′ = (1, . . . , 1, n1−d1, . . . , nk−dk) with probability
pint.

Since the probability of obtaining P at the output of RPZeroEncγ is independent of pint, the joint prob-
ability is simply the product of these two probabilities.

Finally, the probability of obtaining P ′ at the output of RPZeroEncn,γ+ is the sum of the probabilities to
have a partition P at the output of RPZeroEncγ (EγRPZeroEnc(P )) and a final leakage that transform P into
P ′. □

We now introduce the major statement of this section.

Theorem 1 (RPRefresh is Cardinal-RPC). Let n, γ ∈ N, p ∈ [0, 1]. The n-share gadget RPRefreshγ is
(p, (Et)t∈[0,n])-cardinal-RPC with (Et)t∈[0,n] defined over [0, n] as follows. For all tin, tout ∈ [0, n],

Etout(tin) =
tin∑
i=0

q(i, tout) ·
(

n− i

tin − i

)
· ptin−i · (1− p)n−tin

where q(i, tout) is defined constructively as follows:

1. For all i, tout ∈ [0, n], initialize q(i, tout)← 0.
2. For every P = (n1, . . . , nk) ∈ P(n), for every d1 ∈ [0, n1], . . . , dk ∈ [0, nk], update

q(i, tout)← q(i, tout) + EγRPZeroEnc+(P ) ·
(
n1

d1

)
. . .
(
nk

dk

)(
n

tout

)
for tout = d1 + · · ·+ dk, i = n1 · 1d1=n1

+ · · ·+ nk · 1dk=nk
and EγRPZeroEnc+ taken from Lemma 7.

Intuitively, q(i, tout) upper bounds the probability that i input shares are required to simulate the leakage
on the internal variables of RPRefresh (without considering the input shares) along with the given tout output
shares.

Proof. From Lemmas 6 and 7, we have the probabilities associated to each partition of zero encoding cardinals
at the output of RPZeroEncγ+. In the cardinal-RPC property, the attacker is been given tout output shares.
When the indices of some of these output shares recover all the indices of a part of the partition at the
output of RPZeroEncγ+, then the attacker obtains the corresponding input shares. Conversely, if the indices
of the output shares given to the attacker do not entirely recover the indices of a part of the partition at
the output of RPZeroEncγ+, the corresponding input shares are perfectly masked and hence not required for
the simulation. We can compute the related probability with the distribution of a multihypergeometric law.
Namely, for a partition P = (n1, . . . , nk) for some k ∈ [1, n], given tout output shares, the probability that i
input shares are required to simulate the leakage on the internal variables of RPRefresh (without considering
the leakage on the input shares) is given by

q(i, tout) =
∑

P=(n1,...,nk)
P∈P(n)

EγRPZeroEnc+(P )
∑

(d1,...,dk)
d1+···+dk=tout

n1·1d1=n1
+···+nk·1dk=nk

=i

(
n1

d1

)
. . .
(
nk

dk

)(
n

tout

)
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(a) p = 2−10 (b) p = 2−16

Fig. 3: Computed Threshold-RPC-AI security advantage ε of RPRefresh with fixed (p, n, n
2 ) for n ∈

{8, 12, 16, 20} and p ∈ {p = 2−10, p = 2−16} as a function of the number of iterations γ. The dotted
lines corresponds to the maximum achievable security advantage.

in which each di represent the number of given output shares whose indices belong to the ith encoding. When
i ≤ tin, this probability is to be multiplied by the probability to recover the remaining input shares according
to their leakage. Namely, the probability to recover j input shares among n− i is given by(

n− i

j

)
· pj · (1− p)n−i−j ,

which concludes the proof. □

Complexity of the envelope computation. The above results provide explicit formulas to compute the en-
velopes characterizing the cardinal-RPC security of our refresh. Following Lemma 6, evaluating those formu-
las has a complexity O

(
γ · |P(n)| · n2

)
by iterating over the γ iterations of the refresh, the |P(n)| partitions

of n, and the different pairs of elements within a partition (whose number is lower than n2). According to
the Hardy-Ramanujan asymptotic formula, the number of integer partitions of n can be approximated as

|P(n)| ≈ 1

4n
√
3
exp

(
π

√
2n

3

)

which is subexponential in n. For instance, |P(8)| = 22, |P(16)| = 231, |P(32)| = 8349, |P(64)| < 221.
In practice, using our (non-optimized) Python implementation of this computation results in, e.g., less
than 40 milliseconds for (n, γ) = (8, 50), around 9 seconds for (n, γ) = (16, 100), around 3 minutes for
(n, γ) = (20, 120) on a regular laptop.

Figure 3 illustrates the threshold-RPC security advantage of RPRefresh for various numbers of shares n,
with t = n

2 , and for two leakage probabilities, p = 2−10 (Figure 3a) and p = 2−16 (Figure 3b), as a function
of the number of random values γ. Those results have been obtained and validated by two independent
implementations (from two different developers) of the envelope evaluation. We observe that, after a sufficient
number of random values, the security advantage stabilizes, reaching a steady state. This steady state is
logically lower bounded by the probability of observing t + 1 input shares from a simple random probing
leakage of these shares (i.e., each share leaks with probability p), which is given by

(
n

t+1

)
· pt+1 · (1− p)n−t−1.

In the figure, this probability is represented by dotted lines in colors corresponding to n.
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4.2 Simple Sharewise Cardinal-RPC Gadgets

With RPRefresh now defined, we proceed to construct a set of foundational gadgets that will serve as building
blocks for many common schemes. The proposed constructions follow a very natural blueprint for defining
a sharewise (linear multiplication, addition, or copy) gadget from a refresh gadget, called Refresh, such as
already proposed in [10,11]. Our main contribution here is to prove the cardinal-RPC security of these gadgets
from that of the underlying refresh.

Linear Multiplication Gadget. The linear multiplication gadget was defined in [11] with a linear multipli-
cation preceding the refreshing. For consistency with the other simple gadgets, we define it with a refreshing
of the shares preceding the linear multiplication with the constant: Gcmult(JxK, c) = Refresh(JxK) · c.

Algorithm 3 Gcmult(JxK, c) adapted from [11]
Input: JxK = (x1, x2, . . . , xn), constant c ∈ K
Output: JzK = (z1, z2, . . . , zn) such that z1 + z2 + · · ·+ zn = c · (x1 + x2 + · · ·+ xn)
1. JzK← Refresh(JxK)
2. for i = 1 to n do
3. zi ← zi · c
4. end for
5. return JzK

Lemma 8 (Gcmult is Cardinal-RPC). Let n ∈ N. Let Refresh: Kn → Kn be an n-share refresh gadget
satisfying (p, (ERt )t∈[0,n])-cardinal-RPC for some collection of envelopes (ERt )t∈[0,n] and some probability p ∈
[0, 1]. Then, Gcmult is (p, (Ecmult

t )t∈[0,n])-cardinal-RPC where, for all tout ∈ [0, n], Ecmult
tout is defined, for all

tin ∈ [0, n], as:

Ecmult
tout (tin) =

n−tout∑
i=0

(
n− tout

i

)
· pi · (1− p)n−tout−i · ERtout+i(tin).

Proof. The only additional wires that can potentially leak in Gcmult compared to Refresh are the output
shares of Refresh. The probability that tin input shares are required to simulate the leakage and the final
output shares is therefore obtained by computing the product of the leakage probability of i such wires with
the probability of Refresh, considering an output composed of the global output plus these extra leaking
wires. The probability that i output shares of Refresh leak, out of the n− tcmult

out output shares that remain
unknown to the attacker, is given by (

n− tout

i

)
· pi · (1− p)n−tout−i,

which completes the proof. □

Addition Gadget. Gadd is the simple addition gadget from [10]. It performs Gadd(JxK, JyK) = Refresh(JxK)+
Refresh(JyK).

Algorithm 4 Gadd(JxK, JyK) from [10]
Input: JxK = (x1, x2, . . . , xn) and JyK = (y1, y2, . . . , yn)
Output: JzK = (z1, z2, . . . , zn) such that z1 + z2 + · · ·+ zn = (x1 + y1) + (x2 + y2) + · · ·+ (xn + yn)
1. Jx′K← Refresh(JxK)
2. Jy′K← Refresh(JyK)
3. for i = 1 to n do zi ← x′

i + y′
i

4. return JzK
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Lemma 9 (Gadd is Cardinal-RPC). Let n ∈ N. Let Refresh: Kn → Kn be an n-share refresh gadget
satisfying (p, (ERt )t∈[0,n]))-cardinal-RPC for some collection envelopes (ERt )t∈[0,n] and some probability p ∈
[0, 1]. Then, Gadd is (p, (Eaddt )t∈[0,n])-cardinal-RPC where, for all tout ∈ [0, n], Eaddtout is defined, for all tin =
(tin,1, tin,2) ∈ [0, n]2, as

Eaddtout (tin) =

n−tout∑
i1=0

(
n− tout

i1

)
· pi1 · (1− p)n−tout−i1 · ERtout+i1(tin,1)

·
n−tout∑
i2=0

(
n− tout

i2

)
· pi2 · (1− p)n−tout−i2 · ERtout+i2(tin,2).

Proof. We assume (this is the worst case) that all the tout output shares given to the attacker require the
corresponding 2 · tout output shares of the two instances of Refresh to be simulated. As for Gcmult, the
output shares to simulate for each instance of Refresh are completed by the possible leakage at the input of
the addition. In that case, the probabilities for both instances of Refresh to require tin,α input shares (for
α ∈ {1, 2}) are independent given the total number of output shares to simulate with the leakage and we
obtain the above envelope. □

In general, the addition gadget Gadd can involve two distinct refresh gadgets, each with a different envelopes
collection. Lemma 9 can be easily updated to account for this by getting use of the first envelopes collection
in the first sum and the second envelopes collection in the second sum.

Copy Gadget. Gcopy is the simple copy gadget from [10]. It computes Gcopy(JxK) = (Refresh(JxK),Refresh(JxK)).

Algorithm 5 Gcopy(JxK) from [10]

Input: JxK = (x1, x2, . . . , xn)
Output: Jz1K = (z11 , z

1
2 , . . . , z

1
n) and Jz2K = (z21 , z

2
2 , . . . , z

2
n) such that z11 + z12 + · · · + z1n = z21 + z22 + · · · + z2n =

x1 + x2 + · · ·+ xn

1. Jz1K← Refresh(JxK)
2. Jz2K← Refresh(JxK)
3. return (Jz1K, Jz2K)

Lemma 10 (Gcopy is Cardinal-RPC). Let n ∈ N. Let Refresh: Kn → Kn be an n-share refresh gadget
satisfying (p, (ERt )t∈[0,n]))-cardinal-RPC for some collection of envelopes (ERt )t∈[0,n] and some probability
p ∈ [0, 1]. Then, Gcopy is (p, (Ecopyt )t∈[0,n]2)-cardinal-RPC where, for all tout ∈ [0, n]2, Ecopytout

is defined, for
all tin ∈ [0, n], as:

Ecopytout
(tin) =

∑
0≤i≤n

ERtout,1(i) · E
R
tout,2(tin − i).

Proof. From the property of Refresh, when tRout output shares are given to the attacker, the probability that
tRin input shares are required for the simulation of both these output shares and the leakage is upper bounded
by

ERtout
(tRin).

In the context of Gcopy, we have two instances of Refresh. The probability that tin input shares are required
for the simulation of the leakage and the output shares for Gcopy is thus computed from the probability that
one instance of Refresh requires i input shares for its own simulation and the second one tin − i, hence the
final result. □
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Algorithm 6 Gdecode(JxK)
Input: JxK = (x1, x2, . . . , xn)
Output: x = x1 + x2 + . . .+ xn

1. JtK← Refresh(JxK)
2. x← ShareSum(JtK)
3. return x

Algorithm 7 ShareSum(JxK)
Input: JxK = (x1, x2, . . . , xn)
Output: x = x1 + x2 + . . .+ xn

1. if n = 2 then return x1 + x2

2. if n = 3 then return ShareSum((x1, x2)) + x3

3. y ← ShareSum(x1, x2, . . . , x⌊n
2
⌋)

4. z ← ShareSum(x⌊n
2
⌋+1, x⌊n

2
⌋+2, . . . , xn)

5. return x = y + z

The cardinal-RPC advantage of Gcopy is tighter when the gadget is instantiated with uniformly cardinal-
RPC refresh gadgets, as shown in Corollary 15. Similar to the addition gadget, Gcopy can also be instantiated
with two distinct refresh gadgets, and the security results can be easily adapted accordingly.

Corollary 1. Let n ∈ N. Let Refresh: Kn → Kn be an n-share (p, (ERt )t∈[0,n])-uniformly cardinal-RPC
refresh gadget for some collection of envelopes (ERt )t∈[0,n] and some probability p ∈ [0, 1](See Definition 16).
Then, Gcopy is (p, (Ecopyt )t∈[0,n]2)-cardinal-RPC where, for all tout ∈ [0, n]2, Ecopytout

is defined as:

∀tin ∈ [0, n], Ecopytout
(tin) =

∑
0≤i,j≤n

i,j≤tin≤i+j

ERtout,1(i) · E
R
tout,2(j) ·

(
i

j−(tin−i)

)
·
(
n−i
tin−i

)(
n
j

) .

Proof. We use the property of uniformly cardinal-RPC gadgets for which the sets of input shares required
for the simulation are equiprobable for equal cardinals. Specifically, we can compute the probability that two
sets of input shares of sizes i and j, required to simulate the leakage of both refresh gadgets and the outputs,
represent tin input shares. The number of common elements between both sets follows an hypergeometric
law. Namely, the probability to have i+ j − tin common elements is given by(

i
j−(tin−i)

)
·
(
n−i
tin−i

)(
n
j

) ,

hence the final result. □

4.3 Output Decoding Gadget

An output decoding gadget reconstructs values from their shares and outputs them in plain form. It is
involved for variables that should be unmasked before being returned such as the public key in the key
generation algorithm or the signature in the signing algorithm. In the probing model, it typically consists of
a refresh gadget followed by a straightforward addition of all the shares. To our knowledge, it has not yet
been analyzed within the random probing model. In this work, we propose combining a refresh gadget with
a recursive addition of the shares (yielding a binary tree of additions), as presented in Algorithm 6.

Since the output of this gadget is intended to be revealed publicly, its security requirements differ from
those of the previous gadgets. Specifically, in the context of composition, we are interested in the cardinal
RPC with public output (Cardinal-RPC-O). This notion is a special case of the Cardinal-RPC-AI-O notion
of Definition 7.

Theorem 2 (ShareSum is Cardinal-RPC-O). Let n ∈ N. ShareSum from Algorithm 7 is (p, E)-cardinal-
RPC-O where E is defined from the distribution D(n) over [0, n]2 as:
5 Note that the refresh gadget instantiated in Section 4.1 does not achieve this uniform property. Hence, the tightness

of Corollary 1 cannot be obtained in Section 6.
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1. Sample (r, s)← D(n)

2. Return s

The distribution D(n) is recursively defined as follows. For every n > 1:

1. Sample (r1, s1)← D(⌊n/2⌋)

2. Sample (r2, s2)← D(⌈n/2⌉)

3. Return

(r, s) =

{(
n, min(r1 + r2, s1 + ⌈n/2⌉, s2 + ⌊n/2⌋)

)
with proba. p(

r1 + r2, min(r1 + r2, s1 + ⌈n/2⌉, s2 + ⌊n/2⌋)
)

with proba. 1− p

And for n = 1: {
Return (1, 1) with proba. p
Return (0, 0) with proba. 1− p

Proof. Consider the circuit defined by ShareSum which is represented as a binary tree, where the n leaves
are the input shares of the circuits and the root the output. Each node leaks with probability p and we want
to identify the number of input shares which are necessary for a perfect simulation of the leakage, given that
the output x is provided to the simulator. By definition of ShareSum, we have the following invariant: an
addition node in the tree with n′ incoming leaves has two incoming sub-trees, the left one having ⌊n′/2⌋
leaves and the right one having ⌈n′/2⌉ leaves. The simulation strategy is illustrated on Figure 4.

x

w2 = x − w1w1

v1 v2 v4

v3 = x − (v1 + v2 + v4)

Fig. 4: Illustration of the simulation strategy for the ShareSum gadget. White nodes do not leak and hence
do not require simulation. Black leaves either leak or are required for the simulation gray nodes. All the gray
nodes can be simulated from the leaves (whether they leak or not). All the blue nodes are “simulated from
the root”, meaning they are simulated from the output x plus some of the gray nodes. In this example, one
needs n− 3 input shares for the simulation.

We say that a node can be “simulated from the root” whenever its parent node can be simulated from the
root and its sibling node is the root of a sub-tree for which all the leaves are input of the simulation. In the
example of Figure 4, w2 and v3 satisfy this definition. This make them simulatable from the root x and some
gray nodes which are themselves simulatable from the given leaves. In practice, the pattern represented in
Figure 4 can be used for the simulation with any blue path going from the root to one intermediate node (v3
in the example). The sibling sub-trees of this path (gray nodes in the example) are all fully simulated from
their leaves which are required to the simulation. The remaining sub-tree with highest blue node as root is
simulated from the required subset of its leaves, depending on the leaking nodes.

To identify the minimal set of input shares required for the simulation one can define a recursive walk
from the root to the leaves as follows. Let us denote T = (R, T1, T2) any sub-tree with root R, left sub-tree
T1 and right sub-tree T2. It T = (R, ∅, ∅), then R is a leaf. We denote leak(R) the event that the node R
leaks (which occurs with probability p) and leaves(T ) the set of leaves of a sub-tree T . We further denote b,
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a Boolean value indicating whether the root of the current sub-tree T can be simulated from the root (which
depends on what happened before in the walk). We obtain the following recursive function:

NeededLeaves(T, b):

1. (R, T1, T2) = T
2. If T1 = T2 = ∅ (R is a leaf),

(a) If leak(R) (R leaks), return {R}.
(b) If ¬leak(R) (R does not leak), return ∅.

3. Let L1 = NeededLeaves(T1, 1) ∪ leaves(T2) (make T2 a gray sub-tree, only possible if b = 1).
4. Let L2 = NeededLeaves(T2, 1) ∪ leaves(T1) (make T1 a gray sub-tree, only possible if b = 1).
5. Let L3 = NeededLeaves(T1, 0) ∪ NeededLeaves(T2, 0) (identify leaves to simulate T1 and T2 sub-trees, only possible if R does

not leak).
6. If b = 0 (R cannot be simulated from the root):

(a) If leak(R), return leaves(T ) (all the leaves are necessary to simulate R).
(b) If ¬leak(R), return L3 (leaves to simulate T1 and T2).

7. If b = 1 (R can be simulated from the root): return either L1, L2 or L3, the set with the smallest cardinality.

By calling NeededLeaves(T, 1) on the full tree T , we obtain the smallest set of leaves that are necessary
to simulate all the leaking nodes of the tree according to the simulation strategy exemplified in Figure 4.
Consider T as the random variable representing a sub-tree where each node leaks with probability p. Define
R = NeededLeaves(T, 0) and S = NeededLeaves(T, 1). We now argue that the pair (|R|, |S|) follows the
distribution D(nT ) defined in Theorem 2, where nT is the number of leaves of the sub-tree T . The base case
is trivial: (|R|, |S|) = (1, 1) with probability p (leaf leakage) and (0, 0) otherwise. The general case follows
from the description of NeededLeaves, observing that in the definition of D(n), we have (r1, s1) = (|R1|, |S1|)
and (r2, s2) = (|R2|, |S2|) where:

(Ri,Si) ∼
(
NeededLeaves(Ti, 0),NeededLeaves(Ti, 1)

)
∀i ∈ {1, 2} .

□

From Lemma 4, Gdecode is therefore naturally Cardinal-RPC-O. The distribution D(n) in the above
theorem can be efficiently computed through recursion, providing a precise evaluation of the Cardinal-RPC-
O security for our decoding gadget.

5 Random Probing Secure Noise Generation

In this section, we provide a random-probing composable version of the noise generation gadget introduced
in Raccoon [16]. In such a context, the base ring of the considered arithmetic circuit is K = Zq for some
integer q. The principle of the noise generation gadget is to sample uniform random values over a subset of
Zq and to add them to the input sharing, thereby introducing the noise required in the underlying Module
Learning with Errors (MLWE) instance. In our context, these random values are captured as auxiliary inputs
and the noise generation gadget simply aims at summing them to the sharings while minimizing the leakage
on these values. We evaluate the security and complexity of two constructions –either in chain or in tree
structure– when this sum is instantiated with our new addition gadget introduced in Section 4.2.

5.1 Noise Generation Gadget

Algorithm 8 generically describes the gadget responsible for noise addition. Essentially, it relies on a
parsing procedure DivideAI, depicted in Algorithm 9, which splits the auxiliary inputs into blocks of n
elements from K and appends zeros to the last block, if necessary. Subsequently, a macro gadget, Gsum, is
invoked to operate on these blocks of size n. This can be instantiated either with Gsum-chain from Algorithm 10
or with Gsum-tree from Algorithm 11. The input sharing is finally added to the output of Gsum to produce
the final result.

As stated in Lemma 11, AddNoiseTo is immediately cardinal-RPC if both algorithms Gsum and Gadd are
cardinal-RPC, as indicated by the composition result in Lemma 4.
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Algorithm 8 AddNoiseTo(JxK,a)
Input: JxK = (x1, x2, . . . , xn), auxiliary inputs a ∈ Kα

Output: JyK = (y1, y2, . . . , yn) such that y = x+ a1 +
a2 + · · ·+ aα

1. (b1,b2, . . . ,b⌈α
n
⌉)← DivideAI(a, n)

2. z← Gsum(b1,b2, . . . ,b⌈α
n
⌉)

3. return Gadd(JxK, z)

Algorithm 9 DivideAI(a, n)

Input: Auxiliary inputs a ∈ Kα, n
Output: b1,b2, . . . ,b⌈α

n
⌉ ∈ Kn

1. for i = 1 to ⌈α
n
⌉ − 1 do

2. bi ← (a(i−1)·n+1, . . . , ai·n)
3. end for
4. b⌈α

n
⌉ ← (a(⌈α

n
⌉−1)·n+1, . . . , aα, 0, . . . , 0)

5. return (b1,b2, . . . ,b⌈α
n
⌉)

Algorithm 10 Gsum-chain(b1,b2, . . . ,bℓ)

Input: (b1,b2, . . . ,bℓ) ∈ (Kn)ℓ

Output: z ∈ Kn

1. t← b1

2. FOR i = 2 to ℓ, t← Gadd(t,bi).
3. return t

Algorithm 11 Gsum-tree(b1,b2, . . . ,bℓ)

Input: (b1,b2, . . . ,bℓ) ∈ (Kn)ℓ

Output: z ∈ Kn

1. if ℓ = 1 return b1

2. return Gadd(Gsum-tree(b1, , . . . ,b⌊ℓ/2⌋),
Gsum-tree(b⌊ℓ/2⌋+1,b2, . . . ,bℓ))

Gadd Gadd Gadd

b1

b2

b3 b4

(a) Gsum-chain

Gadd

Gadd

Gadd

Gadd

b1

b2

b3

b4

b5

(b) Gsum-tree

Fig. 5: Noise generation gadget.

Lemma 11 (AddNoiseTo is Cardinal-RPC). Let n, α ∈ N and p ∈ [0, 1]. Let Gsum: (Kn)⌈
α
n ⌉−1 → Kn

be (p, (EGsum
t )t∈[0,n])-cardinal-RPC for some envelopes collection (EGsum

t )t∈[0,n] defined over [0, n]⌈
α
n ⌉−1 and

Gadd: (Kn)2 → Kn be (p, (EGadd
t )t∈[0,n])-cardinal-RPC for some envelopes collection (EGadd

t )t∈[0,n] defined
over [0, n]2. Then, AddNoiseTo, defined in Algorithm 8, is (p, (EADNt )t∈[0,n])-cardinal-RPC for some envelopes
collection (EADNt )t∈[0,n] defined over [0, n]×[0, α] such that for all t ∈ [0, n], for all tin = (txin, t

a
in,1, . . . , t

a
in,⌈α

n ⌉) ∈
[0, n]⌈

α
n ⌉+1,

EADNt (txin, t
a
in,1 + . . .+ tain,⌈α

n ⌉) =

n∑
i=0

EGsum
i (tain,1, . . . , t

a
in,α) · E

Gadd
t (txin, i).

In the following, we explore two structures for generating noise: a chain structure, illustrated in Figure 5a,
and a binary tree structure, shown in Figure 5b. The respective algorithms for these structures are provided
in Algorithms 10 and 11. Lemmas 12 and 13 establish their cardinal-RPC properties.

Lemma 12 is proven by recursively applying the composition result from Lemma 4. Similarly, Lemma 13
is established by applying the same composition result recursively on each branch of the tree, starting from
the output nodes.
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Lemma 12 (Gsum-chain is Cardinal-RPC). Let n, ℓ ∈ N and p ∈ [0, 1]. Let Gadd: (Kn)2 → Kn be
an n-share (p, (EGadd

t )t∈[0,n])-cardinal-RPC for some envelopes collection (EGadd
t )t∈[0,n] defined over [0, n]2.

Gadget Gsum-chain: (Kn)ℓ → Kn, instantiated with Gadd, is (p, (ESNCt )t∈[0,n])-cardinal-RPC for some envelopes
collection (ESNCt )t∈[0,n] defined over [0, n]ℓ as follows:

∀tin = (t1in, t
2
in, . . . , t

ℓ
in) ∈ [0, n]ℓ,

ESNCt (tin) =

n∑
i3=0

EGadd
i3

(t1in, t
2
in) · · · · ·

n∑
iℓ=0

EGadd
iℓ

(iℓ−1, t
ℓ−1
in ) · EGadd

t (iℓ, t
ℓ
in) .

Lemma 13 (Gsum-tree is Cardinal-RPC). Let n, ℓ ∈ N and p ∈ [0, 1]. Let Gadd: (Kn)2 → Kn be an n-
share (p, (EGadd

t )t∈[0,n])-cardinal-RPC for some envelopes collection (EGadd
t )t∈[0,n] defined over [0, n]2. Gadget

Gsum-tree: (Kn)ℓ → Kn, instantiated with Gadd, is (p, (ESPT(ℓ)
t )t∈[0,n])-cardinal-RPC for some envelopes

collection (ESPT(ℓ)
t )t∈[0,n] recursively defined over [0, n]ℓ as follows. For all tin = (t1in, t

2
in, . . . , t

ℓ
in) ∈ [0, n]ℓ,

if ℓ = 3, ESPT(3)
t (t1in, t

2
in, t

3
in) =

n∑
i=0

EGadd
i (tin,1, tin,2) · EGadd

t (i, tin,3)

otherwise, ESPT(ℓ)
t (tin) =

n∑
i1=0

n∑
i2=0

ESPT(⌊ℓ/2⌋)
i1

(t1in, . . . , t
⌊ℓ/2⌋
in ) · ESPT(⌈ℓ/2⌉)

i2
(t

⌊ℓ/2⌋+1
in , . . . , tℓin) · E

Gadd
t (i1, i2)

with the sub-tree SPT(α) being (p, (ESPT(α)
t )t∈[0,n])-cardinal-RPC for 3 ≤ α ≤ n for some envelope (ESPT(α)

t )t∈[0,n]

and with SPT(2) = Gadd.

5.2 Instantiation from New Gadgets

In a first attempt, we can use the expansion strategy from [8] to construct a noise generation gadget based
on a small addition gadget, as detailed in Appendix B.2. In this section, we illustrate how to leverage our
new addition gadget Gadd to achieve the same objective. Table 3 displays the threshold-RPC advantage of
Gadd from its cardinal-RPC envelopes (see Lemma 9) while fixing the leakage probability, the number of
shares, and the value of t. The complexity is assessed in terms of the number of additions and random values
required6. As anticipated, the complexities for the same leakage probability and security threshold are more
favorable than those obtained through the expansion strategy.

Building on these findings, we can evaluate the RPC security of AddRepNoise for specific probabilities and
sizes α of the auxiliary input. With cardinal-RPC gadgets, the composition is tighter, and the requirement for
auxiliary inputs is considered globally. For example, with α = 75 auxiliary inputs and a leakage probability
p = 2−24, one option is to combine three Gadd gadgets, each with 25 shares, to set up AddNoiseTo. If we fix the
number of iterations γ to 25 for each refresh, the resulting RPC advantage is upper bounded by 2−182 both
for the chain and the tree structure, when 10 shares from the main input and 30 auxiliary inputs are required
for the simulation. As for the complexity, the noise gadget requires 150 random values and implements 525
additions. This is to be compared with the 1200 randoms, 2475 additions and 1200 copies required by the
AddNoiseTo gadget obtained from the expansion strategy (and which achieves an RPC advantage of 2−169).

Remark 1. Our experiments show that the tree structure generally provides a slightly better security ad-
vantage compared to the chain structure, while maintaining the same single-thread complexity. We believe
6 We omit the count of random values used for selecting indices in the refresh gadget, as they differ in nature from

the random produced by the random gates of the circuit. Indeed, these random indices are from [1, n] and not from
K. For the considered application (Raccoon), or other lattice-based schemes, elements from [1, n] are expected to
be (significantly) smaller than elements from K. Moreover, the random index values in our refresh can be fully
revealed to the adversary without compromising the security (which relies on their uniformity but not on their
secrecy) unlike the random values of K produced by random gates which leak with probability p.
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Table 3: RPC security advantage and complexity of Gadd.
Leakage probability p 2−12 2−16 2−20 2−24

# Shares n and # leaking shares t (25,13) (20,10) (16,8) (12,6)
# Randoms 240 220 220 200
# Additions 555 500 488 436
RPC advantage 2−128 2−128 2−134 2−129

this is due to the higher average number of dependencies per input in the tree structure, and their bal-
ance. Furthermore, both structures offer the potential to explore different instantiations for the refresh
gadgets—i.e. varying the number of iterations—based on their position, a direction we leave for future
research.

6 Random Probing Secure Implementation of Raccoon

We recall the key generation and signature algorithms of Raccoon in Algorithms 12 and 14 from [16].
We refer to [16] for an explicit definition of the subroutines and their rationale. The parameters relevant to
our work are presented in Table 4. Specifically, parameters nR (denoted n in [16]) and q define the quotient
ring Rq = Zq[x]/(x

nR +1), while k and ℓ define the MLWE matrix dimensions. Like in the proof of Raccoon
in the d-probing model [17], we do not consider that the noise samples (ri) and (r′i) are generated within
AddRepNoise algorithm; instead, they are provided as auxiliary inputs. We also artificially de-correlate the
number of shares, here denoted n, from the parameter d, fixed in the specifications.

6.1 Random Probing Secure Construction

We denote by Gvec the natural extension of a gadget G, originally operating on elements of Zq, to a gadget
operating on elements of Rq and which applies the same operation component-wise, repeating it nR times.
We also introduce the following core gadgets:

– Gcpmult: This gadget multiplies a uniform public polynomial cipoly in Rq with a shared secret vector JsiK
in (Rn

q ), for i ∈ [1, ℓ]. It requires n2
R n-share linear multiplications on elements of Zq, nR(nR−1) n-share

additions on elements of Zq and nR(nR − 1) n-share copies on elements of Zq.
– Gcmmult: This gadget performs a multiplication between a uniform public matrix A in Rk×ℓ

q with a
shared secret vector JsK in (Rℓ

q)
n. It requires ℓkn2

R n-share linear multiplications on elements of Zq,
nR(nR − 1)ℓk+ nR(ℓ− 1)k n-share additions on elements of Zq and nR(nR − 1)ℓk+ nR(k− 1)ℓ n-share
copies on elements of Zq.

To obtain a random-probing secure construction, masked gadgets secure in the probing model can be
seamlessly replaced by random-probing composable gadgets. The random-probing Raccoon equivalent is
illustrated in Algorithms 13 and 15. Let us provide an intuition for the random probing version of the key
generation. The original algorithm (Alg. 12) starts with a fresh zero-encoding (line 3) and adds the auxiliary
inputs (ri)1≤i≤ℓ with intermediate refreshes (inside AddRepNoise in line 4). In our design, the refresh gadgets
are already included in the elementary gadgets, so we simply sum the auxiliary inputs (ri)1≤i≤ℓ split in
convenient packs using DivideAI and the Gsum gadget (see Section 5). Next, the resulting sharing JsK is
copied: one copy is used for the public key and the other one for the secret key. After the multiplication step,
we use AddNoiseTo (presented in Alg. 8) to incorporate the auxiliary inputs (r′i)1≤i≤k and finally decode and
output the result. The same reasoning can be similarly applied to the signature algorithm. In a nutshell,
compared to the original d-probing secure algorithms, most intermediate refresh gadgets can be removed and
copy gadgets are added whenever a variable needs to be reused. We stress that our random-probing Raccoon
is functionally equivalent to the original d-probing version.
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Algorithm 12 d-Probing-KeyGen
Auxiliary Inputs:
(ri)1≤i≤ℓ ∈ ({0, 1}ut)d·rep·ℓ·nR

(r′i)1≤i≤k ∈ ({0, 1}ut)d·rep·k·nR

Output: Key pair (vk, sk)
1. seed← {0, 1}κ
2. A← ExpandA(seed)
3. JsK← ℓ× ZeroEncoding(d)
4. JsK← AddRepNoise(JsK, (ri)1≤i≤ℓ)
5. JtK← A · JsK
6. JtK← AddRepNoise(JtK, (r′i)1≤i≤k)
7. t← Decode(JtK)
8. return (vk← (seed, t), sk← (t, JsK))

Algorithm 13 RP-KeyGen
Auxiliary Inputs:
(ri)1≤i≤ℓ ∈ ({0, 1}ut)d·rep·ℓ·nR

(r′i)1≤i≤k ∈ ({0, 1}ut)d·rep·k·nR

Output: Key pair (vk, sk)
1. seed← {0, 1}κ
2. A← ExpandA(seed)
3. rb ← DivideAIvec((ri)1≤i≤ℓ)
4. JsK← Gsum

vec(rb)
5. (JsK, JstK)← Gcopy

vec(JsK)
6. JtK← Gcmmult(A, JstK)
7. JtK← AddNoiseTovec(JtK, (r′i)1≤i≤k)
8. t← Gdecode

vec(JtK)
9. return (vk← (seed, t), sk← (t, JsK))

Algorithm 14 d-Probing-Sign
Auxiliary Inputs:
(ri)1≤i≤ℓ ∈ ({0, 1}ut)d·rep·ℓ·nR

(r′i)1≤i≤k ∈ ({0, 1}ut)d·rep·k·nR

Input: sk = (vk, JsK), msg ∈ {0, 1}∗
Output: sig = (chash, h, z)
1. (vk, JsK)← sk, (seed, t)← vk
2. µ← H(H(vk)∥msg)
3. A← ExpandA(seed)
4. JrK← ℓ× ZeroEncoding(d)
5. JrK← AddRepNoise(JrK, (ri)1≤i≤ℓ)
6. JwK← A · JrK
7. JwK← AddRepNoise(JwK, (r′i)1≤i≤k)
8. w ← Decode(JwK)
9. chash ← ChalHash(w, µ)

10. cpoly ← ChalPoly(chash)
11. JsK← Refresh(JsK)
12. JrK← Refresh(JrK)
13. JzK← cpoly · JsK + JrK
14. JzK← Refresh(JzK)
15. z ← Decode(JzK)
16. h← w −A · z − chash · t
17. sig← (chash, h, z)
18. if CheckBounds(sig) = FAIL then
19. goto Line 4
20. end if
21. return sig

Algorithm 15 RP-Sign
Auxiliary Inputs:
(ri)1≤i≤ℓ ∈ ({0, 1}ut)d·rep·ℓ·nR

(r′i)1≤i≤k ∈ ({0, 1}ut)d·rep·k·nR

Input: sk = (vk, JsK), msg ∈ {0, 1}∗
Output: sig = (chash, h, z)
1. (vk, JsK)← sk, (seed, t)← vk
2. µ← H(H(vk)∥msg)
3. A← ExpandA(seed)
4. rb ← DivideAIvec((ri)1≤i≤ℓ)
5. JrK← Gsum

vec(rb)
6. (JrK, JrcK)← Gcopy

vec(JrK)
7. JwK← Gcmmult(A, JrK)
8. JwK← AddNoiseTovec(JwK, (r′i)1≤i≤k)
9. w ← Gdecode

vec(JwK)
10. chash ← ChalHash(w, µ)
11. cpoly ← ChalPoly(chash)
12. JzK← Gadd

vec(Gcpmult(JsK, cpoly), JrcK)
13. z ← Gdecode

vec(JzK)
14. h← w −A · z − chash · t
15. sig← (chash, h, z)
16. if CheckBounds(sig) = FAIL then
17. goto Line 4
18. end if
19. return sig
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Table 4: Some of Raccoon’s parame-
ters (see [16] for the full description).

Param. Raccoon-128-16
q 549824583172097
nR 512
k 5
ℓ 4
d 16
rep 2

Table 5: Parameters introduced for the random probing security.

Param. Description
p Probability of leaking a wire (resulting from the noise

level of the device).
ϵ Threshold-RPC-AI-O advantage, indicates the security

level (high for weak security, low for strong security).
n Number of shares (= d or ≥ d if expansion, often higher

to reach better security levels).
t Threshold RPC parameter (set to n/2).
γ Number of iterations of the refresh algorithm, allowing

optimizations of the security/performance trade-off.

Gsum
vec

Gsum
vec

Gsum
vec

Gsum
vec

Gcopy
vec

Gcopy
vec

Gcopy
vec

Gcopy
vec

Gcopies
kvec

Gcopies
kvec

Gcopies
kvec

Gcopies
kvec

Gcpmult
k

Gcpmult
k

Gcpmult
k

Gcpmult
k

Gsum
vec

Gsum
vec

Gsum
vec

Gsum
vec

Gsum
vec

AddNoiseTovec

AddNoiseTovec

AddNoiseTovec

AddNoiseTovec

AddNoiseTovec

Gdecode
vec

Gdecode
vec

Gdecode
vec

Gdecode
vec

Gdecode
vec

(r1i )

(r2i )

(r3i )

(r4i )

(r′1i )

(r′2i )

(r′3i )

(r′4i )

(r′5i )

(A·,1)

(A·,2)

(A·,3)

(A·,4)

t1

t2

t3

t4

t5

Js1K

Js2K

Js3K

Js4K

Gcmmult

block 1

block 2

Fig. 6: RP-KeyGen for Raccoon-128 with ℓ = 4 and k = 5

Instantiation with our new gadgets. We now instantiate Algorithms 13 and 15 with our new cardinal-RPC(-
AI-O) secure gadgets defined in Section 4.2. Figures 6 and 7 (in Appendix) visually illustrate the processes
for Raccoon-128. We denote by Gcopies

k the combination of copy gadgets arranged in a binary tree structure
to produce k copies of the same sharing, and by Gcpmult

k the application of the Gcpmult gadget to perform
a polynomial multiplication on Rq for k separate inputs.

With these new gadgets, our schemes can be instantiated in various ways, with multiple parameters
subject to variation—namely, the probability p, the RPC threshold t, and the number of iterations γ for
each refresh instance. All these new parameters are summarized in Table 5. We opt for aligning to the
Raccoon-128-16 configuration, which operates with 16-sharings. The corresponding instantiation is detailed
in Table 4, while the full set of parameters can be found in [16, Table 2]. The scheme is proven EUF-CMA
secure even when up to d−1 = 15 values of ri and r′i per vector and polynomial coefficient are exposed to the
attacker (see [17, Security of Small Raccoon in Sec. 7]). Hence, at least 17ℓ small uniforms per polynomial
coefficient must remain secret throughout both key generation and signature processes. The Raccoon-128-
16 configuration is particularly well-suited because using 16-sharings requires two inputs per coefficient to
incorporate the small uniforms. This results in a single addition gadget per coefficient in the first Gsum and
two addition gadgets per coefficient in the AddNoiseTo gadget.
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Table 6: Threshold-RPC-AI-O advantages and complexities of Raccoon’s key generation and signature when
instantiated with our new gadgets. The values for γ (chosen to be different for block 1, block 2 and Gcmmult)
are fixed to minimize ε (which impacts the overall randomness consumption).

Legend
2−24 p 2−8

ε ≤ 2−128

# additions
# linear mult.

# randoms
ε ≤ 2−80

# additions
# linear mult.

# randoms
ε ≤ 2−64

# additions
# linear mult.

# randoms

Key Generation
2−24 2−20 2−16 2−12

ε ≤ 2−128

1.82e9 2.08e9 - -
8.39e7 8.39e7 - -
6.57e8 7.88e8 - -

ε ≤ 2−80

1.29e9 1.29e9 1.55e9 -
8.39e7 8.39e7 8.39e7 -
3.94e8 3.94e8 5.26e8 -

ε ≤ 2−64

1.03e9 1.03e9 1.29e9 1.56e9
8.39e7 8.39e7 8.39e7 8.39e7
2.63e8 2.63e8 3.94e8 5.26e8

Signature
2−24 2−20 2−16 2−12

ε ≤ 2−128

3.44e9 5.33e9 - -
1.01e8 1.01e8 - -
1.42e9 2.36e9 - -

ε ≤ 2−80

2.44e9 2.49e9 2.81e9 -
1.01e8 1.01e8 1.01e8 -
9.19e8 9.45e8 1.10e9 -

ε ≤ 2−64

2.02e9 2.07e9 2.39e9 2.70e9
1.01e8 1.01e8 1.01e8 1.01e8
7.09e8 7.35e8 8.92e8 1.05e9

Theorems 3 establishes the threshold-RPC-AI-O security of Raccoon’s key generation and Raccoon’s
signature processes as defined in Algorithms 13 and 15, following Definition 17. The proofs rely on the
cardinal-RPC(-AI)(-O) envelopes of gadgets and their compositions, and is provided in Appendix C.

Theorem 3. Raccoon-128-16 signature scheme displayed in Algorithms 13 and 15 is (p, t = 8, n−1 = 15, ε)-
threshold-RPC-AI-O with the pairs (p, ε) provided in Table 6.

6.2 Comparison with the expansion technique and the probing secure implementation

Algorithms 13 and 15 can also be instantiated with the expanded gadgets from [8] (note that Gdecode was not
defined in [8]). Details on the expansion tools used to generate a random-probing secure Raccoon algorithm
are provided in Appendix B.3. By applying new gadgets and leveraging composition proofs, we achieve
significant improvements in both complexity and randomness consumption, as illustrated in Table 7.

Finally, to compare with the original probing-secure version of Raccoon, we calculate the probability of
observing more than t variables in both algorithms, which gives a proven upper bound on its random probing
security advantage. For n = 16 shares and a leakage probability of 2−24, we obtain an advantage of almost
1 –meaning no proven security– for the key generation and for the signature. This highlights the benefit of
our constructions to achieve random probing security compared to standard probing secure schemes.

Table 7: Security and complexity of the key generation and the signature of Raccoon with 128 bits of (black-
box) security in its original probing version and for both random probing secure scenarios with p = 2−24.

Key Generation Signature
Original Expansion New Gadgets Original Expansion New Gadgets

# shares 16 27 16 16 27 16
# additions 8.49e7 2.94e10 1.82e9 1.02e8 3.53e10 3.44e9
# linear mult. 8.39e7 1.42e8 8.39e7 1.01e8 1.70e8 1.01e8
# randoms 3.60e5 1.46e10 6.57e8 5.57e5 1.76e10 1.42e9

Security RPS/C 1 2−116 2−132 1 2−116 2−130
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7 Conclusion and future work

In conclusion, this work proposes new techniques towards stronger and tighter random probing security while
providing all necessary components, from security definitions to concrete constructions, to show that random-
probing security is achievable for a post-quantum scheme, namely Raccoon. We provide the first performance
results for a random-probing secure post-quantum algorithm. We hope our design and notions will serve as
building blocks for more efficient random-probing secure constructions and inspire “random-probing-friendly”
designs.

Another interesting avenue for future research could be to investigate if other recent techniques pro-
posed in [19,12,25] could lead to different trade-offs for random probing secure versions of Raccoon. This
would require extending the compilers proposed in these works to support composition with auxiliary input
and/or public output, designing a secure decoding gadget within these frameworks, and comparing with our
approach.
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Experiment 5: Threshold-RPC

W ← LeakingWires(G, p) Drawing the leaking wires.

I1, · · · Iℓ ← Sim1(G,W, J1, · · · Jm) The simulator is given the indexes of the

leaking outputs. It chooses indexes for

the inputs.

out1, out2 ← Sim2

(
Jx1K|I1 , · · · , JxℓK|Iℓ

)
The simulator is given the shares at desired

indexes and returns simulated values for the

leaking wires (out1) and outputs (out2)

return (I1, · · · Iℓ, out1, out2)

A Security definitions

Definition 12 (Circuit Compiler from [8]). A circuit compiler is a triplet of algorithms (CC,Enc,Dec)
defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic circuit C and
outputs a randomized arithmetic circuit Ĉ,

– Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ Kℓ to an encoded input x̂ ∈ Kℓ′ ,
– Dec (output decoding) is a deterministic algorithm that maps an encoded output JyK ∈ Km′

to a plain
output y ∈ Km,

which satisfy the following properties:

– Correctness: For every arithmetic circuit C of input length ℓ, and for every x ∈ Kℓ, we have

Pr
(
Dec

(
Ĉ(JxK)

)
= C(x)

∣∣ JxK← Enc(x)
)
= 1 , where Ĉ = CC(C).

– Efficiency: For some security parameter κ ∈ N, the running time of CC(C) is poly(κ, |C|), the running
time of Enc(x) is poly(κ, |x|) and the running time of Dec

(
JyK
)

is poly(κ, |JyK|), where poly(κ, ℓ) =
O(κe1ℓe2) for some constants e1, e2.

Definition 13 ((Threshold) Random Probing Composability from [8]). Let n, ℓ,m ∈ N. An n-share
gadget G : (Kn)ℓ → (Kn)m is (t, p, ϵ)-random probing composable (RPC) for some t ∈ N and p, ϵ ∈ [0, 1] if
there exists a PPT stateful two-stage simulator (Sim1,Sim2) such that for every masked input JxK ∈ (Kn)ℓ

and for every set collection J1 ⊆ [n], . . . , Jm ⊆ [n] of cardinals |J1| ≤ t, . . . , |Jm| ≤ t, the outputs of
Experiment 5 are such that

1. Pr
(
(|I1| > t) ∨ . . . ∨ (|Iℓ| > t)

)
≤ ε

2.

(out1, out2)
id
=

 LW (G, JxK, JyK)︸ ︷︷ ︸
Induced Random probing leakage

, (Jy1K|J1
, · · · , JymK|Jm

)︸ ︷︷ ︸
Output leakage


where W ← LeakingWires(C, p) and JyK← G(JxK).

Definition 14. Let f : R→ R. The gadget G is (t, f)-RPC if it is (t, p, f(p))-RPC for every p ∈ [0, 1].

Theorem 4 (Composition from [8]). Let t ∈ N, p, ϵ ∈ [0, 1], and CC be a standard circuit compiler
with (t, p, ϵ)-RPC base gadgets. For every (randomized) arithmetic circuit C composed of |C| gadgets, the
compiled circuit CC(C) is (p, |C| · ϵ)-random probing secure. Equivalently, the standard circuit compiler CC
is (p, ϵ)-random probing secure.
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Experiment 6: General-RPC

W ← LeakingWires(G, p) Drawing the leaking wires.

I1, · · · Iℓ ← Sim1(G,W, J1, · · · Jm) The simulator is given the indexes of the

leaking outputs. It chooses indexes for

the inputs.

out1, out2 ← Sim2

(
Jx1K|I1 , · · · , JxℓK|Iℓ

)
The simulator is given the shares at desired

indexes and returns simulated values for the

leaking wires (out1) and outputs (out2)

return (I1, · · · Iℓ, out1, out2)

Definition 15 (General Random Probing Composability from [13]). Let n, ℓ,m ∈ N. Let E represent
a collection of probability envelopes indexed by (J1, · · · Jm) ∈ K|J1| × . . .×K|Jm|, where |Ji| ∈ [0, n] for every
i ∈ [1,m]. These envelopes are defined over tuples of size ℓ of elements in Ki for i ∈ [0, n]. An n-share gadget
G : (Kn)ℓ → (Kn)m is (p,E)-general random probing composable (general-RPC for short) for some p ∈ [0, 1]
if there exists a PPT stateful two-stage simulator (Sim1,Sim2) such that for every shared input [[x]] ∈ (Kn)ℓ

and for every set collection (J1, . . . , Jm), the outputs of Experiment 6 are such that

1. (I1, · · · , Iℓ) ≲ EJ1,··· ,Jm
,

2.

(out1, out2)
id
=

 LW (G, JxK, JyK)︸ ︷︷ ︸
Induced Random probing leakage

, (Jy1K|J1
, · · · , JymK|Jm

)︸ ︷︷ ︸
Output leakage

 ,

where W ← LeakingWires(C, p) and JyK← G(JxK).

Definition 16 (Uniformly Cardinal Random Probing Composability). Let n, ℓ,m ∈ N. Let Eu

represent a collection of probability envelopes indexed by (j1, · · · jm) ⊆ [0, n]m over [0, n]ℓ. An n-share gadget
G : (Kn)ℓ → (Kn)m is uniformly (p,Eu)-cardinal random probing composable (uniformly cardinal-RPC for
short) for some p ∈ [0, 1] if it is (p,Eg)-general-RPC and if for all (J1, . . . , Jm), (J ′

1, . . . , J
′
m) ∈ K|J1|× . . .×

K|Jm| such that
(|J1|, . . . , |Jm|) = (|J ′

1|, . . . , |J ′
m|)

and for all (I1, . . . , Iℓ), (I ′1, . . . , I ′ℓ) ∈ K|I1| × . . .×K|Iℓ| such that

(|I1|, . . . , |Iℓ|) = (|I ′1|, . . . , |I ′ℓ|),

we have EgJ1,··· ,Jm
(I1, . . . , Il) = EgJ′

1,··· ,J′
m
(I ′1, . . . , I

′
l).

The collection of uniformly cardinal-RPC envelopes Eu is then naturally defined such that

Eu|J1|,...,|Jm|(|I1|, . . . , |Iℓ|) = E
g
J1,··· ,Jm

(I1, . . . , Il).

Definition 17 ((Threshold) Random Probing Composability with Auxiliary Inputs and Public
Outputs).

Let n, ℓ,m, k, α, d ∈ N. Let G be a gadget with the following input/output partition

G :

masked inputs︷ ︸︸ ︷
(Kn)ℓ ×

auxiliary inputs︷ ︸︸ ︷
(Kα)k →

masked outputs︷ ︸︸ ︷
(Kn)m ×

public outputs︷︸︸︷
Kd

(JxK, a1, · · · ,ak) 7→ (JyK, z).

The gadget G is (p, t, t′, ε)-threshold random probing composable with Auxiliary Inputs and Public Outputs
for some p ∈ [0, 1], t, t′ ∈ N and ε > 0 if there exists a PPT stateful two-stage simulator (Sim1,Sim2) such
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Experiment 7: Threshold-RPC-AI-O

(∗,z)← C(Enc(x),a) Drawing the public outputs.

W ← LeakingWires(C, p) Drawing the leaking wires.

(I1, · · · , Iℓ), (L1, · · · , Lk)← Sim1(C,W,z, J1, · · · , Jm) The simulator is given

the indexes of the leaking

outputs. It chooses

indexes for the shared

and auxiliary inputs.

out1, out2 ← Sim2(Jx1K|I1 , · · · , JxℓK|Iℓ ,a1|L1 , · · · ,ak|Lk ) The simulator is given the

shares at desired indexes

and returns simulated

values for the leaking

wires and outputs.

return (out1, out2, (I1, · · · , Iℓ), (L1, · · · , Lk))

that for every shared input [[x]] ∈ (Kn)ℓ, auxiliary input a1, · · · ,ak ∈ (Kα)k, and for every set collection
(J1, . . . , Jm) where J1 ⊆ [n], . . . , Jm ⊆ [n], the outputs of Experiment 7 are such that

1. Pr
(
(|I1| > t) ∨ . . . ∨ (|Iℓ| > t)

)
≤ ε

2. Pr
(
(|L1| > t′) ∨ . . . ∨ (|Lk| > t′)

)
≤ ε

3. and

(out1, out2)
id
=

 LW(G, (JxK,a), (JyK, z))︸ ︷︷ ︸
Induced Random probing leakage

, (Jy1K|J1
, · · · , JymK|Jm

)︸ ︷︷ ︸
Output leakage


where W ← LeakingWires(C, p) and JyK, z ← G(JxK,a).

B Expansion Strategy

B.1 Random Probing Expandability

In [2], an expansion approach was introduced to build a random-probing secure circuit compiler from a
secure multi-party protocol. This approach was later revisited in [8] with the formalization of the notion of
expanding compiler [8].

The principle of the expanding compiler is to recursively apply a base compiler, denoted CC and which
simply consists in replacing each gate in the input circuit by the corresponding gadget. Assume we have
n-share gadgets Gg for each gate g in a basis B. The base compiler CC simply consists in replacing each gate
g in these gadgets by Gg and by replacing each wire by n wires carrying a sharing of the value. We thus
obtain n2-share gadgets by simply applying CC to each gadget: G(2)

g = CC(Gg). This process can be iterated
an arbitrary number of times, say k, to an input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate g is replaced by a base gadget Gg. The
second output circuit Ĉ2 is the original circuit C in which each gate is replaced by an n2-share gadget G

(2)
g .

Equivalently, Ĉ2 is the circuit Ĉ1 in which each gate is replaced by a base gadget. In the end, the output
circuit Ĉk is hence the original circuit C in which each gate has been replaced by a k-expanded gadget and
each wire has been replaced by nk wires carrying an (nk)-linear sharing of the original wire.
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Experiment 8: RPE

W ← LeakingWires(G, p) Drawing the leaking wires.

(I1, I2, J
′)← Sim1(G,W, J) The simulator is given the indexes of the

leaking outputs (J). It chooses indexes for

the inputs (I1, I2).

out1, out2 ← Sim2(Jx1K|I1 , Jx2K|I2) The simulator is given the shares at desired

indexes and returns simulated values for the

leaking wires (out1) and outputs (out2).

return (I1, I2, J
′, out1, out2).

The expanding compiler achieves random probing security if the base gadgets verify a property called ran-
dom probing expandability [8]. We recall hereafter the original definition of the random probing expandability
(RPE) property for 2-to-1 gadgets.

Definition 18 (Random Probing Expandability from [8]). Let f : R → R. An n-share 2-to-1 gadget
G : Kn × Kn → Kn is (t, f)-random probing expandable ((t, f)-RPE for short) if there there exists a PPT
stateful two-stage simulator (Sim1,Sim2) such that for every admissible pair ((Jx1K, Jx2K), JyK) ∈ (Kn×Kn)×
Kn, for every set J ⊆ [n] and for every p ∈ [0, 1], the outputs of Experiment 8 are such that

1. Pr(|I1| > t) = Pr(|I2| > t) = f(p) and Pr((|I1| > t) ∧ (|I2| > t)) = f(p)2,
2. J ′ ⊆ [n] is such that J ′ = J if |J | ≤ t and |J ′| = n− 1 otherwise,
3. and

(out1, out2)
id
=

 LW (G, (Jx1K, Jx2K) , JyK)︸ ︷︷ ︸
Induced Random probing leakage

, JyK|J′︸ ︷︷ ︸
Output leakage


where W ← LeakingWires(C, p).

The first condition of Definition 18 defines two events, called "failure events" F1 ≡
(
|I1| > t

)
and

F2 ≡
(
|I2| > t

)
. In particular, condition 1 implies that F1 and F2 are mutually independent.

The second condition may seem artificial as the simulator is able to modify the indexes of leaking outputs.
This is actually necessary to capture some specific events (when |J | ≥ t) in the proofs, we refer to [8] for
more details.

Remark 2. The RPE notion can be simply extended to gadgets with 2 outputs: the Sim1 simulator takes two
sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′

1 and J ′
2 satisfying the same property as J ′ in the

above definition (w.r.t. J1 and J2). The Sim2 simulator must then produce an output with the knowledge of
Jy1K|J′

1
and Jy2K|J′

1
where Jy1K and Jy2K are the output sharings.

The RPE notion can also be simply extended to gadgets with a single input: the Sim1 simulator produces
a single set I so that the failure event (|I| > t) occurs with probability ε (and the Sim2 simulator is then
simply given JxK|I where JxK is the single input sharing). We refer the reader to [8] for the formal definitions
of these variants.

B.2 Instantiation of Noise Generation from RPE

In this section, we rely on the expansion strategy from [8] (and recalled in Section B.1) to build a noise
generation gadget from an addition gadget. Specifically, based on the analysis and instantiations from [10],
we begin with the following small addition and copy gadgets of 3 and 5 shares, which we then expand to
increase their original security level for various leakage probabilities:
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Gadd
3 : (K3)2 → K3

((a1, a2, a3), (b1, b2, b3)) 7→ (c1, c2, c3)

c1 ← (r1 + a1) + (r3 + b1)

c2 ← (r2 + a2) + (r4 + b2)

c3 ← (r1 + r2 + a3) + (r3 + r4 + b3)

Gcopy
3 : K3 → (K3)2

(a1, a2, a3) 7→ ((c1, c2, c3), (d1, d2, d3)

c1 ← r1 + a1

c2 ← r2 + a2

c3 ← r1 + r2 + a3

d1 ← r3 + a1

d2 ← r4 + a2

d3 ← r3 + r4 + a3

and

Gadd
5 : (K5)2 → K5

((ai)1≤i≤5, (bi)1≤i≤5) 7→ (ci)1≤i≤5

c1 ← (r1 + r2 + a1) + (r6 + r7 + b1)

c2 ← (r2 + r3 + a2) + (r7 + r8 + b2)

c3 ← (r3 + r4 + a3) + (r8 + r9 + b3)

c4 ← (r4 + r5 + a4) + (r9 + r10 + b4)

c5 ← (r5 + r1 + a5) + (r10 + r6 + b5)

Gcopy
5 : (K5)2 → K5

(ai)1≤i≤5 7→ ((ci)1≤i≤5, (di)1≤i≤5)

c1 ← r1 + r2 + a1

c2 ← r2 + r3 + a2

c3 ← r3 + r4 + a3

c4 ← r4 + r5 + a4

c5 ← r5 + r1 + a5

d1 ← r6 + r7 + a1

d2 ← r7 + r8 + a2

d3 ← r8 + r9 + a3

d4 ← r9 + r10 + a4

d5 ← r10 + r6 + a5

Using IronMask from [9], we obtain the RPE advantage of both gadgets for t = 1 with 3 shares and t = 2
with 5 shares and for any probability p. For 3 shares, we have:

f3(p) ≈ 171p2 + 36.4p2
√
p+ 72p3 + 364.9p3

√
p+ 12648p4 +O(p5)

with a maximum leakage probability (i.e. the maximum p for which f(p) < p) of 2−7.4, and for 5 shares, we
have:

f5(p) ≈ 2870p3 + 476.4p3
√
p+ 75p4 + 9230.2p5 +O(p6)

with a maximum leakage probability (i.e. the maximum p for which f(p) < p) of 2−5.77. Table 8 displays the
levels of expansion k that are required for gadgets Gadd

3 and Gadd
5 and different probabilities to reach 128

bits of security, with the corresponding complexities. The latter are computed using the expanding compiler
from [8].

As expected, the resulting complexities for the same leakage probability and security threshold are better
for Gadd

5. While we could theoretically further increase the number of shares before the expansion, we are
limited by the complexity of the automatic tools (here IronMask).
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Table 8: Security and complexity of expansions of gadgets Gadd
3 and Gadd

5.
Gadget Gadd

3 Gadget Gadd
5

leakage prob. p 2−8 2−12 2−16 2−20 2−24 2−8 2−12 2−16 2−20 2−24

expansion level k 8 5 4 4 3 4 3 3 2 2
# shares n 6561 243 81 81 27 625 125 125 25 25
# leaking shares t 2187 81 27 27 9 250 50 50 10 10
# randoms 854M 253k 17k 17k 1k 500k 14k 14k 400 400
# additions 1709M 506k 34k 34k 2k 1001k 29k 29k 825 825
# copies 854M 253k 17k 17k 1k 500k 14k 14k 400 400
advantage fk(p) 2−152 2−154 2−145 2−209 2−140 2−188 2−175 2−283 2−134 2−170

Using the expansion method, the resulting Gadd gadgets are only RPC for a fixed t once the level of
expansion is determined (according to the probability and the target security level). Therefore, we rely on
the composition theorem from [8] to compute the RPC security of AddNoiseTo for selected probabilities and
size α of the auxiliary input. Specifically, the security advantage of AddNoiseTo is upper bounded by the
product of the security advantage of Gadd with the number of such gadgets. The whole gadget requires t
(with its post-expansion value) regular input shares (of JxK) and t · ⌈αn⌉ auxiliary inputs for the simulation
of the leakage and t output shares. For instance, with α = 75 auxiliary inputs and a leakage probability
p = 2−24, we need to combine 3 gadgets Gadd to form a gadget AddNoiseTo. The resulting RPC advantage
is upper bounded by 2−169, and 10 shares from the main input and 30 auxiliary inputs are required for the
simulation. As for the complexity, the noise gadget requires 1200 randoms and implements 2475 additions
and 1200 copies. In this setting, the selection of Gsum-chain or Gsum-tree does not affect neither the security,
nor the complexity (except when parallelization is activated).

B.3 Instantiation of Raccoon from RPE

To implement the key generation and the signature with the expansion strategy, we miss a linear multi-
plication gadget, Gcmult, for which we give instantiations below for 3 and 5 shares. We simply follow the
structures of Gadd and Gcopy with a refresh of the inputs preceding the linear multiplication.

To implement key generation and signature using the expansion strategy, we need a linear multiplication
gadget, Gcmult. Below, we provide specific instantiations for 3 and 5 shares. The design mirrors the structures
of Gadd and Gcopy, with the inputs refreshed before performing the linear multiplication.

Gcmult
3 : K3 ×K→ K3

((a1, a2, a3), α) 7→ (c1, c2, c3)

c1 ← α · (r1 + a1)

c2 ← α · (r2 + a2)

c3 ← α · (r1 + r2 + a3)

Gcmult
5 : K5 ×K→ K5

((a1, a2, a3, a4, a5), α) 7→ (c1, c2, c3, c4, c5)

c1 ← α · (r1 + r2 + a1)

c2 ← α · (r2 + r3 + a2)

c3 ← α · (r3 + r4 + a3)

c4 ← α · (r4 + r5 + a4)

c5 ← α · (r5 + r1 + a5)

We use IronMask from [9] to compute the new RPE advantages for Gcmult combined with Gadd and Gcopy.
They are identical to those obtained for Gadd without Gcmult in Section B.2.

In Table 8, we identify a single configuration where the number of shares n and the number of leaking
shares t correspond to an existing version in Raccoon (version 16), specifically considering the total number
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of small uniforms ri and r′i and the number of them that can leak. We denote by mr the number of small
uniforms that are added to each coefficient in Zq and by ms the number of small uniforms that cannot be
revealed for each coefficient in Zq. Using our expansion strategy, the small uniforms must be captured inside
a n-share variable, that is, there exists α ∈ N∗ such that

(α− 1)n < mr ≤ αn.

Then, we must ensure that the number of input shares that are required for the leakage simulation is lower
than mr −ms. This constraint can be written as follows:

(α− 1)t+min(t, n− (αn−mr)) ≤ mr −ms.

It can be observed that the only column in Table 8) satisfying this inequality corresponds to the use of
gadget Gadd

3 with n = 27 shares and an expansion level k = 3. For each coefficient in Zq, 27 small uniforms
can be packed into a first sharing, while the remaining 5 small uniforms are packed into a second sharing,
supplemented with 22 zeros. The RPC advantage of Raccoon’s construction under this configuration then
represents the probability that t+5 = 14 small uniforms are required to simulate the leakage and t outputs,
with 32− 14 = 18 small uniforms remaining secret, exceeding the expected 17 ones.

With these parameters in Raccoon-128, we count almost 16 million base gadgets for key generation and
nearly 19 million base gadgets for the signature. Since no implementation is available for the decoding gadget
using the expansion strategy, its impact on complexity and security is omitted. Consequently, the security
advantage is upper-bounded by 2−116 in both cases, for a leakage probability of 2−24. This is calculated by
multiplying the atomic security advantage of a single gadget (i.e. 2−140 from Table 8) by the total number of
gadgets. The complexity with this expansion strategy, including the number of logical gates and intermediate
random values, is provided in Table 7 and can be compared to the original scheme with 16 shares.

C Proofs of Raccoon’s Random Probing Security

C.1 Security Proof for Raccoon’s Key Generation

Proof (Proof of Theorem 3). Due to the complexity of the key generation circuit, calculating a global cardinal-
RPC-AI envelope is computationally impractical. Even before considering the internal wires, we already have
(ℓ+k)nR = 4.608 n-share inputs and ℓnR = 2.048 outputs, for which enumerating all possible values in [0, n]
would be too expensive. As a result, we opt to decompose the scheme into sub-components, each of which
is individually proven to be cardinal-RPC-AI-O. For these sub-components, we calculate the corresponding
threshold-RPC-AI-O, using a fixed threshold t = n

2 . Finally, we sum the threshold-RPC-AI-O advantages of
these blocks to determine the overall threshold-RPC-AI-O security of the complete scheme.

Specifically, we identify three different types of blocks:

– Block 1, illustrated on Figure 6, consists of Gsum and Gcopy gadgets. We first compute the cardinal-RPC-
AI envelope of the combination of both gadgets Gsum and Gcopy, then the threshold-RPC-AI advantage
for an attacker which gets t = n

2 shares of each output and when the auxiliary input rji is constrained to
have a global cardinality of at most t′ = 15. The resulting threshold-RPC-AI advantage is then multiplied
by nR = 512 and ℓ = 4 (following the composition property of [8]) to obtain an upper bound on the
threshold-RPC-AI advantage for the left part of the circuit, whose outputs will be used as inputs for
Gcmmult.

– Gadget Gcmmult is first split into three blocks. The ℓnR Zq n-share outputs of the left block are first
each copied k times. We compute the cardinal-RPC envelope of the corresponding Gcopies

k gadget from
which we derive its threshold-RPC advantage with t output shares and when we restrict the cardinality
of the input shares to t as well. Then each of the ℓk copies in Rq goes through a linear polynomial
multiplication with gadget Gcpmult. Gadget Gcpmult consists in the generation of nR copies of nR elements
in Zq. We are able to tightly compute the threshold-RPC advantage of the combination of Gcopy gadgets
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assembled in a tree to compute nR copies based on the cardinal-RPC envelopes of each block and by
restricting the cardinal of the output shares to t and the cardinal of the input shares to at most t.
Then, n2

R linear multiplications in Zq are performed for which we have the cardinal-RPC envelope from
Section 4.2 and from which we can derive the threshold-RPC advantage when restricting the input and
output cardinal with respect to t. Finally, we have nR groups of nR elements of Zq that are summed
together. We use gadget Gsum with the tree structure to compute additions of 4 shared variables (we
need 128 + 32 + 8 + 4 + 1 = 173 of them). From the cardinal-RPC envelopes of Gsum, we derive their
threshold-RPC advantage with t and we sum them to obtain the global threshold-RPC advantage of all
the additions. Summing all the computed threshold-RPC advantages (following the composition property
of [8]) gives us an upper bound the threshold-RPC advantage of Gcmmult.

– Lastly, we compute the global threshold-RPC-AI-O advantage for the right block, whose inputs are the
outputs of Gcmmult. We begin by determining the cardinal-RPC-AI-O envelope for the combination of
AddNoiseTo and Gdecode, then we compute the threshold-RPC-AI-O advantage when we restrict the
input shared cardinality to be less or equal to t and the cardinality of the auxiliary inputs r′ji to be at
most 15. Similar to the process in block 1, we then multiply the resulting threshold-RPC-AI advantage
by nR = 512 and k = 5 (in line with the composition property from [8]), yielding an upper bound on the
threshold-RPC-AI-O advantage for this right block.

All these advantages are computed for different probabilities and for instantiations of RPRefresh with different
values of γ for each of the three blocks. The code is provided in Supplementary Material. The resulting
threshold-RPC-AI-O advantages are displayed with the corresponding complexities in Table 7. □

C.2 Security Proof for Raccoon’s Signature
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Fig. 7: RP-Sign for Raccoon-128 with ℓ = 4 and k = 5

Proof. The proof for Raccoon’s signature is very close to the proof for Raccoon’s key generation, except for
the computation of the threshold-RPC-AI-O advantage of the first block. Specifically, we tightly compose the
envelopes of all the gadgets in block 1, except Gcpmult, and derive the corresponding threshold-RPC-AI-O
advantage for t. We separately compute the threshold-RPC advantage of Gcpmult for t, as in the proof of
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Theorem 3. Following [8], we sum the advantages of both parts (the first one being multiplied by ℓnR and the
advantage of Gcpmult being multiplied by ℓ) to obtain the global threshold-RPC-AI-O of block 1. The script
to compute the global threshold-RPC-AI-O of Raccoon’s signature is provided in Supplementary Material
and a few values are provided in Table 7. □
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