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Abstract. Blockchain interoperability solutions allow users to hold and
transfer assets among different chains, and in so doing reap the ben-
efits of each chain. To fully reap the benefits of multi-chain financial
operations, it is paramount to support interoperability and cross-chain
transactions also on Layer-2 networks, in particular payment channel
networks (PCNs). Nevertheless, existing works on Layer-2 interoperabil-
ity solutions still involve on-chain events, which limits their scalability
and throughput. In this work, we present X-Transfer, the first secure,
scalable, and fully off-chain protocol that allows payments across differ-
ent PCNs. We formalize and prove the security of X-Transfer against
rational adversaries with a game theoretic analysis. In order to boost
efficiency and scalability, X-Transfer also performs transaction aggre-
gation to increase channel liquidity and transaction throughput while
simultaneously minimizing payment routing fees. Our empirical evalua-
tion of X-Transfer shows that X-Transfer achieves at least twice as
much throughput compared to the baseline of no transaction aggrega-
tion, confirming X-Transfer’s efficiency.

Keywords: Payment channel networks · Layer-2 · interoperability · op-
timization · transaction aggregation · cryptocurrencies

1 Introduction

Payment channel networks (PCNs) [47,43,23,11,22,40] are a promising solution
to mitigate the limited transaction throughput of blockchains [21]. Two par-
ties that wish to transact with each other can open a payment channel between
themselves by depositing funds into a “common account” on the blockchain only
to be used in this channel. Whenever the parties transact with each other, they
update the distribution of funds in the channel by decreasing the funds of the
sender and increasing the funds of the receiver by the payment amount. To close
a payment channel, parties can publish the last agreed distribution of funds
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on-chain either cooperatively or unilaterally. As such, with just a constant num-
ber of blockchain transactions, any two parties can make an unlimited number
of costless transactions between themselves. A network of users and payment
channels between pairs of users constitute a payment channel network (PCN),
which also allows for multi-hop routing of payments between users that are not
directly connected through intermediary nodes [43]. Examples of PCNs are Bit-
coin’s Lightning Network [43] and Ethereum’s Raiden [3].

An important open problem in PCNs is to design secure and scalable
cross-PCN payment solutions in order to fully unlock their interoperability
potential, complementing existing cross-chain solutions on the blockchain it-
self [1,34,44]. Existing solutions for cross-blockchain payments rely on bridges
[1,17,34,37,44,45,51], which condition the occurrence of some transaction on
a destination blockchain given the occurrence of a specific event on a source
blockchain. These solutions, however, still involve on-chain events and thus do
not fully leverage the scalability that fully off-chain solutions can provide. The
main challenge in adapting these solutions to the purely off-chain setting is the
absence of global events off-chain, as off-chain state updates only occur among
pairs of users in payment channels. This makes conditioning the occurrences
of off-chain state updates an extremely difficult exercise in coordination and
incentive-alignment, and remains an open challenge.

Our contributions. In this paper, we presentX-Transfer, the first secure and
scalable cross-PCN transaction protocol that relies purely on off-chain events.
X-Transfer comprises of an aggregation followed by an execution phase. For
the aggregation phase, we assume a specific “star” topology among all PCNs
whereby users are connected to a single “hub node” that forms the center of
the star. The reason for this realistic assumption (more details in Section 3.1)
is twofold: first, it is necessary in order to ensure that solving the transaction
aggregation problem is feasible (we show it is polynomial in the number of trans-
actions and exponential in the number of PCNs), and second, we use the specific
assumptions about hub nodes (that there is at least one PCN that contains wal-
lets of all hub nodes and channels between them) in order to execute transactions
securely in the second execution phase of X-Transfer. During the aggregation
phase, multiple transactions across PCNs are aggregated such that the resulting
aggregated transactions occur simultaneously rather than sequentially. In this
way, transactions could “cancel” each other out which reduces transaction fees
and increases liquidity. Furthermore, our optimization problem in the transac-
tion aggregation phase involves both maximizing the total volume of transactions
selected for aggregation while minimizing the volume of cross-PCN transactions
which involves heftier cross-PCN transaction fees. In doing so, we ensure the
largest amount of throughput possible across all PCNs while ensuring that fees
are kept minimal.

In the second execution phase, the aggregated transactions are executed. To
ensure balance security (i.e., that the balance of involved users across PCNs does
not change apart from what they should send or receive) of involved users, we first
simultaneously execute the transactions only among the hubs. This effectively ex-
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ecutes all cross-PCN transactions. We then show that assuming all involved par-
ties are rational, using incentive alignment arguments and strategically-chosen
execution time parameters, we can ensure that the execution of all cross-PCN
aggregated transactions is the off-chain variant of the “global event” necessary
to induce updates of all subsequent aggregated transactions in all PCNs. We
employ Thora [6], an existing single-PCN atomic channel update protocol, to
ensure all hub-to-hub channels and well as channels within each PCN can be
atomically updated.

We summarize our contributions as follows:

– We present the building blocks of X-Transfer, the first purely off-
chain cross-PCN transaction protocol which also performs aggrega-
tion/optimization, in Section 3. We also include formal definitions of the
desiderata of X-Transfer (which includes security, privacy, feasibility and
optimality definitions) as well as model assumptions.

– We detail both the aggregation and execution phases of X-Transfer in Sec-
tion 4, including the design principles behind the protocol.

– We analytically show that X-Transfer achieves the aforementioned
desiderata of security, privacy, feasibility and near-optimality in Section 5.

– We perform an empirical evaluation of X-Transfer’s performance in Ap-
pendix I under the metrics of transaction throughput and computational
overhead. We show that X-Transfer achieves at least twice as much
throughput compared to the baseline of no aggregation with little additional
overhead.

1.1 Related Work

PCNs. Payment channels [11,39,22,13,8,40,27,9,26] emerged as a promising
technology to improve blockchain transaction throughput. Originally introduced
by Spilman [47], the first bidirectional channels followed with the Lightning Net-
work [43] and Duplex Micropayment Channels [23]. See [25] for a recent survey.

Transaction aggregation. Transaction aggregation in PCNs is the problem
of finding an optimal subset of transactions that maximizes the total satisfiable
transaction volume with a minimal number and volume of actual transactions
carried out. Typically, this is done by finding transactions that “cancel” each
other out. In the context of PCNs, the problem was first proposed and studied
in [48] but only for the single PCN setting. To make the computational problem
tractable, [48] proposed a “star topology” where clients connect directly to sev-
eral hubs arranged in a clique. Our work extends the problem considered in [48]
to the multiple PCN setting where transactions across several PCNs can cancel
each other out. Although we also adopt a similar star topology as in [48] in each
PCN, a novel and key focus of our work is finding the optimal set and volume
of cross-PCN monetary flows, as well as ensuring that the resulting aggregated
transactions can be executed across PCNs atomically. We also note that both
the centralized [31,46] and decentralized [19,18] variants of the netting problem
(interbank liabilities are aggregated and settled) are also similar to the problem
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studied in our work. In particular, the work of [18] uses smart contracts on the
blockchain. In our work, though, we focus on off-chain aggregation of cross-PCN
transactions, which avoids the usage of costly blockchain transactions.

Atomic cross-chain payments. In the single PCN setting, there are several
tools [43,38,10,6] that govern the atomic updates of channel states. Our work,
however, addresses atomic channel updates across multiple PCNs. Jia et al. [35]
propose using a trusted third party (TTP) to open and close a payment channel
between two users in different blockchains. Guo et al. [32] present a protocol for
cross-PCN channels using expensive cryptography. Zhang and Qian [52] propose
a hub-based cross-PCN structure, but their protocol relies heavily on deposits
to prevent rational users from deviating, such as by failing to execute a transfer
and stealing funds. These deposits serve as an incentive for hubs to follow the
protocol. In contrast, X-Transfer does not rely on a TTP and is lightweight,
requiring neither expensive cryptography nor substantial deposits – only small
deposits for paying fees to the hubs for their services. Alba [45] is a decentral-
ized bridge [1,17,34,37,44,45,51] that can condition executions on the destination
blockchain on off-chain events. However, Alba’s executions still occur on (and
thus involve) the destination blockchain, whereas our protocol enforces fully off-
chain conditional executions.

2 Background and Notation

Payment channel networks (PCNs). Several payment channels opened on
the same blockchain form a payment channel network (PCN). A node on a PCN
represents a channel party, and an edge represents a channel among the two
nodes/parties it connects. Refer to Appendix A for more details about routing
in PCNs and payment fees.

Thora [6]. Thora is a single-PCN channel state update protocol that ensures
that any number of (possibly disjoint) channels in a PCN can be updated atomi-
cally. The key idea behind Thora’s atomic updates is the preparation and signing
of a specific “enable-payment” transaction that allows receiving parties to enforce
payments from their corresponding sending parties in their payment channels.
Indeed, after setting up Thora, every recipient has this transaction along with its
necessary signatures. If the corresponding sender refuses to update, the recipient
can post the enable-payment transaction. As long as one such enable-payment
transaction appears on the blockchain (which should only happen during a dis-
pute), every other involved user can enforce their promised payments. In the
optimistic case, nothing goes on-chain.

Thora achieves two properties: (i) atomicity ensures that either all channels
update or revert, and malicious users cannot deviate from this outcome except
by forfeiting their money to the honest parties, and (ii) strong value privacy,
which ensures that the update value of any channel out of the set of to-be-
updated channels is only known to the two channel users in the optimistic case.
We describe further details of Thora in Appendix C.
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Transaction Aggregation and Wiser [48]. For transaction aggregation, we
will build upon Wiser, a single-PCN private aggregation and execution proto-
col. Wiser consists of 2 phases: transaction aggregation and execution. In the
aggregation phase, transactions are chosen to maximize the total demand in the
network. To ensure privacy, parties secret share their transactions and channel
balances, and then the optimization problem is solved using multiparty compu-
tation (MPC) among a selected number of delegates. Thora is used to execute
all transactions atomically during the transaction execution phase.

Notation and Transaction Model. For n ∈ N, we use [n] to denote the set
{1, . . . , n}. Let ϵ > 0 be the smallest amount of cryptocurrency funds that can
be sent in the blockchain. We use H to denote a globally available cryptographic
hash function, e.g., SHA256. We assume all underlying blockchains implement an
Unspent Transaction Output (UTXO) model [5,41]. In this model, transactions
are mappings between inputs and outputs. We can write a transaction as ti =
[o1j , o

2
j , o

1
k, . . . ] 7→ [o1i , o

2
i , . . . ] where i, j, k are transaction identifiers. We further

denote a UTXO output o = (x|C) as having a monetary value of x coins, which
are only spendable if the Boolean expression C evaluates to True. In our work
we are mainly interested in 3 types of literals in C: (1) timelocks, where we
simply use a constant to denote that it evaluates to True after the specified
amount of time has elapsed. (2) hashlock, where we use H(s) to denote that it
evaluates to True when one provides the preimage s ofH(s). (3) signature locks,
where we use σui

to denote that it evaluates to True if the signature of user ui

is provided. When multisignatures between a specific set of k parties u1, . . . , uk

are required, we specify them as σu1,...,uk
. We use # to denote UTXO inputs

that are irrelevant to a given transaction design, e.g., ti = # 7→ [o1i , o
2
i , . . . ].

3 Model

3.1 System Model and Assumptions

We assume we have k PCNs, each supporting a different blockchain, whose users
wish to interact with each other. We restrict each PCN to a single hub node and
several client nodes, and we denote the hub node in the ith PCN as hi for i ∈ [k].
The nodes in each PCN are arranged in a star topology with the hub as the star
center. We adopt this topological assumption to make the computation of the
cross-chain transaction aggregation problem tractable. We stress, however, that
this assumption corresponds to the high degree of centralization observed in
the Lightning Network in reality [42,50], is also adopted in previous work [48],
and is shown to be stable [12,14]. We further assume each hub node has wallets
in all other PCNs, and there exists a PCN that contains all channels between
hubs. We make the reasonable assumption that the capacities of the inter-hub
channels are a lot larger than the capacity of channels between clients and hubs,
as cross-PCN transfers could potentially be a lot larger than transfers within
a PCN. Although we do not specify the requisite capacity of these inter-hub
channels, we assume for the rest of the paper that the capacity of these channels
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is large enough to handle all cross-PCN transfers. Finally, we assume that hub
nodes only participate in routing transactions in the protocol, and do not send
or receive transactions. Let Gi = (Vi, Ei) represent the ith PCN.

The input to the problem is a set of transactions T := {(xi, si, ri)}ni=1 where
xi represents the size of the ith transaction in the list, and si, ri represent the
sender and recipient of the ith transaction. Note that si and ri can be in different
PCNs. A payment xi can be sent from si ∈ G1 to ri ∈ G2 in the following way:
si sends xi to h1 along the channel (si, h1). Assuming G2 is the PCN that
contains the channel between h1 and h2, h1 sends xi to h2 along the channel
(h1, h2). Finally, h2 sends xi to ri along the channel (h2, ri). As these between-
hub channels effectively shift payments from one PCN to another, we call these
between-hub channels cross-PCN channels.

We assume payments going through cross-PCN channels are significantly
more expensive compared to payments routed within a PCN. The main reason
behind this assumption is that the hubs have to lock funds in several PCNs
in order to provide this service to users, which incurs a high opportunity cost.
Additionally, if users were to go with a traditional swap, the user would have to
find a trusted service provider, which would incur high fees, or use atomic swaps
on the blockchain, which also incur a larger cost in terms of gas fees to run the
smart contracts [34,24]. Formally, suppose we have a transaction (xi, si, ri) with
si, ri in different PCNs. Denote the payment path the transaction takes from si
to ri as π = (e1, e2, . . . , em) where ej ∈ π can either be channels within a single
PCN or cross-PCN channels. Let us further suppose the total number of cross-
PCN channels in π is m′ < m. Then, the fee incurred for this transaction would

be
∑m−m′

j=1 f(xi)+m′α for some affine function f and large positive constant α.

Assumptions. We further make some usual assumptions concerning crypto-
graphic primitives, the underlying blockchains, the communication model, and
the adversary. In particular, we assume the existence of secure communica-
tion channels between users. We also assume all underlying blockchains are
censorship-resistant, and also satisfy persistence and liveness as defined in [29].
In addition, we assume a synchronous network model, i.e., there is a known net-
work delay that bounds the time needed for any user to receive any incoming
message. We assume that all PCNs operate using the same underlying tokens.
Further, we assume all parties (hubs and clients) are rational, i.e., they may
deviate from the honest protocol execution if they may increase their profit. Fi-
nally, we assume that hubs and clients are not colluding. We discuss collusion
and potential mitigation in Section 6.

3.2 Desired Properties

In the following, we define the desiderata of our protocol.

Firstly, X-Transfer should maintain the safety of channel funds for users
that follow the protocol, encompassed by the following property.
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Definition 1 (Balance security). No honest party loses more than a negli-
gible amount of funds7 as a result of participating in X-Transfer.

Moreover, our protocol should ensure that users incur minimal fees.

Definition 2 (Fee minimization). The solution of X-Transfer should ex-
ecute the list of transactions T such that the total fees are minimized.

The computational complexity of the problem depends on the aggregation,
which is a hard optimization problem. Accordingly, we postulate computational
efficiency in the sense that a solution must be fixed-parameter tractable, i.e.,
polynomial in the number of transactions:

Definition 3 (Computational feasibility). The aggregation problem is
fixed-parameter linear, i.e., polynomial in the number of input transactions n
and exponential in the number of PCNs k.

This is reasonable since transactions likely involve only a few PCNs.
Privacy is a key aspect of PCN protocols, as payment channels inherently pro-

tect users’ balances and transactions. We adapt the privacy definition from [48]
to multiple PCNs, providing an informal description below and leaving the for-
mal definition to Appendix D. Uninvolved users learn only that they do not
participate. Involved parties know the flow output on their incident channels
and their direct counterparties. Receiving parties also learn all other recipients
within the same PCN. Hub nodes additionally learn the set of involved users
across all participating PCNs.

4 The X-Transfer Protocol

This section outlines the design principles and details of X-Transfer. We first
provide an overview, followed by a detailed description of its phases, covering
both the optimization solution and transaction execution. An example imple-
mentation with three PCNs is presented in Appendix F.

4.1 Protocol Overview

X-Transfer proceeds in two phases: an aggregation phase and an execution
phase. In the aggregation phase, our protocol privately computes an aggregation
of the input transactions such that the resulting aggregation optimizes transac-
tion throughput while minimizing fees. Then, each user u receives a monetary
flow f(e) representing either inflow or outflow of funds to or from u for all chan-
nels incident to u. The user u needs to check whether the computed flow is

7 In the aggregation phase of X-Transfer, we require that hub clusters that are
disconnected from other hub clusters are connected by a payment channel that sends
negligible amount of funds ϵ > 0 between them. Total connectivity of hubs is required
to ensure atomicity of execution in the execution phase of X-Transfer, and this
will be the only portion of X-Transfer where additional funds of ϵ are transferred.
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correct (that is, u will not lose money if the flow is executed). The actual execu-
tion of the transactions happens after all users have verified the correctness of
the flow computation. To ensure that the computed flow is executed atomically
both within and across PCNs, our protocol employs Thora to execute transac-
tions within each PCN as well as cross-PCN transactions, with carefully chosen
Thora time parameters to connect all these executions together. Figure 1 depicts
a high-level overview of both phases of our protocol.

Nodes accumulate
transactions within a
time interval

Computation of op-
timal per channel
flows f

Nodes validate f Nodes execute f

Aggregation phase Execution phase

Fig. 1. X-Transfer phases for cross-PCN transaction aggregation

4.2 Aggregation Phase

Secret sharing inputs. The aggregation phase begins after sufficiently many
transactions have been accumulated. To preserve the privacy of the input trans-
actions and channel balances, our protocol requires each party to secret-share
their transactions and their balance information along their incident channels.
These shares are given to a group of delegates that will validate the correctness of
the inputs, i.e., check that no party submits a transaction that exceeds their bal-
ance in their channel with their hub, and compute the solution of the transaction
aggregation optimization problem using multiparty computation (MPC) [49]. We
stress that our protocol is agnostic to the type of secret sharing scheme, MPC
protocol, as well as how the delegates are chosen, so long as the group of delegates
satisfies the trust assumptions of the underlying MPC protocol.

Optimization problem. The optimization problem is to maximize the volume
of successful transactions (throughput) while minimizing the flow amounts (or
fees since they are linear in the flows). Recall that in every PCN, clients connect
directly to a hub, and the hub-to-hub balances are assumed to be high enough
to accommodate for all input transactions. Thus, we can independently find the
subset T ∗ ⊆ T that maximizes transaction volume and is feasible and then
find the flows routing the transactions in T ∗. We will solve the first problem
by reducing it to the optimization problem solved in Wiser [48] (in FPL8 time
complexity) and the second one with a polynomial-time greedy algorithm, which
we prove to use k − 1 links (where k is the number of hubs), as required by X-
Transfer’s execution phase. Thus, the total time complexity is in FPL.

8 FPL (Fixed Parameter Linear) is a complexity class where a decision problem has
time complexity O(f(k) · |x|), with x and k as inputs. The complexity is linear in
|x| but can be arbitrary (often exponential) in k. FPL is a subset of FPT (Fixed
Parameter Tractable), which includes problems that are computationally hard but
remain tractable when exponential complexity is confined to a specific parameter k.
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Fig. 2. Sample graph structures for the optimization problem. Clients connect directly
to the hub of each PCN and every hub is connected to all other hubs. We contract
the hub clique to one node H for phase 1 (finding the subset T ∗ ⊆ T that maximizes
throughput) and find the flows realizing T ∗ in the original graph in phase 2.

In more detail, to find the subset T ∗ ⊆ T that maximizes the transaction
volume and respects channel capacities, we replace the hub-to-hub network with
a single node H (see Figure 2 for details). The resulting topology is a star graph
in which all clients in all PCNs connect to H. This abstraction takes advantage
of the much larger capacity of hub-to-hub channels compared to client-to-hub
channels, thus relegating the problem of optimally realising T to client-to-hub
channels. We model our optimization problem as an integer linear program (ILP)
as follows:

max
∑n

i=1 |ti|xi, subject to∑
i: ti=(u,∗,∗) |ti|xi −

∑
j: tj=(∗,u,∗) |tj |xj ≤ c(u,H), for every client u (1)

such that xi ∈ {0, 1} is a decision variable for choosing whether a transaction
ti = (s, r, x) is included in the output solution or not, |ti| = x is the transaction
amount, c(u, v) is the capacity of channel (u, v), and ∗ denotes any existing value.

The ILP states that we aim at finding an assignment of values to the xi vari-
ables, such that the volume is maximized, while for every client-to-hub channel
the sum of outgoing flow minus the incoming flow is bounded by the channel
capacity. This is the exact same transaction aggregation problem of Wiser in
one PCN, which is shown to be NP-hard [48, Theorem 1]. It can be solved in

O(n(k∆)k
2

) time through the work of [28, Theorem 8], where ∆ = maxi∈[n] |ti|,
i.e., the maximum transaction amount (or a bound on that), n is the number of
transactions, and k is the number of hubs. That is, the complexity is linear in
the number of transactions and exponential in the maximum transaction amount
and the number of hubs. Therefore, it belongs to the FPL complexity class.

Given the optimal transaction subset T ∗ from the ILP, we now have to com-
pute the cheapest flows realizing it in the actual network. Since the client-to-hub
flows are already computed in the first phase, we need to compute the flows on
exactly k − 1 links connecting the hubs and realizing the computed flows. We
formally describe a polynomial-time greedy algorithm (Algorithm 2) to solve
this problem in Appendix E.1. Informally, the algorithm works by aggregating
the total inflow and outflow of each hub node from the solution specified by
T ∗ and using this to define supply (resp. demand) hubs as hubs that need to
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send (resp. receive) funds to (resp. from) other hubs. The supply and demand
hubs are sorted in descending order, and for each demand amount specified by
a demand hub, we add hub-to-hub links with as many supply hubs as needed to
fulfill the demand. The supply hubs are re-sorted and the procedure is repeated.
The following lemma (proof in Appendix G.1) shows that our greedy algorithm
outputs at most k − 1 hub-to-hub links.

Lemma 1. Let |Egreedy| the number hub-to-hub of links created by our greedy
algorithm and |Hs|, |Hd| be the number of supply and demand hubs, respectively.
Then, max{|Hs|, |Hd|} ≤ |Egreedy| ≤ k − 1.

Finally, note that if the algorithm outputs less than k − 1 hub-to-hub links,
we simply add links of size ϵ > 0 to connect any disconnected hub components.

Restricting the topology among hubs to a path. At this point, we note
that the above greedy algorithm connects all hubs in a DAG topology, which
we denote as G. In X-Transfer, we restrict the topology of the hub-to-hub
channels to a path. The main reason for this restriction is that we use some secret
from receiving hubs (i.e., hubs that only receive funds from other hubs) to link all
payments together during the execution phase to ensure atomicity. However, the
setting with more than one receiving hub opens a vulnerability whereby the first
receiving hub that reveals their secret can get their funds stolen. We describe
these vulnerabilities in detail in Appendix E.2. To convert the DAG topology
G among the hubs into a path topology P , we employ another polynomial-time
algorithm (Algorithm 3 in Appendix E.2) to create a path topology P from G
while maintaining the invariant of balance conservation of the vertices, i.e., the
difference between the sum of all incoming and outgoing edges is the same for all
vertices in G and in P . We leave the details of the procedure to Appendix E.2.

Computing execution time parameters for execution phase. In addition
to the path graph representing the flow of funds between hubs, the aggregation
phase of X-Transfer also outputs some time parameters which determines the
sequence of both cross-PCN and within-PCN fund transfers in the execution
phase of X-Transfer. The reason why these time parameters are computed
during the aggregation and not the execution phase is mainly to preserve privacy.
We present an informal description of the procedure as well as give an intuition
of correctness and leave the formal description and details to Appendix E.3.

Informally, let us denote the client-to-hub flows in a PCN as outputted by
the ILP as the net flow of the PCN. We observe that we can classify PCNs into
three categories: PCNs that have positive, negative, or zero net flow. Positive
(resp. negative) net flow PCNs have hubs that have positive (resp. negative)
inflow of funds from their clients, and neutral net flow PCNs have zero out or
inflow. Now assuming that the hub-to-hub flows have already been executed, we
note that hubs with positive or neutral net flow will have incentive to execute the
within-PCN transfers to receive funds from the process9. These PCNs are deemed

9 The argument in the case for why neutral net flow PCNs are incentivized to execute
the within-PCN transfers even though their balance does not change is mainly due
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“safe” and will have smaller execution time parameters. We now state two crucial
observations that underlie the correctness of our procedure: (1) there always
exists a recipient in an “unsafe” PCN (let us call it Gi) with a corresponding
sender in a safe PCN. Gi can then be added to the safe set and given a larger
execution time parameter, which allows enough time for senders in safe PCNs to
propagate necessary information to their recipients. As we use Thora to update
channels within PCNs (more details in Section 4.3), the recipient in Gi can use
this information to enforce all payments in the case where hi refuses to execute
the channel updates in Gi. (2) This process always terminates with all PCNs
labeled safe. We show this with the proof of Lemma 3 in Appendix E.3.

4.3 Execution Phase

The execution phase starts once each user u verifies the aggregation output,
following a flow validation process similar to [48].

Thora pre-setup Thora setup Thora confirmation Thora finalisation

Create all necessary Thora transactions for executing the flow
in each PCN

Execute Thora trans-
actions within each
PCN

Secret generation

Hub in last PCN in
path generates secret
to link all transactions

Setup

Secret revelation

Incentivised parties
reveal secrets to their
counterparties

Execution

Fig. 3. X-Transfer Execution phase stages

Recall that the output of the aggregation phase is a path topology which
defines a depth-ordering h1, . . . , hk among the hubs (and corresponding PCNs),
as well as time parameters for each PCN which determines their execution order.
The main design challenge of the execution protocol is to ensure the atomicity
of transactions: as long as one transaction is executed in our protocol, all other
(involved PCNs as well as cross-PCN) transactions should also be executed. We
stress that this challenge stems from the fact that there does not exist any off-
the-shelf protocol that guarantees atomicity for cross-PCN transactions. Indeed,
while Thora ensures the atomicity of transactions within a single PCN, there
are no atomicity guarantees for transactions going out of the PCN.

Strawman protocol. A simple strawman protocol to address the lack of atom-
icity between PCNs would be to use 1 Thora for each PCN to execute the
transactions inside the PCN (i.e., transactions between clients and hubs). Then,
since we assume that (1) hubs have wallets in each PCN, (2) there is at least
one PCN (say Gj) in which all hubs have channels with each other, and (3)
the hubs are connected in a path topology, we can set up hashed timelock con-
tracts (HTLCs, see Appendix A for details) between the hubs in Gj to handle
the cross-PCN transfers. Nevertheless, this strawman protocol leaves a glaring
issue unresolved: hubs can steal funds from other hubs in an attack similar to

to the fact that they gain some funds as compensation when X-Transfer gets
executed successfully. More details in Section 6.
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the wormhole attack as described by [38]. In fact, unlike the classic wormhole
attack where the victim simply loses out on the payment fees, the attack is more
devastating in our setting as it actually impairs the balance security of our pro-
tocol. We illustrate this with a simple example with four PCNs G1, G2, G3 and
G4 with corresponding hubs h1, h2, h3, h4. We assume an aggregated flow of x1

coins going from h1 to h2, x2 coins going from h2 to h3, and x3 coins going from
h3 to h4. If we use HTLCs locked with a secret generated by h4 to transfer funds
between the hubs, h4 could collude with h2 and skip revealing the secret to h3

by directly revealing the secret to h2, resulting in a loss of x2 funds for h3 and
hence balance security of our protocol. Although this would mean that h4 will
lose out on getting x3 coins, h2 would profit from not sending x2 coins to h3.
Thus, if x2 is sufficiently larger than x3, the total profit of h4 and h2 would be
larger under the attack. Hence, it is imperative that X-Transfer imposes an
atomic method for updating channels between hubs.

Atomic channel updates between hubs. To ensure that channel updates
between hubs are atomic, that is, either no hub can update their channels or
all hubs have the means to do so, X-Transfer uses another Thora protocol
to update the channels among the hubs. In doing so, the channel updates are
guaranteed to be atomic from the Thora protocol. Nevertheless, at this point
there are still a few problems left unanswered, chief of which is a method that
links all of these payments together.

Secret generation. A simple way to link all the transactions (both transactions
within all PCNs and cross-PCN transactions) would be to use a common secret as
an additional hashlock on the transactions, making all transactions unspendable
unless the secret is revealed. The choice of which parties should generate the
secret is important, as not all parties have an incentive to reveal the secret at a
later stage so as to force the transactions to go through. For instance, consider
a simple example with three PCNs G1, G2 and G3 with an aggregated flow of
x1 coins going hub h1 ∈ G1 to hub h2 ∈ G2, and x2 coins going from h2 to h3

(see Figure 6 for a depiction of this setting). Because h1 has a net cash outflow,
using h1 to generate the secret would lead to h1 only revealing the secret to
the users in G1 but not h2, thus gaining a profit of x. To counter this, we only
allow secret generation to be done by the hub in the last PCN as defined by the
path topology returned from the aggregation phase of X-Transfer (i.e., hk).
While common secrets linking transactions play a crucial role in ensuring balance
security during the execution of the protocol, there can still be violations of
balance security if the setup or execution order is bad. Thus, a related challenge
is defining a setup and execution order such that balance security is preserved.

Setup and execution order. We first highlight a problematic scenario with a
bad setup order and then show how X-Transfer avoids this. Consider again the
simple case of 3 PCNs illustrated in Figure 6. If the Thora updating the channel
between the hubs is set up before the individual PCN Thoras, as h3 knows the
secret, h3 can enforce the channel updates and steal x2 coins from h2 even before
the other Thoras are set up. Thus, X-Transfer ensures that all within PCN
Thoras are set up first before the Thora updating all inter-hub channels is set



X-Transfer: Enabling and Optimizing Cross-PCN Transactions 13

up. In this way, there is no incentive for the secret-generating hub to reveal the
secret at any point during setup. This is because the secret generating hub, as
the hub in the last PCN in the within-hub transaction path and thus is receiving
funds from other PCNs, is in a positive balance after executing the transactions
in their PCN and without executing the inter-hub transactions.

During the Thora setup, each PCN uses the Thora time parameter as output
from the aggregation phase, with the additional Thora between the hubs assigned
a time parameter T0 such that T0 is smaller than all other time parameters as
returned from the aggregation phase. This ensures that the Thora responsible
for updating cross-PCN transfers executes first. Once these cross-PCN transfers
have been executed, the net flow positions of all other hubs together with the
assigned time parameters ensure that there is at least one user (hub or client)
in each PCN that is incentivized to enforce the Thora execution in each PCN
(stated and proved in Lemma 3 and Lemma 5).

X-Transfer execution phase details. The actual execution phase of X-
Transfer can be broken down into 2 stages: setup and execution. Figure 3
depicts all intermediate steps in both stages of the execution phase, and a formal
description of the execution stage of X-Transfer is detailed in Algorithm 1.
The setup stage begins with hk sampling a secret s as well as computing a hash
of the secret H(s). H(s) is then broadcasted to all the hubs and will be used as
an additional hashlock on all transactions.

Once all hubs have verified that they have received H(s), all individual PCN
Thoras are set up to handle the updates of the transactions inside each PCN
(Lines 3 and 4 in Algorithm 1). The time parameter that is used as input to the
Thora setup phase for each PCN Gi is the time parameter Ti corresponding to
Gi returned from the aggregation phase. Here we stress that this process can be
done in parallel. Once all individual PCN Thoras are set up and the correctness
of the setup stage is verified, an additional Thora is set up in Gj to handle the
updates of all cross-PCN transactions. The time parameter used for this Thora
is T0 < Ti∀i. Note that the Thora pre-setup, setup, and confirmation stages in
our protocol follow almost exactly as described in [6], with the exception that
some transactions are locked with all the extra hashlocks generated during secret
generation. We detail these changes in Algorithms 5, 6 and 7 in Appendix E.4.

After the setup, the protocol moves on to the actual execution, which begins
with hk revealing the secret s to the other hubs. The hubs verify that s is the
preimage of H(s). Thereafter, the hubs can use s to enforce the inter-hub channel
updates, which execute the cross-PCN transactions. Following that, the Thoras
handling the updates of the channels within each PCN can be executed. Note
that all channel updates follow exactly as per the Thora protocol.

5 Analysis

In this section, we show that X-Transfer satisfies all desired properties out-
lined in Section 3.2. We will provide informal arguments and description of



14 Aumayr, Avarikioti, Salem, Schmid, Yeo

Protocol 1: Execution Phase of X-Transfer
Data: PCNs G1, . . . , Gk, times T0, T1, ..., Tk, blockchain delay parameter ∆
Result: Broadcasted secret s, Updated incident channels

/* Secret Generation */

1 hk generates a random secret s
2 hk broadcasts H(s) to all other hubs

/* Thora setup */

3 Each PCN Gi runs Algorithm 5 with inputs Gi,∆,H(s)
4 Each PCN Gi runs Algorithm 6 with inputs Gi, Ti,∆,H(s)
5 Thora confirmation on Gi follows as per Thora protocol (see Algorithm 7)
6 After confirming that each Thora is set up correctly, hubs h1, . . . hk set up

another Thora in PCN Gj with the involved channels being their inter-hub
channels and time parameter T0

/* Thora Execution */

7 hk reveals s to hubs, enabling the update of the inter-hub channels as per the
Thora protocol

8 Doing so reveals s to each hub, which enables the updates of each involved
channel in each PCN as per the Thora protocol.

techniques used to show how these properties are satisfied and leave all formal
statements and proofs to Appendix H.

Informally, balance security is preserved in the aggregation phase due to the
definition of the optimization problem, the correctness of the underlying solver,
as well balance conservation in the conversion from a DAG to path hub topology.
We show balance security is preserved in the execution phase of X-Transfer by
first defining an underlying extensive form game induced by the execution phase
of X-Transfer. Thereafter, we show that following the protocol as stipulated
by X-Transfer is a strict subgame perfect equilibrium in the underlying game,
which rules out unilateral deviations from rational players at any step of the ex-
ecution phase of X-Transfer. A key ingredient in the proof of execution phase
balance security is the Thora time parameters as computed by Algorithm 4 as
well as the correctness of the algorithm in the proof of Lemma 3, which shows
that as long as the Thora protocol among the hubs is executed, all PCNs will
eventually execute their Thora and update their channels. Computational feasi-
bility of X-Transfer stems from a similar analysis to [48], with the additional
terms in the complexity coming from sorting the list of hubs for the greedy al-
gorithm to connect the flows within hub components. We note that the DAG
hub topology satisfies optimality as per Definition 2 but our path hub topology
solution is not optimal and we provide a worst-case example in Appendix H.2.
Nevertheless in Appendix E.2 we conjecture that the DAG solution is impossible
without the use of on-chain events, and in Appendix H.2 we detail heuristics uti-
lized in Algorithm 3 to minimize the cost of our path topology solution. Finally,
X-Transfer achieves privacy as per Definition 4 so long as the delegates satisfy
the assumptions of the underlying MPC protocol.
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6 Discussion and Limitations

Participation incentives. As discussed in Section 4.2, neutral net flow hubs
are incentivised to execute within-PCN transfers due to potential fee benefits
from successful executions of X-Transfer. Here, we elaborate on the incentives
for all participants in X-Transfer, including hubs and clients. For clients, the
primary incentive is access to a larger pool of transaction partners, including
those holding different cryptocurrencies, without incurring high exchange fees.
Additionally, X-Transfer’s transaction aggregation can lower payment routing
fees and enhance liquidity in clients’ payment channels with hubs. For hubs,
we assume a payment structure where clients deposit fees payable upon the
successful execution of X-Transfer (e.g., as in [48] for single-PCN transaction
aggregation). The total fees must exceed the hubs’ costs, such as computational
expenses and the opportunity cost of locked funds, to ensure even neutral net
flow hubs find participation financially worthwhile. Nevertheless, determining
the exact fee structure for hubs is beyond the scope of this work.

Liquidity management. A complementary challenge to our work is liquidity
management, particularly how to prevent channel depletion, which could com-
promise X-Transfer’s liveness. A straightforward but costly solution is for
users (both hubs and clients) to return to the blockchain to close and reopen
channels with additional funds. A more efficient alternative is off-chain rebalanc-
ing [36,15,16], which shifts funds in a cycle of payment channels in order to “top
up” a depleted channel; thus incurring significantly less cost than closing and
reopening channels on-chain. While Section 3.1 constrains the PCN topology to
a star configuration with the hub at the center, this can be viewed as a restricted
subgraph of a larger PCN containing multiple cycles. This restricted subgraph
is only considered for the execution of X-Transfer, whereas the entire PCN
can participate in off-chain rebalancing efforts.

Fixed exchange rates. Our model assumes that tokens in the PCNs are ei-
ther identical or have fixed exchange rates, which may not always hold true in
practice. To address this limitation, one approach is to account for fluctuating
exchange rates by leveraging semi-trusted price oracles, such as Chainlink [2],
to retrieve real-time rates. Participants can specify their tolerance for exchange
rate “slippage”[4], allowing the system to exclude transactions that exceed this
tolerance during the aggregation phase of X-Transfer. Alternatively, a base
currency, such as Bitcoin or USDC, can be designated, and then wrap all other
tokens around the base token. In this setup, the price oracle would be queried
only when users need to convert wrapped tokens back to their native currency.
For further implementation details of this approach, see [45].

Failure in verification. We examine the setting where there is a failure in the
verification process in the aggregation phase of X-Transfer. This could happen
if there is some mistake in the inputs (e.g., a client u sending an amount x but
x is larger than the total capacity of u’s channel with u’s hub), or adversarial
behavior among some of the participants performing the computation. For input
errors, X-Transfer performs a verification process at the start of the MPC
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responsible for computation and output of the aggregation phase and removes
all faulty inputs. Adversarial behavior during the computation could also impact
the output of the MPC (either by leaking information and violating privacy or
corrupting the output). We stress, however, that X-Transfer is oblivious to
the choice of the underlying MPC protocol and correctness and privacy of the
aggregation phase of X-Transfer always holds as long as the adversarial model
satisfies the assumptions of the underlying MPC protocol.

Beyond our system model. X-Transfer relies on the system model as-
sumptions outlined in Section 3.1. Understanding its behavior under violations
of these assumptions is crucial—particularly in the presence of Byzantine par-
ties, collusion, or periods of asynchrony. While Byzantine clients do not break
security, a Byzantine hub can lead to a loss of funds. Collusion between hubs
and senders may prevent honest receivers from enforcing updates unless hubs are
publicly known and at least one remains honest. Finally, asynchrony, e.g., net-
work partitions, message delays, or offline parties, can cause protocol abortion
or loss of funds, especially under malicious hubs. Due to space constraints, we
defer a detailed discussion on these threats and potential mitigation strategies
to Appendix B.

7 Conclusion

In this work, we presented the first fully off-chain cross-PCN transaction ag-
gregation protocol. We analytically show that X-Transfer is secure, private,
computationally feasible, and near-optimal. We envision our work as a first step
in achieving secure, fully off-chain interoperability. That said, our work also re-
lies on some assumptions (for instance the path topology) and would it would
be an interesting direction for future work to alleviate these assumptions.
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31. Güntzer, M.M., Jungnickel, D., Leclerc, M.: Efficient algorithms for the
clearing of interbank payments. Eur. J. Oper. Res. 106(1), 212–219
(1998). https://doi.org/10.1016/S0377-2217(97)00265-8, https://doi.org/

10.1016/S0377-2217(97)00265-8
32. Guo, Y., Xu, M., Yu, D., Yu, Y., Ranjan, R., Cheng, X.: Cross-channel: Scalable

off-chain channels supporting fair and atomic cross-chain operations. IEEE Trans.
Computers 72(11), 3231–3244 (2023)

33. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024), https:
//www.gurobi.com

34. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM sympo-
sium on principles of distributed computing. pp. 245–254 (2018)

35. Jia, X., Yu, Z., Shao, J., Lu, R., Wei, G., Liu, Z.: Cross-chain virtual payment chan-
nels. IEEE Trans. Inf. Forensics Secur. 18, 3401–3413 (2023). https://doi.org/
10.1109/TIFS.2023.3281064, https://doi.org/10.1109/TIFS.2023.3281064

36. Khalil, R., Gervais, A.: Revive: Rebalancing off-blockchain payment networks. In:
CCS. pp. 439–453. ACM (2017)

https://github.com/lnresearch/topology
https://api.semanticscholar.org/CorpusID:49253813
https://api.semanticscholar.org/CorpusID:49253813
https://github.com/decred/atomicswap
https://github.com/decred/atomicswap
https://doi.org/10.1016/S0377-2217(97)00265-8
https://doi.org/10.1016/S0377-2217(97)00265-8
https://doi.org/10.1016/S0377-2217(97)00265-8
https://doi.org/10.1016/S0377-2217(97)00265-8
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/TIFS.2023.3281064
https://doi.org/10.1109/TIFS.2023.3281064
https://doi.org/10.1109/TIFS.2023.3281064
https://doi.org/10.1109/TIFS.2023.3281064
https://doi.org/10.1109/TIFS.2023.3281064


X-Transfer: Enabling and Optimizing Cross-PCN Transactions 19

37. Madathil, V., Thyagarajan, S.A.K., Vasilopoulos, D., Fournier, L., Malavolta, G.,
Moreno-Sanchez, P.: Cryptographic oracle-based conditional payments. In: NDSS.
The Internet Society (2023)

38. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: NDSS. The
Internet Society (2019)

39. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: AFT (2019), 10.1145/3318041.3355461

40. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: Financial Cryptogra-
phy. Lecture Notes in Computer Science, vol. 11598, pp. 508–526. Springer (2019)

41. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)

42. Pietrzak, K., Salem, I., Schmid, S., Yeo, M.: Lightpir: Privacy-preserving route
discovery for payment channel networks. In: Networking. pp. 1–9. IEEE (2021)

43. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments. https://lightning.network/lightning-network-paper.pdf (2015)

44. Scaffino, G., Aumayr, L., Avarikioti, Z., Maffei, M.: Glimpse: On-demand pow
light client with constant-size storage for defi. In: USENIX Security Symposium.
pp. 733–750. USENIX Association (2023)

45. Scaffino, G., Aumayr, L., Bastankhah, M., Avarikioti, Z., Maffei, M.: Alba: The
dawn of scalable bridges for blockchains. IACR Cryptol. ePrint Arch. p. 197 (2024)

46. Shafransky, Y.M., Doudkin, A.A.: An optimization algorithm for the clearing of
interbank payments. Eur. J. Oper. Res. 171(3), 743–749 (2006). https://doi.org/
10.1016/j.ejor.2004.09.003, https://doi.org/10.1016/j.ejor.2004.09.003

47. Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html (2013)

48. Tiwari, S., Yeo, M., Avarikioti, Z., Salem, I., Pietrzak, K., Schmid, S.: Wiser:
Increasing throughput in payment channel networks with transaction aggregation.
In: AFT. pp. 217–231. ACM (2022)

49. Yao, A.C.C.: Protocols for secure computations. 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982) pp. 160–164 (1982), https://api.
semanticscholar.org/CorpusID:62613325

50. Zabka, P., Förster, K., Decker, C., Schmid, S.: Short paper: A centrality analysis
of the lightning network. In: Financial Cryptography. Lecture Notes in Computer
Science, vol. 13411, pp. 374–385. Springer (2022)

51. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.J.:
XCLAIM: trustless, interoperable, cryptocurrency-backed assets. In: IEEE Sym-
posium on Security and Privacy. pp. 193–210. IEEE (2019)

52. Zhang, X., Qian, C.: A cross-chain payment channel network. In: ICNP. pp. 1–11.
IEEE (2023)

A Additional Details on PCNs and Routing

Payment channels. Payment channels [47,43,23,11,22,40] were introduced as a
mitigation technique for the limited transaction throughput of blockchains [21].
Two parties u and v can open a payment channel by depositing funds into a
“common account” on the blockchain. These funds are locked and can only be

10.1145/3318041.3355461
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1016/j.ejor.2004.09.003
https://doi.org/10.1016/j.ejor.2004.09.003
https://doi.org/10.1016/j.ejor.2004.09.003
https://doi.org/10.1016/j.ejor.2004.09.003
https://doi.org/10.1016/j.ejor.2004.09.003
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://api.semanticscholar.org/CorpusID:62613325
https://api.semanticscholar.org/CorpusID:62613325


20 Aumayr, Avarikioti, Salem, Schmid, Yeo

used in this channel between u and v. Every time the parties want to transact
with each other, they update the distribution of their funds. For instance if
u, v initially locked cu, cv coins respectively, and then u sends δ coins to v, the
updated balances will be cu − δ, cv + δ. Note that the balances must always be
non-negative, meaning that a party can never send more money than it owns in
the last update. Furthermore, the sum of the balances is always the same and
equal to the initial funds locked in the channel, cu + cv. The channel updates
occur off-chain, hence the only parties that know the current balances of the
channel between u, v are the parties u, v. Note that to update the channel only
the two parties u, v need to agree, therefore enforcing any operation that does not
benefit one of the parties is impossible. For instance, we cannot enforce “burning
money” in a payment channel off-chain (without using the blockchain), because
the two parties can simply update the distribution of funds at a later point and
split the burned coins as they both benefit from it.

To close a payment channel, a closing transaction is posted on-chain that dis-
tributes the initially locked funds (ideally) as agreed in the last update among
the parties. To enforce the last update is indeed the one posted on-chain, so no
party tried to cheat, different mechanism are in place depending on the payment
channel construction we refer to, e.g., replacement via decreasing timelocks [23],
incentives via punishment [43]. In this work, we are agnostic to the exact security
mechanism in place and assume the payment channel construction operates se-
curely, i.e., if the channels are updated correctly and in an incentive-compatible
to the parties manner, then they will close correctly if needed.

Payment channel networks (PCNs). Several payment channels opened on
the same blockchain form a payment channel network or PCN. A node on a
PCN represents a channel party, and an edge represents a channel among the
two nodes/parties it connects. Via this network, parties can transact with each
other even if they are not directly connected via a payment channel. Instead,
the sender of a transaction may find a path of channels that connects sender
and receiver where each channel on the path has enough funds (on the correct
direction) to route the transaction. For instance, if u wants to send δ coins to v
via node z, then u must own at least δ coins in the channel (u, z) and z must
own at least δ coins in the channel (z, v). If such a path exists, the (multi-hop)
transaction can be routed atomically though the path, i.e., either all transactions
on the path will be executed or none. Each channel will be consequently updated
with the new balances.

To enforce the atomicity of multi-hop transactions typically Hash Timelock
Contracts (HTLCs) are employed [43]. An HTLC is a smart contract between
two parties u, v that locks some coins and enforces that either the receiver (say,
v) can claim the coins only if he reveals a secret (preimage of a hash, enforced
via a hashlock) within a specific time period T (enforced via a timelock), or the
sender (say, u) can then reclaim the coins after T elapses.

Routing fees. In multi-hop transactions typically the intermediaries that enable
the routing of a transaction ask for a routing service fee. This fee is typically
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proportional to the transaction value (plus a base fee). When a sender u routes a
transaction of δ coins to v through z and y that ask for fees fz and fy respectively,
the total amount u must send is δ + fz + fy. For further details, we refer the
reader to [30].

HTLCs [43]. To enforce the atomicity of multi-hop transactions typically Hash
Timelock Contracts (HTLCs) are employed. An HTLC is a smart contract be-
tween two parties s, r that locks some coins and enforces that either the receiver
r can claim the coins only if they reveal a secret (preimage of a hash, enforced
via a hashlock) within a specific time period T (enforced via a timelock), or the
sender s can then reclaim the coins after T elapses. We write HTLC(s, r, x, h, T )
to denote an HTLC between a sender s and a receiver r of amount x, hashlock
h and timelock T .

B Beyond our system model

Here, we expound on the security and liveness of X-Transfer under violations
of the system model assumptions (see Section 3.1) in adverse conditions. Specifi-
cally, we examine the effects of Byzantine parties – who may deviate arbitrarily,
even at a financial loss – as well as periods of asynchrony and collusion.
a) Byzantine behaviour. We examine Byzantine behavior in X-Transfer for
both clients and hubs. With Byzantine clients (but rational hubs), security holds:
once Thora instances are set up, execution cannot be blocked, as rational hubs
will enforce it. Any deviation before setup only leads to an incomplete setup,
allowing the process to restart without the non-cooperating party. However, a
Byzantine hub compromises security, potentially causing other parties to lose
funds. Consider three PCNs, G1, G2, G3, with hubs h1, h2, h3. If h1 and h2 have
positive net flow while h3 has negative net flow, X-Transfer relies on rational
hubs’s incentives to execute Thora after the between-hub Thora completes. A
malicious hub (e.g., h1) could refuse to execute Thora in G1, even when prof-
itable, leading to fund loss for senders in G2. Ensuring Byzantine resilience in
cross-chain PCNs remains an open challenge for future research.
b) Collusion. Without additional assumptions, X-Transfer is vulnerable to
collusion between clients and hubs. A hub incentivized to execute the Thora
update in its PCN can collude with a sender to withhold the preimage, com-
pensating the hub for any loss, leaving an honest receiver unable to enforce
the update. This issue is mitigated if hubs are publicly known and at least one
is honest, allowing affected parties to query all hubs and obtain the preimage,
thereby ensuring that the update is enforceable.
c) Periods of asynchrony. We examine violations of our synchrony assump-
tion, including network partitions, message delays or losses, offline parties, and
blockchain liveness disruptions (e.g., censoring attacks). X-Transfer relies on
Thora for safety, which holds only under a synchronous network model (due
to timelocks), parties remain online and can post messages on-chain within a
bounded timeframe (i.e., synchronous blockchains with bounded liveness [29]).
Network partitions, timing violations, offline parties, and message losses have
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similar effects. During setup (e.g., secret generation or Thora setup), they cause
protocol abortion. During execution, they can violate balance security, at least
for the affected party, e.g., an offline recipient risks losing their funds. In the
worst case, such as with a malicious hub, going offline could further endanger
the balance security of other parties, exacerbating the impact.

C Thora details

Thora [6] is a multi-channel update protocol that allows updating a set of chan-
nels in a PCN atomically without any restriction of the topology of the to-be-
updated channels. For each channel that is to be updated, denote the sending
party (i.e., party that pays coins) as s and the receiving party (i.e., party that
gains coins) as r.

Transaction Details. The key transactions in Thora are the state update trans-
action, payment transaction, refund transaction, and enable payment transac-
tion. The state update transaction txstate

s,r creates outputs that correspond to
outcomes of the channel update. The refund transaction txr

s,r refunds the locked
coins to the sending party s after a set amount of time has elapsed, specified
by a global refund timeout value T . Note that as long as T amount of time
has elapsed, all sending users in all channels can retrieve their coins using this
refund transaction. The payment transaction txp

s,r makes the payment from s to
r. Finally, the enable payment transaction txep

r is used to enforce all payments
from sending parties to receiving parties in all channels, ensuring atomicity of
payments. This is done by enabling all receiving parties to enforce payments
along their channels as long as there exists a single txep

ri on the blockchain cor-
responding to some receiving party ri, in particular, by having txep

r be an input
to txp

s,r. Usually, txep
r would be posted on the blockchain due to malicious activ-

ity of senders in order to allow receivers to enforce payments. Finally, a second
unit of time tc < T , is the upper bound on the time needed to close a channel
and is included in all enable payment transactions to account for potential race
conditions when closing channels.

Protocol Overview. The protocol proceeds in four phases. In the (i) pre-setup,
each receiver r of a to-be-updated channel creates its own txep

r , which includes an
output for each receiver and requires the signatures from all senders and r. In the
(ii) setup, each sender s creates txstate

s,r reflecting the desired update and txp
s,r,

sign it, and send it to their receiving neighbor. Then, each channel updates
to txstate

s,r and sends a confirmation to all other parties. After receiving such
confirmation from every channel receiver, in the (iii) confirmation phase, each
sender signs every txep

r transaction and sends this signature to the corresponding
r. Once a receiver has such a signature from every sender, they send another
confirmation to every sender. Finally, in the (iv) finalization phase, all channels
can be updated to a new state reflecting the update (optimistic case), or else the
receiver can enforce the update by posting txep

r . Note that step (iii) ensures that
the receivers have every required signature, and a sender will only agree to an
update if they have a confirmation of every receiver. Thus, atomicity is ensured.
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Thora Properties. Thora guarantees two properties, as informally presented
below. The full, formal definitions are game-based on top of a UC ideal func-
tionality and can be found in [6].

– Atomicity. A multi-channel update protocol has atomicity if there are no
two channels with at least one honest user each, where one update fails,
and the other one is successful. The exception is if there is an (irrational)
adversarial user in one of these channels who can change the outcome by
forfeiting at least the amount of coins of the update to the honest user. This
means that (i) a malicious receiver cannot enforce the update of her channel
if it should fail, and (ii) a malicious sender cannot let the update fail even
though it should succeed, without forfeiting their coins to the honest party
in their channel.

– Strong value privacy. A multi-channel update protocol has strong value
privacy if no party except for the users of a channel learns about the value
of the update in the optimistic case.

D Formal definition of privacy

We formally describe a game-based notion of privacy we want X-Transfer to
achieve. Let us denote by A a passive adversary and Π a cross-chain transaction
aggregation protocol. Recall that G = (V,E) denotes the graph which is the
union of all PCNs. Let G′ = (V ′, E′) denote the subgraph of G that is formed
by all users that are interested in participating in the protocol.

Definition 4 (Privacy). We say a cross-chain transaction aggregation and
execution protocol Π is ϵ-private if the probability that A wins the following
indistinguishability game is upper bounded by 1

2 + ϵ for some ϵ > 0. If ϵ is
negligible, we say Π is private.

– A chooses a subset of nodes V A ⊂ V ′ to corrupt. Note that A gains access to
transcripts of each corrupted node. Let GA denote the union of all corrupted
nodes and their incident edges. The set V A can consist of hubs, clients, or a
mix of both. If the set V A consists of a hub node, we add all hubs in G′ and
their incident edges to GA. Let hi

j denote the ith corrupted hub in PCN j. To

connect the graph GA, for each corrupted hub hi
j, we add connecting edges

from hi
j to all other hubs in G′ which are in PCNs k ̸= j to the subgraph

GA.
– For i ∈ {0, 1}, A creates the following list of transaction tuples T i =
{xj , sj , rj}ni

i=1 where xj represents the transaction amount of the jth trans-
action in the list, and sj , rj ∈ V ′ represent the sender and recipient of the
jth transaction respectively. ni is the number of transactions in the ith list.

– For every node and channel in the subgraph GA, the following condition
needs to hold: the resulting aggregated flow returned by Π restricted to GA

when run on the graph G′ when given transaction tuple lists T 0 and T 1 has
to be the same. Moreover, the set of involved users as outputted by Π has to
be the same when given T 0 or T 1 as input.
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– Challenge phase: A uniformly random bit b ∈ {0, 1} is sampled and the
protocol Π is run on input T b.

– A gets the flow output sent to each corrupted user from Π.
– A outputs a guess bit b′ ∈ {0, 1}. A wins the game if b′ = b.

E Technical details of X-Transfer

E.1 Greedy algorithm for computing links between hubs

Algorithm 2: Aggregation phase: computing links between hubs

Input : PCN channel attributes (nodes, channels, balances) and the optimal
client-to-hub flows computed by the ILP

Output: per channel flows (computed from the list of successful transactions)

Sort senders and receivers in descending order of amounts and leave the 0-flow
nodes as a separate set to be dealt later;

while (there is only one sender AND it’s currently selected) OR (there are at
least two senders overall AND there are at least two senders from the original
list of senders with an amount to be sent) do

Pick the sender with the current largest amount, say x is the amount;
Draw an edge of weight x to the receiver with the largest amount;
if the receiver awaits for more funds then

we declare this a sink node

if the receiver awaits for exactly x then
we call this path fixed

if the receiver awaits for an amount y that is smaller than x then
then the receiver is marked as a new sender with amount x-y and added to
an ordered list of senders

/* This creates paths that are the longest possible according to the
requirements in the while loop. It also covers the case of a star demand
with one sender. This case gives a Θ(n2) lower bound of flows, where Θ(n)
is possible with a DAG. */

Let us denote the optimal solution as outputted by the ILP by (x∗1, . . . , x
∗
n).

We first notice that the demand vector for the optimal solution d∗ :=∑
ti∈T ∗ x∗i ti, i.e., the vector that aggregates all incoming and outgoing flows

per client for the optimal subset T ∗, specifies outgoing and incoming flows for
each client. When summing the client-hub flows within a PCN, we obtain a posi-
tive value when the PCN’s hub needs to send funds to other hubs and a negative
value when the hub needs to receive funds. We refer to hubs with outgoing and
incoming flow as supply and demand hubs respectively. We classify hubs with
neither outgoing or incoming flow, i.e., incoming funds equals outgoing funds, as
supply or demand hubs arbitrarily. Our algorithm is described in Algorithm 2
and works as follows. We sort the transaction amounts of the supply and demand
hubs in descending order. Then, for every demand, we add hub-to-hub links with
as many supplying hubs needed to cover that demand. We re-sort the list of sup-
plying hubs (the last supplying hub is updated with the remaining amount to
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send) and repeat for the next demand, until all of them are satisfied (by design,
total demand matches total supply). Since the set of supply and demand hubs
are disjoint, the resulting graph is a bipartite graph, which is not necessarily
connected. Indeed if the greedy algorithm yields less than k − 1 links, then we
connect the disconnected components by adding a link from a sender of one to
a receiver of another one with flow ϵ > 0.

E.2 Restricting the topology of the hubs to a path

The case for a path-based solution. A crucial component of X-Transfer is
to restrict the aggregated flow of transactions between hubs to a path topology.
That is, each hub receives transactions from and sends transactions to at most
one other hub. The main reason for doing so is to avoid the case where the hub
topology has 2 or more leaf nodes. This is because the execution phase of X-
Transfer employs secrets that link all transactions together so as to guarantee
the atomicity of transaction execution. We first observe that any hub generating
the secret has to be a hub that only receives funds from other hubs (so that the
hub is incentivized to reveal the secret later and pull the funds from the other
hubs). Indeed Section 4.3 provides an example of an attack that could happen
when a sending hub generates the secret.

With multiple receiving hubs as could happen with a DAG hub topology,
there are essentially two options for secret generation: (1) all involved transac-
tions in all PCNs are linked by a common secret, and (2) some transactions
in some PCNs are linked by a common secret, while the remainder PCN have
individual secrets. Unfortunately, there are attacks that could happen when em-
ploying either of these options. In what follows, we will describe these two options
in detail, as well as delineate the plausible attacks. We will use the simple exam-
ple of 3 PCNs (one sending PCN and two receiving PCNs) depicted in Figure 4
to illustrate these problems with the DAG hub topology.

G1

h1

G2

h2

G3

h3

rG2

rG3

Fig. 4. Executing payments on a DAG
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The first option for linking all transactions together is to use a common secret,
which can be generated by the two receiving hubs h2 and h3. More specifically,
h2 and h3 independently sample secrets s2 and s3 and combine them using some
simple MPC procedure. For instance, this can be done by computing s = s2⊕ s3
where ⊕ denotes the XOR operator on two binary strings. Then, H(s) is used
as a common secret that connects all involved transactions in all PCNs.

The second option would be to use individual secrets to govern the execution
of transactions within each receiving PCN. That is, h2 and h3 independently
sample s2 and s3 and the transactions within G2 and G3 are governed by H(s2)
and H(s3) respectively. The transactions in G1 as well as hub-to-hub channel
updates can then be governed by some combination of both secrets, e.g., H(s2)⊕
H(s3).

In both of these settings, the main issue is that in first party that reveals
the secret in the revelation phase is disadvantaged. In the first setting with a
common secret, suppose h3 reveals s3 first. Then h2 could pretend to go offline
and collude with some recipients in G3 (e.g., rG3

in Figure 4) to leak s2 to them
for a small cut, resulting in them pulling funds from h3 while preventing h3 from
pulling funds from h1 as h3 does not know s2. In the second setting, suppose h2

reveals s2 during the revelation stage and h3 goes offline. h1 could collude with
rG2 and send rG2 s2 to enable rG2 to pull funds from h2 (in fact if we use Thora
to update channels all involved transactions in G2 will be executed) in exchange
for a small cut.

The above issues could be resolved if we create some global on-chain event,
for instance a transaction that contains both secrets, such that all cross-PCN
transactions can be executed upon the existence of this event on some blockchain.
We stress that a pure off-chain solution would not be able to replicate this
public and global dissemination of information as per an on-chain event, as all
information in PCNs is either localized to users or shared between two parties
in channels. More generally, we conjecture that simultaneous release of secrets
(as in the case with multiple receiving hubs) is impossible with rational users
without on-chain events, which implies that without on-chain events atomicity
of transaction execution in the cross-PCN setting where there could be multiple
receiving hubs as in the DAG topology is impossible. We leave further exploration
of this conjecture to future work.

Algorithm to convert the DAG output to a path. We denote the output
of the above greedy algorithm that aims to connect all hubs as G = (V,E) where
the vertices of G are the hubs. Note that G is a DAG. For each hub vertex v ∈ G,
we assign two attributes:

1. the type of v, that is, whether v is a sending, receiving, or a middle vertex.
Sending vertices are vertices with in-degree 0, receiving vertices are vertices
with out-degree 0, and vertices with both nonzero in and out degrees are
classified as middle vertices.

2. the depth of v, that is, the length of the shortest path between v and any
sending vertex.
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Algorithm 3: Aggregation phase: computing a path from a DAG

input: DAG G = (V,E), each vertex in G with attributes type and depth
E′ = ∅
W = 0
S = {v | v.type = sending}, sorted in ascending order of total edge weights
R = {v | v.type = receiving}, sorted in descending order of total edge weights
M = {v | v.type = middle}, sorted in ascending order of total outgoing weights
V = S ∥M ∥R
for i in [|V | − 1]

create edge e = (vi, vi+1)

W = W + wG
out(v)− wG

in(v)
set the edge weight of e to w
E = E ∪ e

return P = (V,E′)

We describe the process of converting G into a path graph P in Algorithm 3
and illustrate this transformation on an example in Figure 5. The invariant
that Algorithm 3 maintains is balance conservation of the vertices, that is, the
difference between the sum of outgoing edges and incoming edges must be the
same for all vertices in both G and P . Formally, let wG

out(v) (resp. w
G
in(v)) denote

the total weights of outgoing (resp. ingoing) edges of v in graph G. Then for all
v ∈ G, wG

out(v) − wG
in(v) = wP

out(v) − wP
in(v). To convert G into a path, the

algorithm simply creates creates edges in ascending order among all sending
vertices with the weight of each newly created edge being the total amount of
funds sent out by the previous sending vertices in the sequence. This process
is similarly repeated for the middle vertices (in ascending order in the total
outgoing edge weights), this time removing the amount each middle node should
receive from the newly created edge weights. Finally, we repeat the process
again for the receiving nodes in descending order of total edge weights, this
time subtracting the amount each receiving node should receive from the weight
of each newly created edge.

v1

v1

v3

v2

v3

v4

v5

v6 v7

5

6

1

7

2 5

v1 v2 v4 v3 v6 v5 v7

5 12 13 12 59

Fig. 5. Transformation of DAG to path
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E.3 Computing execution time parameters

Let us denote by P the path graph computed from the previous stage where
the vertices of P are the hubs h1, . . . , hk. Let Vi = Gi \ {hi} be the nodes in
the ith PCN Gi excluding the hub hi. Let flow(v, hi) ∈ R be the monetary
transfer between a single node v ∈ Vi and hi, where |flow(v, hi)| denotes the
size of the transaction, and flow(v, hi) > 0 represents incoming flow of funds
from v to hi and flow(v, hi) < 0 represents outgoing flow of funds from hi to v.
Let tfhi =

∑
v∈Vi

(flow(v, hi)) denote the total flow, that is, the total amount of
monetary transfers from all nodes in Vi to hi. Finally, let nfhi = sgn(tfhi) where
sgn is the sign function denote the net flow to hi. We stress that both the total
and net flow do not include cross-PCN monetary flows and is simply meant to
measure the overall profit or loss a hub is in when looking only at flows internal
to their PCN.

We now state an important lemma regarding net flows in hubs.

Lemma 2. Either all PCNs Gi have nfhi = 0 or at least one PCN Gi has
nfhi > 0 and at least one other PCN Gj has nfhi < 0.

Proof. Wlog, suppose we only have one hub hi with nfhi
> 0 and all other hubs

hj have nfhj
= 0. This means that the total sum received among all users over

all PCNs is larger than the total sum sent. This violates balance conservation,
a property which is preserved during the aggregation phase. The case for only
one hub with nfhi < 0 and all other hubs having neutral total flow proceeds
similarly. ⊓⊔

Algorithm 4: Aggregation phase: computing execution phase time pa-
rameters.

input: Path P = (V,E), transactions T , initial time T0, time increment δ
T = ∅
S = all PCNs Gi | nfhi ≥ 0
append (S, T0 + δ) to T
i = 1
P = P \ S
while P ̸= ∅ do

i = i+ 1
S′ = all PCNs Gi | ∃(s, r) ∈ T with r ∈ Gi and s ∈ S
append (S′, T0 + i · δ) to T
S = S ∪ S′

return T

Algorithm 4 details the process of obtaining these time parameters, as well
as the set of PCNs corresponding to each time parameter. The time parameters
are computed based on two assumptions regarding the execution phase of X-
Transfer. The first is the assumption that hubs that are in a position of positive
or neutral net flow will be incentivized to execute the protocol and update the
channels inside their own PCNs. For hubs in a positive net flow position, the
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incentive comes in the funds they will receive in the process. For hubs in a neutral
net flow position, we assume that they would still rather execute the protocol
than not in order to benefit from the fees gained from a successful execution
of X-Transfer. The second assumption is the existence of a mechanism that
allows clients in a PCN to enforce channel updates, which will be enforced in
the execution phase of X-Transfer by the usage of Thora to update channels.

Informally, Algorithm 4 computes these time parameters by first assigning
all PCNs with hubs that have positive or neutral net flow, i.e., nfhi

= 1 or
nfhi = 0, the smallest time parameter. The rationale behind this goes back to
our first assumption that, assuming all cross-PCN flows are already fulfilled and
their corresponding channels updated, hubs that are in a position of positive
or neutral net flow will be incentivized to update the channels inside their own
PCNs. Thus, these hubs should execute the channel updates within their PCNs
first. Let us label these PCNs as “safe PCNs”. After these PCNs have been
updated, Algorithm 4 then looks for PCNs with negative net flow hubs, but
contain a recipient r such that the corresponding sender to r lies in a safe PCN
(Lemma 3 shows this always exists). These PCNs should execute their internal
channel updates next as there will be a sender who has already sent out funds
and their corresponding recipient would be incentivized to enforce the updates
in their PCN so as to obtain their funds. We then augment the set of safe PCNs
by these new PCNs and assign these PCNs a longer execution time parameter.
Finally, we repeat the process until no PCNs are left.

The following lemma proves the correctness of Algorithm 4.

Lemma 3. Algorithm 4 terminates.

Proof. Choose a random PCN Gi with hub hi with negative net flow. Since
nfhi < 0 and P is connected, this means that hi has to be receiving funds from
another PCN as we assume that all hubs only facilitate the flow of funds and
do not send or receive money in their PCN. Choose a random recipient in Gi

with a corresponding sender outside their PCN. Note that this always exists
since the hub has negative net flow so the outgoing funds to recipients in Gi is
more than the incoming funds from senders in Gi. If the sender lies in a PCN
say Gj also with negative net flow hub, choose a random recipient in Gj with
sender outside the PCN that is also not in Gi. Again this must exist since the
sum of total incoming funds from senders in Gi and Gj is smaller than the total
outgoing funds to recipients in both PCNs. From Lemma 2, this process must
terminate at a PCN with a hub with either positive or neutral net flow. This
observation shows that all PCNs will eventually be added to the safe set and
thus Algorithm 4 terminates. ⊓⊔

E.4 Execution phase

Modifications to Thora pre-setup, setup, and confirmation phases.
Here we detail the modifications made to the pre-setup, setup, and confirmation
phases of Thora to enable the usage of an additional hashlock to lock transac-
tions.
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Algorithm 5: Thora pre-setup with hashlock

input: PCN G, blockchain delay parameter ∆, hashed secret H(s)

S := set of senders in G

Each recipient ri ∈ G creates txin
ri = # 7→ [(ϵ|σri,S)]

Each ri ∈ G creates txep
ri = [(ϵ|σri,S)] 7→ [(ϵ|σri ∧H(s) ∧∆)]

Each ri ∈ G sends txep
ri to all involved parties in G

Algorithm 6: Thora setup with hashlock

input: PCN G, time parameter T , blockchain delay parameter ∆, hashed
secret H(s)

C := {ei} set of involved channels in G
for each edge ei = (s, r) ∈ C

p := payment amount
bs := balance of sender s
br := balance of recipient r
s creates txstate

s,r = # 7→ [(p|(σs ∧ T ) ∨ (σs,r ∧∆)), (bs − p|σs), (br|σr)]
s creates txr

s,r = (p|(σs ∧ T ) ∨ (σs,r ∧∆)) 7→ (p|σs)
s creates txp

s,r = [(p|(σs ∧ T ) ∨ (σs,r ∧∆)), (ϵ|σr ∧H(sl) ∧∆)] 7→ (p+ ϵ|σr)
s sends txstate

s,r and the signed txp
s,r to r

E = ∅
for edge ei = (s, r) ∈ C

r checks transactions sent from s
if all transactions are correct and valid then

add endorsement to E

if |E| = mj then
broadcast final endorsement

F A Simple Example of X-Transfer: Three PCNs

We illustrate how X-Transfer works on a simple example of three PCNs
G1, G2, G3 with corresponding blockchains BG1

, BG2
, BG3

and hubs h1, h2, h3.
Multiple parties in each PCN are involved in the protocol, and we assume that
the resulting transaction flow after the aggregation phase is a transaction path
from G1 to G2 to G3 transferring x1 from h1 to h2 and x2 from h2 to h3. Figure 6
depicts this setting.

G1

h1

G2

h2

x1

Thora(T1) Thora(T2)

h1

Thora(T0)

G3

h3

Thora(T3)

x2
x1

x2

h2

h3

Fig. 6. Execution of X-Transfer on 3 PCNs G1, G2, G3.
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Algorithm 7: Thora confirmation with hashlock

input: PCN G

R := set of all receivers in G
C := {ei} set of involved channels in G
for each edge ei = (s, r) ∈ C

if s gets an endorsement from r ∀r ∈ R then
update ei using txstate

s,r

if ei is updated successfully then
for j ∈ [|C|]

send σ(txep
j ) to receiver of ej

for each edge ei = (s, r) ∈ C
if r receives all signatures on txep

r then
check if ei is updated successfully
send endorsement to all parties

Aggregation phase The aggregation phase begins with all interested parties
secret sharing their transactions as well as their balance information. This in-
formation is given to the MPC delegates and the ILP optimization problem as
defined in Equation 1 is then solved among these delegates. Additionally, the
delegates compute the path solution, as well as the relevant Thora time param-
eters for each PCN. We stress that all of the above computation is done using
MPC. The output of this protocol at this phase will be the requisite funds each
involved party would need to transfer to or receive from their respective hubs, the
amount of funds each hub sends to each other, and the Thora time parameters.

Execution phase. The execution phase begins with setting up the Thora pro-
tocols among the involved parties. First, the hub h3 generates a random secret
s and broadcasts H(s) to the other hubs. Then, each hub uses H(s) to set up a
Thora in their own PCN with the additional hashlock H(s) and time parameter
as output by the aggregation phase. Once all of these Thoras are verified to be
set up correctly, the hubs set up another Thora among their channels with a
smaller time paramter T0.

Once the set up is complete, h3 broadcasts s to the hubs which allows them to
execute the Thora among their channels (the Thora protocol with parameter T0

in Figure 6). After the execution and update of the within-hub channels, h1 is the
hub with positive net flow within G1 as h1 is sending funds out to h2. Thus, h1

would be incentivized to execute the Thora protocol within G1. From Lemmas 2
and 3, either h2 also has an incentive to execute the Thora protocol (if it has
neutral net flow within G2) or there would be a sender reciever pair (s, r) with
s in G1 and r in G2. Thus, once the execution of Thora in G1 is done, s would
know the secret s and can correspondingly inform r, which enables the execution
of Thora in G2. Note that the time parameter for the Thora execution in G2

as input in the set up phase would naturally account for the time taken to
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communicate this secret. Finally, a similar argument enables the execution of
Thora in G3.

G Omitted Lemmas and Proofs

G.1 Proof of Lemma 1

Lemma 1. Let |Egreedy| the number hub-to-hub of links created by our greedy
algorithm and |Hs|, |Hd| be the number of supply and demand hubs, respectively.
Then, max{|Hs|, |Hd|} ≤ |Egreedy| ≤ k − 1.

Proof. The lower bound follows from the fact that there is at least one outgoing
link from every demand node and at least one incoming link to every supply
node. We prove the upper bound by induction on the number of hubs k. We
denote the supplying hubs with Hs = {Hs

1 , . . . ,H
s
x}, the demand hubs with

Hd = {Hd
1 , . . . ,H

d
y}, and the amount to be sent or received with |H|, H ∈

Hs ∪Hd.
Induction base: The claim is true for k = 2.
This trivially holds, since there is only one supply and one demand hub, which
the algorithm connects. The case of k = 3 is also trivial. The case of k = 4 is
the first non-trivial one, as it can be solved with 2, 3, or 4 nodes in general,
depending on the actual flows. Even though it is not necessary for the base case
(but good for intuition), applying the algorithm gives either 2 links when the
amounts match exactly or 3 links otherwise (k − 1).
Induction hypothesis: We assume that the upper bound holds for k = n.
Induction step: We will show that the upper bound holds for k = n+1. Consider
the sorted demands and supply amounts. We distinguish the demand hub with
the smallest amount as Hd

j . From the descending order of amounts of the supply
hubs, we distinguish the smallest suffix {Hs

i1
, . . . ,Hs

iℓ
} such that |Hs

i1
| + . . . +

|Hs
iℓ
| ≥ |Hd

j |. We consider two cases (see Figure 7 for details): |Hs
i1
| + . . . +

|Hs
iℓ
| = |Hd

j | and |Hs
i1
| + . . . + |Hs

iℓ
| > |Hd

j |. In the first case, we define H′s =

Hs \ {Hs
i1
, . . . ,Hs

iℓ
} and H′d = Hd \ {Hd

j }. We run the greedy algorithm over
the n + 1 − ℓ − 1 = n − ℓ < n + 1 hubs in H′s ∪ H′d. The base case gives us a
solution with at most n− ℓ− 1 = n− j − 1 links. We augment that solution by
adding (Hs

i1
, Hd

j ), . . . , (H
s
iℓ
, Hd

j ), thus ℓ more links, that satisfy the demand of

Hd
j and the supplies of the excluded supply hubs. By that, we gain a solution for

all hubs, with at most n− 1 links. This is expected, since the part we excluded
is independent from the remainder.

We now consider the case of |Hs
i1
| + . . . + |Hs

iℓ
| > |Hd

j |. In this case, we
artificially duplicate Hs

i1
to node A and node B. For node B, we define |B| =

|Hd
j | − |Hs

i2
| − . . . − |Hs

iℓ
| (i.e., the part of |Hs

i1
| needed to sum up to |Hd

j |)
and |A| = |Hs

i1
| − |B|. Since {Hs

i1
, . . . ,Hs

iℓ
} is the smallest suffix of ordered

supply amounts that is larger than |Hd
j |, |Hs

i1
| is the largest number in that

set and removing it implies |Hs
i2
| + . . . + |Hs

iℓ
| < |Hd

j |. Then, we define H′s =

(Hs \ {Hs
i1
, . . . ,Hs

iℓ
})∪{A} and H′d = Hd \ {Hd

j }, and run the greedy algorithm
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……
…

……
…

Fig. 7. Left: the first case, where Hd
j is satisfied by ℓ nodes in the suffix exactly. Right:

the second case, which is the opposite of the first. In this case Hs
i1 , i.e., A, will have

an extra link (compared to the previous case), to the nodes.

on the n+ 1− ℓ+ 1− 1 = n+ 1− ℓ hubs in H′s ∪H′d. The fact that A is part of
H′s ensures that the demands and supplies match in H′s ∪H′d. By the induction
hypothesis, the solution size is at most n − ℓ. We augment the solution by (i)
adding the ℓ links (B,Hd

j ), (H
s
i2
, Hd

j ), . . . , (H
s
iℓ
, Hd

j ), and (ii) merging nodes A
and B to the original hub Hs

i1
. This step produces a solution for all hubs, as it

satisfies |Hd
j |. The solution has at most n− ℓ+ ℓ = n links. Hence, the induction

step and the induction are proved. ⊓⊔

H Analysis of X-Transfer

H.1 Balance security

Lemma 4. Balance security is satisfied in the aggregation phase, i.e., the ag-
gregated demand vector should correspond to some sublist T ′ ⊂ T of the input
transactions.

Proof. We will show balance security is satisfied in the solution of the ILP opti-
mization problem, as well as the subsequent algorithms that augment the links
between the hubs as well as convert the DAG to a path. We begin with the so-
lution of the ILP. Recall that the solution of the ILP as specified in Equation 1
computes the optimal subset T ∗ of transactions to execute and that the demand
vector d∗ =

∑
ti∈T ∗ x∗i ti sums up the total incoming and outgoing flows per

user. Thus, by definition, d∗ corresponds to the the subsequence T ∗ of the input
transaction sequence T and so balance security is not violated in this phase.

Next, we show that our greedy algorithm for computing the flows between
hubs does not alter the balance of any hub by more than a negligible amount
of funds. First observe that the total demand among the hubs is equal to the
total supply. This comes from the fact that the solution of the ILP is T ∗ ⊂ T
and the hubs do not send or receive funds. In our greedy algorithm, the hubs
are connected such that each demanding hub’s demand is fulfilled by some other
supplying hub’s supply, and when the demand is exactly fulfilled, any excess
supply goes to another demanding hub. Since the total hub demand equals total
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hub supply, the process terminates with a DAG G (with possibly disconnected
components).

Let ϵ > 0 be some negligible fund amount. In the subsequent phase of the
greedy algorithm, each connected component in G is connected to the another
with a payment channel sending ϵ amount of funds. Thus, the change in balance
of any given hub is at most kϵ which is negligible.

In the final phase of aggregation, the resulting DAG G is connected to a path
P as per Algorithm 3. Note firstly that the graphs G and P share the exact same
set of vertices, and that Algorithm 3 maintains the invariant that for all vertices
v in both graphs G and P , dGv := wG

out(v) − wG
in(v) = wP

out(v) − wP
in(v) =: dPv .

Since the difference in outgoing and incoming flow for each vertex v is the same in
both graphs, P inherits the balance security of G, which from the above analysis
is shown to preserve balance security. As such, we conclude that balance security
of preserved during the aggregation phase of X-Transfer. ⊓⊔

Lemma 5. Balance security is satisfied in the execution phase, i.e., no rational
party can gain a larger utility from deviating from the protocol.

We will prove this by defining an underlying strategic game corresponding to
the execution phase and showing that the strategy that follows Algorithm 1 is a
subgame perfect equilibrium. In the following paragraphs, we define the requisite
game theoretic and equilibrium concepts as well as a formal description of the
game induced by the execution phase.

Notation and terminology. For a set S, we use ∆(S) to denote the set of all
probability distributions on S. For a distribution α ∈ S, we use x ← α to
denote sampling an element x from S according to the distribution α. We use
the notation x ← S to denote that the element x is sampled from S uniformly
at random. For an n-dimensional vector v ∈ Sn, we use the indexing notion v−i
to denote all elements in v except for the ith element.

Strategic games and Nash equilibrium. Let Γ = (N, (Ai), (ui)) be an N player
simultaneous strategic game where Ai is a finite set of actions for each player
i ∈ [N ] and denote by A := A1 × · · · ×AN the set of action profiles. The utility
function of each player i, ui : A → R, gives the payoff player i gets when an
action profile a ∈ A is played. A strategy σi ∈ ∆(Ai) of a player i ∈ [N ] is a
distribution over all possible actions of the player. We say player i’s strategy is
pure if it a Dirac distribution over Ai.

Definition 5. (Nash equilibrium). A Nash equilibrium (NE) of Γ is a product
distribution α ∈ ×j∈[N ]∆(Aj) such that for every player i ∈ [N ] and for all a′i
in Ai,

Ea←α[ui(a)] ≥ Ea←α[ui(a
′
i, a−i)]
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Extensive form games and subgame perfect equilibria. Games that span multiple
rounds (where players’ actions arrive sequentially) are modelled as extensive-
form games. An extensive-form game can be represented as a finite game tree
where for every non-leaf vertex x there are functions that describe the player
that moves at x, the set of all possible actions at x, and for each action a,
the child node that leads from x given a. Moreover, in the imperfect information
setting, or a mixed setting where players can make simultaneous moves, all player
vertices are further partitioned into information sets I which captures the idea
that the total information about the game given to a player that makes a move
at any vertex x ∈ I is the same as making a move from any other vertex x′ ∈ I.
Thus, the player is effectively rendered uncertain of their precise location in the
game tree modulo the vertices in their information set. A path from the root
of the game tree to a leaf vertex corresponds to a game play in Γ which is a
sequence of player moves made by the players in the game. Each leaf node is
assigned a payoff vector which represents the payoff of each player if the game
terminates at this leaf. A subgame of an extensive-form game corresponds to a
subtree rooted at any non-leaf vertex x that belongs to its own information set
I, i.e., there are no other vertices that are in I except for x. A strategy profile is
a subgame perfect equilibrium (SPE) if it is a Nash equilibrium for all subgames
in the extensive-form game.

Game induced by the execution phase of X-Transfer. The execution phase
of X-Transfer induces a 5-stage extensive form game Γ . The first stage of Γ
corresponds to secret generation and broadcast and only involves a move by hk.
Here, the set of actions hk can make would be to either sample and broadcast the
hashed secret (for readability, we merge both actions into a single action called
broadcast), or to not broadcast the hashed secret. Playing the action broadcast
would advance Γ into the next stage, while choosing to play ¬broadcast will
abort the process and terminate Γ .

In the second stage of Γ , all users (clients and hubs) proceed to set up Thora
in their respective PCNs. Again for readability purposes, we merge both Thora
pre-setup and setup into a single stage in Γ , and we simplify the actions of all
users without the secret (i.e., all users except for hk) to {run,¬run} where play-
ing run in Γ corresponds to participating in the setup of Thora in X-Transfer,
and playing ¬run corresponds to dropping offline/aborting the protocol at this
stage. For hk, the actions available are {run,¬run, leak ∧ run, leak ∧ ¬run},
where run,¬run are defined as above but leak refers to hk leaking the secret to
one or more users at this stage. Note that since X-Transfer does not impose
any setup order in this stage and hubs are allowed to independently setup Thora
in their PCNs, this stage of Γ involves simultaneous play.

The third stage of Γ corresponds to the Thora confirmation in Algo-
rithm 1. Here, the simplified set of actions for all users except hk are
{confirm,¬confirm} and for hk, {confirm,¬confirm, leak ∧ confirm, leak ∧
¬confirm}. Playing confirm in Γ corresponds to adhering with the Thora con-
firmation protocol. Playing ¬confirm corresponds to refusing the follow through
with Thora confirmation and aborting the protocol. Finally, the action leak is
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only available to hk and corresponds to leaking the secret to one or more users
at this stage. As the move order is again inconsequential in this stage, we assume
all users move simultaneously.

The fourth stage of Γ corresponds to the hubs setting up and confirming a
Thora among themselves. The simplified set of actions for all hubs except hk

would be {run,¬run} where run corresponds to participating in the setup and
confirmation of Thora in X-Transfer, and playing ¬run corresponds to abort-
ing the protocol. For hk, the action set consists of {run,¬run, leak∧ run, leak∧
¬run} where leak again corresponds to leaking the secret to some subset of
users. Note that in this stage only hubs can make moves and again since the
order of moves is inconsequential, we assume simultaneous moves.

The last stage of Γ corresponds to the actual execution of X-Transfer,
and begins with the move of hk. Here, the set of actions for hk are
{reveal,¬reveal, leak} where reveal corresponds to revealing the secret to all
hubs, ¬reveal corresponds to not revealing the secret and leak corresponds to
leaking the secret to a subset of hubs. Once hk has made a move, other other hubs
play an action from the set {execute,¬execute}, where execute and ¬execute
denote executing and not executing Thora in their PCNs respectively. Finally,
each sender has to play an action from the set {send,¬send} where send and
¬send denote sending the revealed secret to their corresponding recipient and
not sending the secret respectively.

Player utilities. At this point we formally describe the utilities of each player in
Γ . We first reiterate that hubs, being users that do not send or receive money,
should not have any change in their balance at the end of the protocol. While
we leave the precise specification of the hubs’ utility function open, we make two
important assumptions about their utility function. First, the utility of hubs is
strictly monotone in any change in their balance (i.e., any positive change in
balance increases their utility, while a negative change decreases their utility).
Second, given two strategies, one honest (following the stipulated protocol of X-
Transfer) and one adversarial, with both strategies giving the hubs the same
expected utility, we assume that the hubs would have a preference for the honest
strategy given their main function as facilitators of funds transfers. In practice,
this is easily enforced by giving fees to hubs for each successful execution of
X-Transfer. Next, we again assume the utility function for each client (sender
or recipient) is also monotone in their balance changes. However, we also assume
that senders, once they sent out funds, would achieve a higher expected utility
under strategies that ensure their intended recipients receive their funds. This
is also easily enforced in practice by reputation systems and the existence of a
legal/penalty system that allow recipients to demand their intended payment
from senders the moment some goods exchange hands (e.g., the recipients sent
out some goods that the sender bought and is awaiting the funds transfer from
the sender).

Honest strategy. Let us denote by σ the following pure strategy:

– In stage 1 of Γ , hk plays action broadcast.
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– In stage 2 of Γ , all players play action run.
– In stage 3 of Γ , all players play action confirm.
– In stage 4 of Γ , all hubs play action run.
– In stage 5 of Γ , hk plays action reveal. Then all hubs play action execute,

and senders in their PCNs play send.

We now show that σ is a strict SPE in Γ .

Lemma 6. σ is a strict SPE in Γ .

Proof. We will proceed by backwards induction. In stage 5 of Γ , observe that in
all subgames which require senders to play an action from the set {send,¬send},
the senders would strictly be better off playing send. This is because these
senders are already in PCNs that have executed their Thoras and so they sent
out their funds. From the description of the senders’ utilities as specified above,
for all sender i, ui(send) > ui(¬send). Thus the pure strategy that plays send
is a strict NE in this subgame.

Now we go up a level in the game tree and look at all subgames that stem
from playing ¬execute (i.e., some hub hj , j ̸= k does not execute Thora in their
PCN. From Lemma 3 and the fact that send is the NE in the subgame one
level deeper than this subgame, we know that the payoffs from playing ¬execute
would either be the same as playing execute (in the case where hj belongs
to a PCN where some other sender notified hj ’s recipient which then executes
Thora), or lower in the case where hj has already sent out money to some other
hub but has not yet received funds from the execution of Thora. Either way, as
uj(¬execute) ≤ uj(execute), the pure strategy that plays execute is the strict
NE in this subgame.

We then go up to the next level of the game tree. Here, the utility of hk

playing ¬reveal is simply 0 since no one would be able to execute the protocol
without the secret and no money changes hands. The utility of hk when playing
leak is also 0, since a single hub knowing the secret is sufficient to execute
Thora among the hubs, and we eliminated all subgames at the deeper level in
which hj , j ̸= k does not execute. Finally, although hk does not gain any funds
when playing reveal, with the preference for honest behaviour as specified in
our utility function, the utility of hk would be larger under the pure strategy
of reveal compared to any other strategy. Thus, the pure strategy that plays
reveal is the strict NE in this subgame and we can eliminate all subgames at
this level that do not begin with reveal.

run ¬run
run (ϵ, ϵ) (0, 0)
¬run (0, 0) (0, 0)

run ∧ leak (0, 0) (−α, β)
¬run ∧ leak (−α, β) (−α, β)

Table 1. Payoff matrix for the subgames at round 4 of Γ .

Now we proceed to stage 4 of Γ . Table 1 describes the payoff matrix for all
subgames in the reduced game at this stage. The payoffs of the row player (i.e.,
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hk) is denoted by the first element in the payoff pair, while the payoff of the
column player (all other hubs) is denoted by the second element. We use ϵ > 0
to denote the payoff of the hubs when following the honest strategy. Note that
the payoff where hk plays run∧ leak while other hubs play run is 0 for all hubs
because this technically advances the game to the next stage where hubs execute
their Thora. Nevertheless, it is not the honest strategy thus the expected payoff
is not ϵ for all hubs. We also use α > 0 to denote the expected loss of funds
that happens when hk leaks the secret but the hub Thora protocol is not setup.
Recall that at this stage all PCN Thoras apart from the hub Thoras are set up
and that hk is the last hub on the aggregated funds transfer path among hubs.
Thus, if the hub Thora does not execute but some other Thoras execute (due to
leaking the secret) hk can only stand to lose funds (in the case some other PCN
executes their Thora and a sender sends their secret to a recipient in Gk) or at
best remain with balance unchanged (if no PCN Thoras execute or there is no
execution that triggers Gk to execute). Since the first case happens with non-zero
probability, α > 0. In each of the leak cases, we use β to denote the expected
return of the other hubs. From Table 1, it is clear from that any strategy of hk

that plays leak is dominated by any strategy that does not play leak, thus we
can eliminate all strategies of hk involving leak (last 2 rows of Table 1. From
the remaining strategies, it is clear that the pure strategy where all hubs play
run dominates all other strategies, thus the pure strategy where all hubs play
run is the strict NE in this subgame.

confirm ¬confirm
confirm (ϵ, ϵ) (0, 0)
¬confirm (0, 0) (0, 0)

confirm ∧ leak (−α, β) (−α, 0)
¬confirm ∧ leak (0, β) (0, 0)

Table 2. Payoff matrix for the subgames at round 3 of Γ .

We proceed to the subgames at stage 3 of Γ . Table 2 describes the payoff
matrix for all subgames in the reduced game at this stage. Note that when hk

does not confirm the Thora at Gk but leaks the secret to some subset of users,
the expected payoff of hk is always 0 as hk cannot stand to gain or lose funds
since the Gk Thora is void and the hub Thora has not been set up yet. We also
note that by playing confirm ∧ leak while other hubs play ¬confirm, hk can
only be worse off in the case where hk leaks the secret to a recipient in Gk who
would then gladly execute the Thora in Gk to pull funds. As such, a similar
analysis to the subgames at stage 4 allows us to eliminate all strategies of hk

that involves leak, and from the remaining strategies the pure strategy where
all hubs play confirm dominates all other strategies, and forms the strict NE
in this subgame.

The analysis of the subgames at stage 2 of Γ proceeds similarly with Table 3
describing the payoffs corresponding to all subgames in the reduced game at this
stage. In the case where hk leaks the secret during this stage and any subset of
parties (including hk) runs the protocol, we use α to denote the expected loss
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run ¬run
run (ϵ, ϵ) (0, 0)
¬run (0, 0) (0, 0)

run ∧ leak (−α, β) (−α, 0)
¬run ∧ leak (0, β) (0, 0)

Table 3. Payoff matrix for the subgames at round 2 of Γ .

that hk could encounter. In the case where the other hubs do not run the Thora
setup but only hk does, leaking the secret results in hk losing nothing at best
(if the subset of users hk leaks the secret to does not trigger the Thora in Gk),
or loses funds at worst (if Thora in Gk is triggered, as the hub Thoras will not
be set up and hk being the last hub in the aggregated path among the hubs
can only stand to gain funds from setting up and executing the hub Thora).
Even if the other hubs run the Thora setup and hk leaks and runs the setup
as well, since the Thora among the hubs is set up after and could still possibly
be aborted, leaking the secret at this stage opens up the possibility that Gk’s
Thora is triggered without the Thora among the hubs setting up, which again
causes hk to lose funds. Thus, since these events occur with non-zero probability,
the expected loss to hk in when leaking the secret and running the protocol is
α > 0. As such, similar to the analysis of the subgames at stage 3 of Γ , we can
eliminate all strategies that involve leak. From the remaining strategies, it is
clear that the strategy where all hubs play run is the strict NE in this subgame.

Finally, we go to the first stage of Γ . Having eliminated all dominated strate-
gies, the expected payoff of hk when choosing the action broadcast is ϵ > 0 while
the expected payoff of hk when choosing the action ¬broadcast is 0. This comes
from the utility function definition and preference for the honest strategy. Thus
it is clear that the pure strategy that always picks broadcast is the strict NE of
this subgame.

Therefore, σ is a strict SPE in Γ . ⊓⊔

Remark 1. (Strict SPE and our assumptions on utilities.) Here we make an im-
portant observation that relaxing the utility function such as not to give a pref-
erence for following the honest strategy as stipulated by X-Transfer would
still result in σ being an SPE of Γ . However, σ would not be a strict SPE. In
particular, relaxing the utility function to not have any preference for honest be-
haviour could lead to other SPEs with, e.g., senders that do not send the revealed
secret to their recipients, or hubs that are in a neutral net flow position but do
not execute Thora. Unfortunately, these strategies break the balance security of
X-Transfer, and so these assumptions on utilities and preferences are required
to enforce the honest strategy and hence balance security. We stress that there
might be some wiggle room with regards to these utilities and preferences that
could lead to other balance security preserving SPEs (e.g., aborting before any
Thora is confirmed would also preserve balance security). As such, we leave the
detailed study of necessary conditions of the utility functions and preferences to
ensure balance security to further work.

We now have the requisite ingredients to prove Lemma 5.
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Proof. (of Lemma 5) From Lemma 6, the honest strategy σ as defined above is
the SPE in the game Γ induced by the execution phase of X-Transfer. Now
all that remains is to show that σ preserves balance security. In playing σ, the
only funds that changes hands are the amounts outputted from the aggregation
phase of X-Transfer. Thus, balance security of σ follows from Lemma 4 which
shows that the aggregation phase of X-Transfer preserves balance security.

⊓⊔

Theorem 1. Our protocol satisfies balance security as in Definition 1.

Proof. Follows directly from Lemmas 4 and 5. ⊓⊔

H.2 Optimality

The analysis of the optimality of X-Transfer is restricted to the aggregation
phase which solves the optimization problem of maximising the volume of trans-
actions while minimising the total cross-PCN transfer fees. We first state and
prove that the DAG solution G in the aggregation phase incurs minimal fees.

Theorem 2. The DAG solution G incurs minimal fees as per Definition 2.

Proof. Follows directly from the statement of the objective of the optimiza-
tion problem (stated in Equation 1), the correctness of the optimization oracle,
and Lemma 1. ⊓⊔

However, the path solution P required by X-Transfer incurs larger fees
compared to the optimal solution, as during the DAG to path conversion process
(refer to Algorithm 3) a sender s and receiver r that are directly connected in G
might now be separated by middle nodes in P . Hence, the funds going from s to
r might be transported over multiple edges in P instead of just a single edge in
G. In the worst case (depicted in Figure 8), X-Transfer would incur O(kM)
more fees compared to the optimal solution, where M is the sum of all outgoing
edge weights in G.

1

1 1

1
11
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Fig. 8. Comparison of fees incurred in the path solution to the optimal DAG solution.

We note, however, that Algorithm 3 employs a few heuristics to minimize the
amount of excess funds transported. Firstly, sending vertices are connected in
ascending order, which prevents the largest sending amount to be transported
more than once across all sending vertices. Secondly, transporting the funds to
the receiving hubs in descending order of total inflow allows the largest amount
of funds to be absorbed by the first receiving hub, which again reduces the
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excess amount of funds transported over the course of distributing the funds
to all receiving hubs. We leave developing more optimal algorithms and better
heuristics for future work.

H.3 Computational feasibility

Theorem 3. The optimization problem in the aggregation phase of X-
Transfer can be solved in time O(n(k∆)k

2

+ k log(k)) where ∆ is the upper
bound on the demand of each user, k is the number of hubs, and n the number
of transactions in the input transaction list.

Proof. The complexity of solving the ILP as stated in Equation (1) in Section 4.2

is O(n(k∆)k
2

) from the result of [48] (Theorem 1). The remainder of the opti-
mization problem is computing the optimal way to connect the flows between
the hubs. In the greedy algorithm we present, the main complexity bottleneck is
sorting the list of hubs in terms of inflow and outflow, which gives the k log(k)
term. ⊓⊔

H.4 Privacy

Theorem 4. X-Transfer satisfies privacy as defined in Definition 4 assuming
users running the MPC protocol satisfy the trust assumptions required by the
underlying MPC protocol.

Proof. We will show both phases of our protocol satisfies the definition of privacy
as defined in Definition 4.

We first analyse the aggregation phase and consider the indistinguishability
game as defined in Definition 4. Suppose there is a TTP that takes in the chal-
lenge input T b for b ∈ {0, 1}, computes the aggregation, and outputs to each
node in V ′ the flow on their incident channels. We further suppose the aggrega-
tion output satisfied all conditions as specified in Definition 4, primarily that the
flow output restricted to GA should be the same regardless of whether T 0 or T 1

is given as input. Given that this is so, each corrupted user cannot distinguish
the flow output regardless of whether T 0 or T 1 is the input.

Now replace the TTP with an MPC protocol that computes the same func-
tionality. Since we assume that the delegates running the MPC satisfy the trust
assumptions of the underlying MPC protocol, we get the same privacy guaran-
tees as in the case with the TTP.

The execution phase of our protocol involves using Thora and HTLCs to
update channels. The usage of both Thora and HTLCs in our protocol do not leak
the payment values along each channel to any other party apart from the channel
owners, and thus does not violate privacy as in Definition 4. Furthermore, the
set of involved users is restricted to be the same whether the protocol is run
on T 0 or T 1, thus the view of the adversary in the execution phase is also
indistinguishable, hence private. ⊓⊔
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I Experimental Evaluation

We implemented the aggregation phase of X-Transfer and performed a (proof
of concept) experimental evaluation towards answering the research question:

Does X-Transfer increase the total volume of successful transactions?

Baseline. To answer this research question, we compare the performance of our
implementation of X-Transfer against a baseline which does not implement
any transaction aggregation. In this baseline, transactions are processed sequen-
tially and at each step transactions are checked to see if they can be executed.

Setup and methodology. We ran our experimental evaluation [7] with 5 PCNs
and 1000 clients per PCN. We created bidirectional channels between each client
and hub in all PCNs and randomly sampled the client-to-hub channel capacities
from the list of broadcasted channel capacities contained in a recent (Aug 2023)
snapshot of the Lightning Network [20]. We used Python 3 for our implemen-
tation and will make the code available upon publication. All experiments were
run on a laptop with 8 cores (Intel Core i7) and 16GB RAM, running Ubuntu
18.04.1 LTS. We used Gurobi [33] for solving the ILP.

Our experimental parameter sweep is the size of input transactions. We first
fix the target number of input transactions per client to 10. Let c denote the
capacity utilization of each channel, which we define as the ratio of the sum of the
volume of all transactions originating from a client over the client-to-hub channel
capacity. Note that c is fixed for all channels. For each client, we then randomly
sample 10 transactions going from the client to a recipient chosen uniformly at
random across all PCNs, with the restriction that the sum of the volume of the
sampled transactions divided by the client-to-hub channel capacity equals c. We
then run a sweep over c ∈ {0.5, 1, 2, 4}. Figure 9 plots the actual distribution
of the sizes of the sampled transactions from our procedure. The y-axis depicts
the transaction amount (in satoshis) and the x-axis displays the transactions
ordered from smallest to largest. For instance, the element (1, T ) denotes that
the smallest transaction is of size T . In our sampling procedure, transaction sizes
are sampled in proportion to the capacity of the client-to-hub channels. Thus,
as expected, most transactions are pretty small as most client-to-hub channels
have small capacities.

The statistics we compute are the success volume ratio and the run time of X-
Transfer. The success volume ratio is defined as the total volume of successful
transactions over the total volume of transactions in the input list. The mean
and median of each statistic are computed over 10 runs of both X-Transfer
and the baseline for each parameter setting.

Results. As can be seen from Figure 10, the average success volume ratio of
both X-Transfer and the baseline decreases as expected as the average size of
each transaction (governed by c) increases. However, it is clear that the average
success volume ratio of X-Transfer is consistently and significantly larger (at
least 2 times) than the baseline. This shows that X-Transfer gives a clear
boost in transaction throughput over the baseline of no aggregation.
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Fig. 9. Distribution of transaction sizes.

Figure 11 shows the mean and median run time of X-Transfer, which
includes both solving the ILP as well as computing the optimal hub flows. We
note that the mean and median generally correspond closely, with the exception
in the case of c = 4. This could be explained by variance in the Gurobi solver
for the ILP when given larger inputs. Nevertheless, we observe the median run-
time for all parameter settings remains around 3 seconds, which indicates that
the aggregation segment of X-Transfer incurs only a minimal computational
overhead and this overhead also scales well with the size of input transactions.
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Fig. 11. Runtime of X-Transfer

Evaluation discussion. Next we discuss two directions to optimize the evalu-
ation that could be interesting to explore for future work.

First, we note the tradeoff between efficiency and optimality in the solving of
the ILP: we can handle more transactions and larger transaction volume which
boosts the efficiency of X-Transfer if we sacrifice the optimality of the ILP
solution. This can be done by editing the Gurobi solver we use to solve the ILP
to terminate sooner with a nearly optimal solution.

Second, our current implementation of transaction aggregation as specified
by X-Transfer works best in the one-shot setting as all transactions are given
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equal weight. Indeed the optimization problem as specified in Eq 1 can be rewrit-
ten as max

∑n
i=1 wi|ti|xi, where wi ∈ [0, 1] are some prespecified weights given to

each transaction. InX-Transfer we assign all transactions to have equal weight
(we can think of wi to be 1 for all i in Eq 1). However, when X-Transfer is run
consistently in reality sometimes it makes sense to prioritize certain transactions
over others (for instance, transactions that keep failing to execute in previous
rounds of X-Transfer). This can be done by giving these transactions a larger
weight in the objective.
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