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Abstract. We introduce a general template for building garbled circuits with low commu-
nication, under the decisional composite residuosity (DCR) assumption. For the case of lay-
ered Boolean circuits, we can garble a circuit of size s with communication proportional to
O(s/ log log s) bits, plus an additive factor that is polynomial in the security parameter. For
layered arithmetic circuits with B-bounded integer computation, we obtain a similar result:
the garbled arithmetic circuit has size O(s/ log log s) · (λ+ logB) bits, where λ is the security
parameter. These are the first constructions of general-purpose, garbled circuits with sublinear
size, without relying on heavy tools like indistinguishability obfuscation or attribute-based and
fully homomorphic encryption.
To achieve these results, our main technical tool is a new construction of a form of homomorphic
secret sharing where some of the inputs are semi-private, that is, known to one of the evaluating
parties. Through a new relinearisation technique that allows performing arbitrary additions and
multiplications on semi-private shares, we build such an HSS scheme that supports evaluating
any function of the form C(x) ·C′(y), where C is any polynomially-sized circuit applied to the
semi-private input y, and C′ is a restricted-multiplication (or, NC1) circuit applied to the private
input x. This significantly broadens the expressiveness of prior known HSS constructions.
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1 Introduction

Garbled circuits, introduced by Yao [Yao82], are a cryptographic tool used to evaluate a circuit
on private inputs. Concretely, a garbling scheme consists of an algorithm Garble, which takes
a circuit C and outputs a garbled circuit Ĉ together with some input encoding functions
Ki, for the i-th input. There is also an evaluation algorithm, Eval, which on input Ĉ and
the encodings Ki(xi) for some inputs x1, . . . , xn, produces a result y = C(x1, . . . , xn). For
security, it is required that the garbled circuit Ĉ and garbled inputs Ki(xi) reveal nothing
about the inputs or circuit besides y, and some structural information about C.

Garbled circuits are a valuable tool in secure two-party and multi-party computation with
constant round complexity, and also enjoy usage in a range of other cryptographic applica-
tions. One limitation of most garbled circuit constructions is their bandwidth complexity.
Typically, for Boolean circuits, the garbled circuit Ĉ has size O(λ) times larger than the
number of gates in C, for security parameter λ, which introduces a large bandwidth overhead
in applications where a garbled circuit needs to be sent over a network. There has been much
effort to reduce this complexity over the years, with the state-of-the-art construction based
on symmetric cryptography being the “three halves” technique [RR21]. This obtains a size of
≈ 1.5λ bits per AND gate, and zero bits per XOR gate in the circuit.

For more specialized circuits with components such as branches or lookup tables, tech-
niques such as stacked garbling [HK20,HK21b] and one-hot garbling [HK21a,HKN24] can be
used to obtain improvements over naively expressing the components in terms of XOR and
AND gates. However, these do not lead to noticeable asymptotic improvements for general,
Boolean circuits.

If garbling an arithmetic circuit instead of a Boolean circuit, approaches based on symmet-
ric cryptography are typically less efficient, with the state-of-the-art having a size of O(λℓ)
bits per garbled multiplication gate of ℓ-bit integers. Other approaches based on linearly
homomorphic encryption [AIK11, BLLL23] can obtain a similar or better communication
complexity. Recently, [MORS24] presented a new approach to garbling arithmetic circuits,
using techniques drawn from homomorphic secret sharing [BGI16,OSY21,RS21]. This led to
a rate-1 arithmetic garbling scheme, where each multiplication gate can be garbled with a
cost of sending one Damgård-Jurik ciphertext, which has size roughly the same as the maxi-
mum size of any wire value when evaluating the arithmetic circuit over the integers. Notably,
this was the first rate-1 construction relying solely on a group-theoretic (factoring-related)
assumption.

Succinct Garbled Circuits: Overcoming the Circuit Size Barrier. Several works have shown
how to construct succinct garbled circuits, where if C is publicly known, then the size of the
garbling Ĉ can be sublinear in the size of C. This was shown to be possible under the subex-
ponential hardness of the learning with errors assumption [GKP+13] with later improvements
in [BGG+14]. In the latter construction, the size of the garbled circuit scales polynomially
with the depth of the circuit, but not its size. More recently, this dependence on the depth has
been removed by relying on LWE with an additional circular security assumption [HLL23].
However, in addition to making strong assumptions, all of these constructions rely on complex
primitives such as fully homomorphic encryption and attribute-based encryption. So far, it
has not been known how to achieve sublinear-size garbled circuits without such machinery.

1.1 Our Contributions

In this work, we introduce a new approach to garbling Boolean and arithmetic circuits with
sublinear size, under the decisional composite residuosity (DCR) assumption. We obtain the

3



following main results on the communication complexity of garbling layered circuits1.

Theorem 1. Assuming DCR, there exists a garbling scheme for layered Boolean circuits,
where the size of the garbled circuit and labels is O(s/ log log s+m) + (n+D + 1) · poly(λ),
for a circuit with size s, depth D, n inputs and m outputs.

For arithmetic circuits, as in several prior works [BLLL23,MORS24], we consider a model
of bounded integer computation, where there is a known bound B ∈ N such that, for all
supported inputs to the circuit, the magnitude of all wire values during evaluation is bounded
by B.

Theorem 2. Assuming DCR, there exists a garbling scheme for layered arithmetic circuits
supporting B-bounded integer computation, where the size of the garbled circuit and labels is
O(s/ log log s+m)(λ+ logB) + (n+D+1)poly(λ, logB), for a circuit with size s, depth D,
n inputs and m outputs.

We remark that in both theorems, the dependence on the circuit depth D can be re-
moved by making an additional circular security assumption for the Damgård-Jurik encryp-
tion scheme.

Main Tool: a Relinearisation Technique for Semi-Private Homomorphic Secret
Sharing. Like the recent work of [MORS24], our work builds a garbling scheme using tech-
niques from homomorphic secret sharing, and in fact, we achieve our results by introducing a
new relinearisation tool that allows to significantly expand the class of functions supported
by certain homomorphic secret sharing schemes. Concretely, we use this to build a form of
semi-private HSS scheme for two servers, where one portion of the inputs to the function
being evaluated must be known to one of the servers. Our scheme can support homomorphic
evaluation of functions of the form

C(x⃗) · Crm(y⃗)

where x⃗ is the semi-private input known to one server, y⃗ is the private input, C is any circuit
of polynomial size, and Crm is a “restricted multiplication circuit”, roughly equivalent to a
log-depth circuit. Additionally, our scheme has an offline/online property that we leverage
to build garbled circuits, where one server’s share of the semi-private input x⃗ can be sampled
ahead of time, independently of the input x⃗.

Most classic HSS constructions [BGI16, OSY21, RS21] only support the evaluation of
functions of the form Crm(y⃗). One exception is the work of [CMPR23], which implicitly
builds a semi-private, offline-online HSS for functions of the form Crm(x⃗) · Crm(y⃗), as part
of their construction of constrained pseudorandom functions. Our construction allows to
significantly expand the class of functions that can be evaluated on the semi-private input,
and we believe this result and the relinearisation technique will be useful in other applications
beyond garbling.

1.2 Related Work

In recent, prior (but independent) work, two other papers have proposed constructions of
garbled circuits with small size.

1 Recall that in a layered circuit, gates can be partitioned into layers Li, such that any circuit wire goes from
a gate in some layer Li to one in the next layer Li+1.
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Garbling with 1 Bit Per Gate [LWYY24]. Liu, Wang, Yang and Yu [LWYY24] show how to
garble Boolean circuits with 1 bit per gate, using homomorphic encryption based on either
ring-LWE or NTRU, plus a KDM security assumption. Although their assumptions are very
different, under the hood, their construction appears similar to our general garbling template
when instantiated for boolean circuits, except they use a homomorphic encryption scheme
(used to homomorphically evaluate a PRG) instead of homomorphic secret sharing based on
DCR, as we do.

Partial Succinct Garbling [ILL24]. Ishai, Li, and Lin [ILL24] also provide novel techniques
for succinct garbling schemes. Like ours, their techniques are inspired by the recent work
of [MORS24] using HSS to garble arithemtic circuits, but we extend the results in different
directions. The work of [ILL24] provides a partial garbling scheme [IW14] which allows to
garble circuits of the form Cpriv(Cpub(x), y)) in a way that communication only depends on
the private circuit Cpriv (times a polynomial factor in the security parameter) and crucially
independent of the size of the public circuit Cpub and public input x. Such a notion of garbling
is clearly related to our notion of semi-private HSS: in partial garbling, some of the inputs
are known to the evaluator; in semi-private HSS, some of the inputs are known to one of
the parties. There are two significant differences, however: (1) our class of circuits is more
restricted, being Cpriv(x) · Cpub(y) where Cpriv is an RMS program; and (2) in HSS, the
communication cost is independent of both the public and private circuits (except perhaps a
factor related to the depth) as well as the output size. This allows HSS to have a greater level
of succinctness, so we believe this abstraction can offer advantages over presenting things
solely in terms of garbling.

As an application, both works achieve succinct garbling, but for different classes of func-
tions and with different levels of succinctness. [ILL24] achieves full-succinctness but only for
limited (yet useful) classes of functions while our garbling schemes achieve limited succinct-
ness for any layered circuit.

Finally, in terms of techniques, both works rely crucially on a novel algebraic technique
for non-interactive computation of authenticated shares based on the DDLog procedure.

2 Technical Overview

Secure Computation with DDLogs. For this technical overview, let’s pretend that Enc(x) = gx

is a secure encryption of x that can be decrypted with key sk (of course, this is not a secure
encryption and cannot be decrypted — later, we actually use secure variants of the Damgård-
Jurik cryptosystem [DJ01] where the plaintext appears “in the exponent”).

Now, following Roy-Singh [RS21], suppose two parties parties have subtractive shares
⟨sk⟩ of the secret key, that is, shares ⟨sk⟩0 and ⟨sk⟩1 such that sk = ⟨sk⟩1 − ⟨sk⟩0. There is a
distributed discrete logarithm procedure DDLog, which allows them to non-interactively com-
pute authenticated shares of x as ⟨sk · x⟩ = DDLog((gx)⟨sk⟩) (that is, party σ, for σ ∈ {0, 1},
computes the share ⟨sk · x⟩σ = DDLog((gx)⟨sk⟩σ)). Here, authenticated refers to the fact that
the shares are multiplied by the secret key of the underlying cryptosystem. Moreover, thanks
to the linear property of subtractive shares, it is also the case that if the parties have authen-
ticated shares ⟨sk · y⟩ of some value y then they can compute authenticated shares of xy as
⟨sk · xy⟩ = DDLog((gx)⟨sk·y⟩). This ability to non-interactively perform multiplication between
encrypted values and secret-shared values has been used in several previous works to build
homomorphic secret sharing (HSS) [BGI16,OSY21,RS21], constrained PRFs [CMPR23], and
more. One apparent limitation of this technique is that it only allows to perform multiplica-
tions between encrypted values and shared values – this leads to the restricted multiplication
straight-line (RMS) model of computation, where one can perform addition between any val-
ues, but multiplications are restricted to only take one memory value input (e.g., the output
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of an internal gate in authenticated secret-shared form), and an input value (a value which
was input directly by one of the parties in encrypted form). Indeed, despite several years of
progress in this area, it is unclear how to move beyond this restricted class of programs.

It is indeed very challenging to non-interactively perform multiplications of secret-shared
values. This holds even for restricted cases, for instance where one of the values is known to one
party. To be concrete, MPC protocols based on linearly-homomorphic encryption (LHE) allow
a party that knows a plaintext value y and an encrypted value Enc(x) to non-interactively
compute an encryption of Enc(xy). Note that there is no known analogue for protocols based
on secret-sharing: suppose the parties hold a secret sharing ⟨x⟩ and one of the two parties
know a plaintext value y. There is currently no known way to non-interactively let the parties
derive a sharing ⟨xy⟩.

Local Multiplication and Relinearisation of Authenticated Shares. The first and main technical
insight of our work is that it is possible to do a form of local multiplication on shared
values, followed by a “relinearisation” technique, allowing parties to non-interactively compute
authenticated shares of the result of a multiplication xy when one of the parties knows x and
y.

Suppose the parties have shares ⟨sk · x⟩ and ⟨sk · y⟩, and party P1 knows x, y. We can
view party P0’s shares as evaluations of a linear function in the secret key, given by:

⟨sk · x⟩0 = px(sk) := ⟨sk · x⟩1 − sk · x, ⟨sk · y⟩0 = py(sk) := ⟨sk · y⟩1 − sk · y

Since P1 knows x, y as well as its shares, then it knows the coefficients of the above polynomials
px, py.

Then, multiplying the polynomials, P1 can compute the coefficients of the degree-two
polynomial px · py, given by ⟨sk · x⟩1 · ⟨sk · y⟩1 + C · sk + xy · sk2, where C depends on P1’s
shares and the values x, y. Meanwhile, P0 can compute its evaluation of this polynomial at sk,
denoted z. Intuitively, this setup can now be seen as a special form of degree-two authenticated
secret sharing under the key (sk, sk2). Indeed, so far, this observation is exactly the same as one
from recent zero-knowledge proof systems based on vector oblivious linear evaluation [DIO21,
YSWW21]. However, these ZK proof protocols all require a step of interaction, in order to
“relinearise” the shares back to degree one.

We observe that, with the help of DDLog, this relinearisation can be done entirely non-
interactively. First, subtracting P1’s constant coefficient from P0’s evaluation, we get:

⟨sk · x⟩1 · ⟨sk · y⟩1 − z = −C · sk− xy · sk
2 = (−C − xy · sk) · sk

Viewing the above as an authenticated sharing of −C − xy · sk, notice that if we provide
the parties with an encryption of the inverse of the secret key Enc(sk−1) = g

1
sk , they can use

DDLog to “remove” a layer of authentication, obtaining simply a sharing of −C − xy · sk.
Finally, since party 0 knows c, it can remove this from its share so that both parties end up
with an authenticated sharing ⟨xy · sk⟩ as desired.

This trick is extremely powerful, as it allows us for the first time to compute authenticated
shares of arbitrary circuits for the parts of the computation where the inputs are known to
one of the parties.

We call this kind of homomorphic secret-sharing where one of the parties knows the
plaintext values semi-private HSS. We note that there are related notions in the literature
for garbling schemes (e.g., privacy-free garbling [FNO15], partial garbling [IW14] , etc. where
parts of or the whole input is known to one of the parties), but this is the first such notion
in the context of HSS.
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Offline-Online HSS. Another key technical observation of this work is that the above trick
allows us to split the inputs to our computation into two kinds. The first is the “classic” kind,
which we refer to as the offline inputs (since they need to be known by both parties before
the computation starts). As usual, offline inputs are to be provided in encrypted form e.g.,
to input a value x into the computation the party owning x provides Enc(x) = gx.

On top of the classic offline inputs, our relinearization trick allows us to support a new
type of inputs to the computation which we call semi-private, online inputs (as they can
be defined adaptively after the computation starts). An online input is an input which is
provided directly as an authenticated secret-sharing where the plaintext value is known to
one of the parties, that is, an input x is shared as subtractive shares ⟨sk · x⟩. Crucially, as
online inputs are just linear sharings, they can be sampled “lazily” where party P0 defines
their share just as a random value, and party P1’s share will be the necessary correction value
(together with the plaintext value, which we assume is known to P1).

Using the semi-private online inputs and the encryption Enc(sk−1) the parties can non-
interactively compute any arithmetic circuit C on their online inputs. The result of this
computation can then be combined with a standard HSS evaluation method for restricted
multiplication circuits, obtaining shares of C(x⃗) · Crm(y⃗), where y⃗ are the (private) offline
inputs and Crm is a restricted multiplication circuit.

Avoiding the Circular Security Assumption. One limitation of the above relinearisation tech-
nique is that it requires the parties to have an encryption of sk−1. When using Damgård-Jurik
encryption, we are not currently able to prove security of this, so need to make an additional
“circular security” (or, key-dependent message) assumption. We also give a second relineari-
sation technique that avoids the need for an extra assumption, and is provable only based on
DCR. This technique differs slightly, in that it takes as input sharings ⟨sk · x⟩ and ⟨sk′ · y⟩
under two independent secret keys sk, sk′, and outputs a sharing ⟨sk · xy⟩ under one of the
two keys. This introduces some additional challenges when constructing an offline-online HSS,
since now, for instance, when evaluating addition gates, we need to ensure that parties’ shares
of the two input values are authenticated under the same key. To make this work, we use a
“key-switching” technique where given encryptions of one key under another, the parties can
switch the key under which a memory value is authenticated. Taking care to avoid any circu-
larity issues, we define a chain of secret keys, which the parties progressively switch through
as the circuit evaluation proceeds.

A similar approach was also used for the arithmetic garbling construction of [MORS24].
However, unlike [MORS24], we can avoid having to switch keys at every layer of the circuit,
since as long as the inputs to two multiplication gates are under different keys sk, sk′, we
don’t need to switch to a new key. The number of distinct secret keys (and hence, additional
ciphertexts) needed in our construction scales with a kind of “pebbling depth” of the circuit,
which in the worst case may equal the multiplicative depth, but can be much smaller in
general.

Masking and Sublinear-size Garbling. Using our offline-online HSS, we design a general tem-
plate for garbling circuits with high-fan-in wide-gates and constant-rate. We then instantiate
this template in different ways, to obtain our results for Boolean and arithmetic garbling.
We now give a brief overview of the Boolean instantiation, referring to section 5.2 for further
details.

The high-level idea is that for each wire in the circuit with value w ∈ {0, 1}, we want
the garbler and evaluator to obtain semi-private, authenticated shares ⟨y⟩ and ⟨sk · y⟩ of the
masked wire value y = w⊕r for some secret mask r known to the garbler, where the evaluator
knows y. For the circuit input wires, the garbler can already define its authenticated shares
ahead of time, thanks to the offline/online property of the HSS. Then, to evaluate a fan-in ℓ
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gate that computes some function f , if the masked values for the input wires are y1, . . . , yℓ,
where yi = wi ⊕ ri, then the parties want to evaluate the following inside HSS:

((r1, . . . , rℓ, r), (y1, . . . , yℓ)) 7→ f(y1 ⊕ r1, . . . , yℓ ⊕ rℓ)⊕ r (1)

Here, the ri’s are private inputs initially chosen by the garbler, while the yi’s are semi-private,
offline/online shared values that will be known to the evaluator. During the garbling phase,
the garbler computes its authenticated shares of the gate output, namely, ⟨sk · (f(w)⊕ r)⟩0
and ⟨f(w)⊕ r⟩0. Then, to preserve the invariant that the evaluator knows the masked value,
the garbler includes ⟨f(w)⊕ r⟩0 in the garbled circuit. This way, computation can continue
through to the end of the circuit.

One problem with this sketch is that the ri masks all need to be input into HSS as private
input values (i.e. ciphertexts), which would lead to a very high communication cost. To avoid
this, we have the garbler choose and input a key for a pseudorandom function, and derive all
the ri’s pseudorandomly by evaluating the PRF as part of the HSS computation in eq. (1).

Overall, if the HSS is sufficiently expressive to evaluate eq. (1), for each gate, then the
garbled circuit predominantly consists of a single, 1-bit wire mask for each fan-in ℓ gate. We
observe that our HSS is powerful enough to evaluate this for any gate whose function f has
a polynomially sized truth table. Since a single such truth table can be used to capture a
log log(s)-depth chunk of a fan-in-two circuit of size s, we can convert any layered, size-s cir-
cuit with fan-in two gates into a circuit with large, truth table gates of size s/ log log s [Cou19].
Our scheme has a cost of 1 bit per truth table gate, leading to the result in Theorem 1.

To handle arithmetic circuits (Theorem 2), we generalize the above template to support
arbitrary masking functions instead of just XOR. By instantiating this with additive (statis-
tical) masking over the integers, we can build a garbling scheme where the garbler needs to
send a single integer mask in order to evaluate a polynomial of degree log(s). This leads to a
similar log log(s) reduction in size for a general, layered arithmetic circuit of size s.

3 Preliminaries

Notation. We write Z/NZ to mean the ring of integers modulo N , and denote its additive
and multiplicative subgroups by (Z/NZ)+, (Z/NZ)×, respectively. We write [n] to denote
the set of integers {1, . . . , n}, and [a, b) the set {a, a + 1, . . . , b − 1}. We frequently refer to
subtractive shares of a secret x, which means there are shares ⟨x⟩0, ⟨x⟩1 such that ⟨x⟩1−⟨x⟩0 =
x, where the shares and subtraction operation are in Z, unless otherwise specified.

RSA modulus generation. Let λ be a security parameter. We define RSA.Gen to be a
polynomial-time algorithm which, on input λ, outputs (N, p, q), where N = pq and p, q are
both ℓ-bit primes for some length parameter ℓ chosen to ensure λ-bit security.

3.1 Damgård-Jurik Cryptosystem

The Damgård-Jurik cryptosystem [DJ01] is a generalisation of the Paillier cryptosystem
[Pai99] (which, with the notation of fig. 1, can be seen as the special case ζ = 1).

Definition 3 (Decision Composite Residuosity Assumption (DCR),
[Pai99]). Let λ be a security parameter. We say that the Decision Composite Residuosity
(DCR) problem is hard relative to modulus-sampling algorithm RSA.Gen(1λ) if{

(N, x) :
(N, p, q)

$← RSA.Gen

x
$← (Z/N2Z)×

}
c
≈

{
(N, xN mod N) :

(N, p, q)
$← RSA.Gen

x
$← (Z/N2Z)×

}
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Theorem 4 (Damgård-Jurik Cryptosystem [DJ01]). For any choice of the parameter
ζ ≥ 1, the construction of fig. 1 is a CPA-secure linearly homomorphic encryption scheme if
and only if the DCR assumption holds.

LHE Damgård-Jurik Cryptosystem [DJ01]

Requires:

– ζ ≥ 1 is a constant defining the plaintext size.
– Functions exp: (Z/N ζZ)+ → 1 + N(Z/N ζ+1Z) and log : 1 + N(Z/N ζ+1Z) →

(Z/N ζZ)+ are defined by the following expressions, as in [RS21]:

exp(x) =

ζ∑
k=0

(Nx)k

k!
and log(1 +Nx) =

ζ∑
k=1

(−N)k−1xk

k

DJ.KeyGen(1λ):

1. Run (N, p, q)
$← RSA.Gen(1λ)

2. Compute φ← (p− 1) · (q − 1)
3. Output (N,φ)

DJ.EncN,ζ(x):

1. Sample r $← (Z/N ζ+1Z)×

2. Compute c← rN
ζ · exp(x)

3. Output c

DJ.EvalN,ζ(c1, c2, α):

// Homomorph. eval. (x, y) 7→ α · x+ y

Compute and output c← cα1 · c2

DJ.DecN,ζ,φ(c):

1. Compute ψ = φ−1 in Z/N ζZ
2. Compute and output x← ψ · log(cφ)

Fig. 1: The Damgård-Jurik cryptosystem.

Definition 5 (KDM Security). A public-key encryption scheme PKE =
(KeyGen,Enc,Dec), whose private-key and message spaces are denoted K and M re-
spectively, is secure in the presence of key-dependent messages with respect to function class
F ⊆ K →M (or simply F-KDM-secure) if for every p.p.t. oracle algorithm A· it holds that:∣∣∣Pr [AOKDM

F,sk,0(1λ, pk) = 1: (sk, pk)
$← KeyGen(1λ)

]
− Pr

[
AO

KDM
F,sk,1(1λ, pk) = 1: (sk, pk)

$← KeyGen(1λ)
]∣∣∣ ≤ negl(λ) ,

where oracles OKDM
F ,sk,0 and OKDM

F ,sk,1 are defined as in fig. 2.

Experiment IND-CPA and IND-KDM Security Game

OKDM
F ,sk,0(f)

if f /∈ F return ⊥
else

c
$← Encpk(f(sk))

return c

OKDM
F ,sk,1(f)

if f /∈ F return ⊥
else

c
$← Encpk(0

|f(sk)|)

return c

Fig. 2: Oracles used in IND-KDM security (definition 5).
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3.2 Damgård-Jurik-ElGamal Cryptosystem

Theorem 6. Assuming DCR, Damgård–Jurik–ElGamal encryption fig. 3 is a public key en-
cryption scheme satisfying correctness and KDM security for affine functions of the key.
Specifically, the following properties hold:

Correctness: DJE.Decsk(DJE.Encpk(x)) = x, for any (sk, pk) in the support of DJE.KeyGen,
and any x ∈ Z/N ζZ.

KDM Security: Definition 5 for affine functions of the form fa,b : sk 7→ a · sk + b, where
a, b ∈ Z/N ζZ.

Proof. See [BMO+25].

DJE Damgård-Jurik-ElGamal Cryptosystem

Requires:

– ζ ≥ 1 is a parameter defining the plaintext size.
– Group isomorphism exp: (Z/N ζZ)+ → 1 + N(Z/N ζ+1Z) and its inverse log : 1 +
N(Z/N ζ+1Z)→ (Z/N ζZ)+, as defined as in [RS21]:

exp(x) =

ζ∑
k=0

(Nx)k

k!
and log(1 +Nx) =

ζ∑
k=1

(−N)k−1xk

k

DJE.Setup(1λ):

1. Sample (N, p, q)
$← RSA.Gen(1λ) a

2. Sample g $← (Z/N ζ+1Z)×
3. Output pp = (g,N)

a Note that p and q are unused, so N could
instead be a CRS.

DJE.KeyGen(1λ, pp):

1. Parse pp as pp = (g,N)

2. Sample k $← [0, N)
3. Compute h← g−k

4. Output (sk = (k,N), pk = (g, h,N))

DJE.Encpk(x):

1. Parse pk = (g, h,N)

2. Sample r $← [0, N)
3. Compute c0 ← gr

4. Compute c1 ← hr · exp(x)
5. Output c = (c0, c1)

DJE.Decsk(c = (c0, c1)):

1. Parse sk = (k,N)

2. Assert ck0 · c1 ≡ 1 mod N

3. Output x← log(ck0 · c1)

Fig. 3: The Damgård-Jurik-ElGamal cryptosystem.

3.3 Distributed Discrete Logarithm

We use two distinct distributed discrete log procedures, for the Damgård-Jurik and Damgård-
Jurik-ElGamal cryptosystems. The following two lemmas follow from [RS21, Theorem 18],
and were also used in [MORS24].
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DDLOG Damgård-Jurik Distance Function [RS21]

DDLogN (h ∈ Z/N ζ+1Z):
Compute and output z ← log

(
h

h mod N

)
∈ Z/N ζZ

Fig. 4: [RS21]’s distributed discrete logarithm for Damgård-Jurik.

Lemma 7 (Damgård-Jurik Distributed Decryption). For all (N,φ) ∈
Supp(DJ.KeyGen), for all exponents ζ ≥ 1, and for all ciphertexts c ∈ (Z/N ζ+1Z)×
and shares (over Z) ⟨xφ⟩0, ⟨xφ⟩1 of some x ∈ Z times φ, we have

DDLog(c⟨xφ⟩1)− DDLog(c⟨xφ⟩0) ≡ DJ.DecN,ζ,φ(c) · x · φ mod N ζ .

Lemma 8 (Damgård-Jurik-ElGamal Distributed Decryption). If we have shares
over Z of ⟨x⟩1 − ⟨x⟩0 = x and ⟨k · x⟩1 − ⟨k · x⟩0 = k · x, then

DDLogN (c
⟨k·x⟩1
0 c

⟨x⟩1
1 )− DDLogN (c

⟨k·x⟩0
0 c

⟨x⟩0
1 ) ≡ x · y mod N ζ

always holds, for every choice of plaintext size ζ ≥ 1, key pair (sk = (k,N), pk) ∈
Supp(DJE.KeyGen(1λ)), plaintext y ∈ Z/N ζZ, ciphertext (c0, c1) ∈ Supp(DJE.Encpk(y)), and
scalar x ∈ Z/N ζZ.

We also rely on the following, standard lemma stating that shares of some value x modulo
M can be lifted to valid shares over the integers, with a failure probability of |x|/M .

Lemma 9 (From e.g. [RS21, Lemma 19]). For all moduli M > 1 and all modulo M
shares ⟨x⟩0, ⟨x⟩1 ∈ Z/MZ of some x ∈ Z, we have

Pr
r

$←Z/MZ

[
(⟨x⟩1 + r) modM − (⟨x⟩0 + r) modM = x

]
= max

(
1− |x|

M
, 0

)
.

3.4 Models of computation

Arithmetic circuits. Unless otherwise specified, we consider fan-in two arithmetic circuits
over the basis {+,×}, with a single output gate.

Definition 10 (Arithmetic circuit). An arithmetic circuit C (over some ring R) is a
rooted, fan-in two, directed acyclic graph whose leaves are labelled by the constant 1R or
input variables, whose fan-in two internal nodes are labelled by + or ×, and whose fan-in one
internal nodes are each labelled by ·α for some α ∈ R.
Each node (or gate) of the circuit is associated with an n-variate polynomial (where n is
the number of distinct input variables used as labels), defined recursively according to a
topological order on the nodes of C (i.e. in a gate-by-gate fashion):

– a constant gate, labelled 1R, computes the constant polynomial 1R;
– an input gate, labelled by the ith input variable xi, computes the polynomial Pi =

(X1, . . . , Xn) = Xi ;
– a linear gate, labelled +, computes the sum of the polynomials computed by its parents;
– a multiplication gate, labelled ×, computes the product of the polynomials computed by

its parents;
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– a scalar multiplication gate, labelled ·α, computes the product of the polynomial computed
by its parent with the constant α.

The circuit computes the polynomial P associated with its root, a.k.a. the output gate. Eval-
uating C is done by evaluating the associated polynomial function.

We also consider restricted-multiplication circuits [Bar89, Cle90, BGI16, RS21] (sometimes
called restricted multiplication straightline programs). This class of circuits is known to con-
tain LOGSPACE (which includes NC1).

Definition 11 (Restricted-multiplication circuit). A restricted-multiplication circuit is
an arithmetic circuit satisfying the following property: each node labelled × has at least one
predecessor which is a leaf (that is, each multiplication gate has at least one input wire that
is a circuit input).

Definition 12 (B-bounded circuit and C-admissible input). Let C be an n-input
arithmetic circuit over Z. An input (vector) x ∈ Zn is admissible for C with respect to bound
B, if the polynomial function computed by each and every gate is at most B when evaluated
on input x.
If C and/or B is clear from context, we simply say C-admissible, B-admissible, or admissible.
If C is an unbounded arithmetic circuit, any input x is C-admissible.

We use the following (non-standard) notion of multiplicative “pebbling” depth. It may be as
large as the (standard) multiplicative depth, but is typically much smaller.

Definition 13 (Pebbling depth). Given an arithmetic ciruit, the pebbling depth of a gate
is defined recursively as follows:

– the pebbling depth of a constant or input gate is 0;
– the pebbling depth of an addition gate whose predecessors have pebbling depth i and j

respectively is max(i, j);
– the pebbling depth of a scalar multiplication gate is the pebbling depth of its parent;
– the pebbling depth of a multiplication gate whose parents have pebbling depth i and j

respectively is max(i, j,min(i, j) + 1) (in other words, if i = j this is i + 1, and if i ̸= j
this is max(i, j)).

The pebbling depth of an arithmetic circuit is then defined as the pebbling depth of its output
gate.

Circuit Classes VP and RMS. We denote by VPn[B] the class of B-bounded arithmetic
circuits with n inputs and size poly(n). Similarly, we denote by RMSn[B] the class of B-
bounded, restricted multiplication arithmetic circuits with n inputs and size poly(n). When
B is clear from context, we simply write VPn and RMSn.

Definition 14 (Tensor Product of Circuit Classes). Let C0 and C1 be two circuit classes
over a ring R. The tensor product of C0 and C1, denoted C0⊗C1, is defined as the class of all
arithmetic circuits composed from some F1, . . . , Fr ∈ C0 and G1, . . . , Gr ∈ C1 in the following
way: Let L0 be the union of all input labels from all Fi, and similarly L1 from all Gi. Then
composed circuit has input labels

{(j, l) | j ∈ {0, 1}, l ∈ Lj}, and computes
r∑

i=1

Fi ·Gi. (2)

More specifically, the composed circuit is union of the graphs of the circuits for all Fi and
Gi, followed by r multiplication gates and r− 1 addition gates to compute (2). The integer r
associated with this circuit is called the rank.
We write C0 ⊗r C1 to denote the subset of tensor product circuits with rank at most r.
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Remark 15. Note that the size of a tensor product circuit (definition 14) is lower bounded by
its rank r. Therefore, when considering classes of circuits with sizes bounded by a polynomial,
we can assume that r is bounded by a polynomial.

4 (Semi-Private) Offline-Online HSS

In section 4.1 we provide the definitions of semi-private HSS (definition 16) and its specialisa-
tion to offline/online sharing of semi-private inputs (definition 17). In section 4.2 we construct
(fig. 6) semi-private offline-online HSS, assuming the KDM security of the Damgård-Jurik
cryptosystem, for product circuits of the form C ·Crm, where C is an arbitrary circuit applied
to the semi-private inputs (known to one party), and Crm is a restricted-multiplication circuit
applied to the private inputs. In section 4.3, we present an alternative construction (fig. 9)
that assumes only DCR, but achieving a weaker notion of compactness.

4.1 Definition

In HSS with setup, a setup algorithm is used to generate a secret key, used to share any
input, in conjunction with a pair of evaluation keys, which can be used to evaluate a function
of the shared inputs, obtaining a subtractive sharing of the output. Importantly, each input
can be shared independently (as long as they are generated with respect to the same secret
key) and need not be batched.
Below, we generalize the standard notion of HSS to allow for a special type of semi-private
input sharing algorithm, which outputs a pair of shares of an input y such that only party
0’s shares are guaranteed to hide y. In addition, we support the usual private input sharing
algorithm, where each share (individually) reveals no information about the input. Each of
the functions supported by the homomorphic evaluation algorithm take inputs partitioned
into two sets: a set of npriv private inputs, and a set of ns-priv semi-private inputs.

Definition 16 (Semi-Private HSS). Let R = R(λ) be a ring and npriv, ns-priv =
poly(λ). A (two-party) semi-private HSS scheme (with setup) supporting a class of
computations C ⊆ (Rnpriv × Rns-priv → R) is a tuple of p.p.t. algorithms HSS =
(HSS.Setup,HSS.Sharepriv,HSS.Shares-priv,HSS.Eval) with the following syntax and properties:

– HSS.Setup(1λ) : On input the security parameter 1λ, the setup algorithm Setup outputs
a secret key sk and a pair of evaluation keys (ek0, ek1).

– HSS.Sharepriv(1
λ, sk, x) : On input the security parameter 1λ, secret key sk and a pri-

vate input x ∈ R, the input sharing algorithm Sharepriv outputs a pair of input shares
(x(0), x(1)).

– HSS.Shares-priv(1
λ, sk, y) : On input the security parameter 1λ, secret key sk and a semi-

private input y ∈ R, the semi-private input sharing algorithm Shares-priv outputs a pair
of input shares (y(0), y(1)).

– HSS.Eval(σ, ekσ, (x
(σ)
i )

npriv

i=1 , (y
(σ)
i )

ns-priv

i=1 , C) : On input a party index σ, an evaluation key
ekσ, a vector of npriv private input shares (x

(σ)
i )

npriv

i=1 , a vector of ns-priv semi-private input
shares (y(σ)i )

ns-priv

i=1 , and a supported evaluation circuit C ∈ C, the homomorphic evaluation
algorithm Eval returns an output share yσ ∈ R.

It should satisfy the following properties (where the experiments are detailed in fig. 5):

– Correctness. For any sufficiently large λ ∈ N, for any circuit C ∈ C, any C-admissible
inputs ((xi)i∈[npriv], (yi)i∈[ns-priv]) ∈ R

npriv ×Rns-priv ,

Pr
[
y = C((xi)i∈[npriv], (yi)i∈[ns-priv]) : y

$← ExpHSScorr (1
λ, (xi)i∈[npriv], (yi)i∈[ns-priv])

]
≥ 1− negl(λ) .
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– Security. For every σ ∈ {0, 1}, there exists a p.p.t. algorithm Simσ (a simulator), such
that for any C-admissible inputs ((xi)i∈[npriv], (yi)i∈[ns-priv]) ∈ R

npriv ×Rns-priv , the output of
the experiments RealHSSσ and IdealHSSσ (fig. 5) are computationally indistinguishable.

ExpHSScorr / ExpHSSauth-corr(1
λ, (xi)i∈[npriv], (yi)i∈[ns-priv]) :

(sk, (ek0, ek1))
$← Setup(1λ)

for i ∈ [npriv], (x(0)
i , x

(1)
i )

$← Sharepriv(1
λ, sk, xi)

for i ∈ [ns-priv], (y(0)
i , y

(1)
i )

$← Shares-priv(1
λ, sk, yi)

z0
$← Eval/AuthEval(0, ek0, (x

(0)
i )

npriv

i=1 , (y
(0)
i )

ns-priv

i=1 , C);

z1
$← Eval/AuthEval(1, ek1, (x

(1)
i )

npriv

i=1 , (y
(1)
i )

ns-priv

i=1 , C);

return z ← z1 − z0

RealHSSσ (1λ) :

(sk, (ek0, ek1))
$← HSS.Setup(1λ)

for i ∈ [npriv] do

(x
(0)
i , x

(1)
i )

$← Sharepriv(1
λ, sk, xi)

for i ∈ [ns-priv] do

(y
(0)
i , y

(1)
i )

$← Shares-priv(1
λ, sk, yi)

return (ekσ, (x
(σ)
i )i∈[npriv], (y

(σ)
i )i∈[ns-priv])

IdealHSSσ (1λ) :

if σ = 0 then

return Sim0(1
λ, npriv, ns-priv)

else

return Sim1(1
λ, npriv, ns-priv,

(yi)i∈[ns-priv])

Fig. 5: Experiments for correctness, authenticated correctness and security in semi-private
HSS

In our garbling application, we additionally require a linearity property of the semi-private
input sharing algorithm. In particular, we require that the first party’s share of a semi-private
input y should be generated uniformly and independently of the input; the second party’s
input share can later be derived as a subtractive share of y · f(sk), where f is some function
that maps the secret key to a (vector of) elements of the underlying ring.
Together with this, we define an authenticated evaluation property, which requires a special
form of homomorphic evaluation algorithm that produces subtractive shares of the output z,
as well as z · f(sk).

Definition 17 (Additional Properties of Semi-Private HSS).

– Linear, offline/online sharing of semi-private inputs. Let R = Z/MZ for some
modulus M . We say the semi-private input sharing algorithm HSS.Shares-priv is of-
fline/online if it can be decomposed into two p.p.t. algorithms HSS.Share0,s-priv and
HSS.Share0,s-priv, parameterized by a dimension d ≥ 2 and efficiently computable de-
terministic function f : ∗ → (Z/MZ)d, such that:
• HSS.Share0,s-priv(1

λ), on input the security parameter, outputs a uniformly random
share y(0) $← (Z/MZ)d
• HSS.Share1,s-priv(1

λ, sk, y(0), y), on input the secret key sk, share y(0) and input y,
computes and outputs the share y(1) ← (y, f(sk) · y + y(0)).
• HSS.Shares-priv(1

λ, sk, y) generates its output (y(0), y(1)) in the natural way, by first
sampling y(0) $← Share0,s-priv(1

λ), and then y(1) ← Share1,s-priv(1
λ, sk, y).

– Authenticated evaluation. Furthermore, for a semi-private HSS scheme with linear
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offline-online sharing, we say that it admits authenticated evaluation, if there exists an
algorithm AuthEval with the same syntax as HSS.Eval, such that:

Pr

z = (1, f(sk)) · C( (xi)i∈[npriv],

(yi)i∈[ns-priv] )

: z
$← ExpHSSauth-corr(1

λ, (xi)i∈[npriv],

(yi)i∈[ns-priv])


≤ 1− negl(λ)

where ExpHSSauth-corr is defined in fig. 5.

4.2 Semi-private construction from KDM-security of Damgård-Jurik

Before describing the HSS construction, we introduce our core relinearisation technique.

Core Lemma 1 (Relinearisation, Damgård-Jurik variant). For all (N,φ) ∈
Supp(DJ.KeyGen), cinv ∈ Supp(DJ.EncN (φ−1 mod N ζ)), and (x, y) ∈ Z2, if

1. ⟨φ · x⟩1, ⟨φ · x⟩0 denote shares over Z of φ · x (meaning they are integers satisfying
⟨φ · x⟩1 − ⟨φ · x⟩0 = φx)

2. ⟨φ · y⟩1, ⟨φ · y⟩0 denote shares over Z of φ · y

then ⟨φ · xy⟩1−⟨φ · xy⟩0 ≡ φ·xy mod N ζ , where ⟨φ · xy⟩1 and ⟨φ · xy⟩0 are defined as follows:⟨φ · xy⟩1 ← −DDLog
(
c
⟨φ·x⟩1·⟨φ·y⟩1
inv

)
+ (x · ⟨φ · y⟩1 + y · ⟨φ · x⟩1)

⟨φ · xy⟩0 ← −DDLog
(
c
⟨φ·x⟩0·⟨φ·y⟩0
inv

)
Proof. Consider the following algebraic identity:

⟨φ · x⟩0 · ⟨φ · y⟩0 = (⟨φ · x⟩1 − φ · x) · (⟨φ · y⟩1 − φ · y)
= φ2 · xy + φ · (−x · ⟨φ · y⟩1 − y · ⟨φ · x⟩1) + ⟨φ · x⟩1 · ⟨φ · y⟩1

After reorganising terms, we get that ⟨φ · x⟩σ · ⟨φ · y⟩σ is an authenticated share over Z of
−φ · xy + (x · ⟨φ · y⟩1 + y · ⟨φ · x⟩1):

⟨φ · x⟩1 · ⟨φ · y⟩1 − ⟨φ · x⟩0 · ⟨φ · y⟩0 = φ · (−φ · xy + (x · ⟨φ · y⟩1 + y · ⟨φ · x⟩1))

Therefore, by Lemma 7,

DDLog
(
c
⟨φ·x⟩1·⟨φ·y⟩1
inv

)
− DDLog

(
c
⟨φ·x⟩0·⟨φ·y⟩0
inv

)
≡ (DJ.Dec(cinv) · φ)︸ ︷︷ ︸

≡1 mod Nζ

·[−φ · xy + (x · ⟨φ · y⟩1 + y · ⟨φ · x⟩1)] mod N ζ

It follows that(
−DDLog

(
c
⟨φ·x⟩1·⟨φ·y⟩1
inv

)
+ (x · ⟨φ · y⟩1 + y · ⟨φ · x⟩1)

)
−
(
−DDLog

(
c
⟨φ·x⟩0·⟨φ·y⟩0
inv

))
≡ φ · xy mod N ζ
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HSS Semi-private Offline-Online HSS
(KDM-secure Damgård-Jurik variant)

Requires:

– DJ = (DJ.KeyGen,DJ.Enc,DJ.Dec) is the Damgård-Jurik cryptosystem of fig. 1.
– DDLog is the algorithm of fig. 4.
– (PRFN,ζ,s,t,λ)(N,ζ,s,t,λ)∈N5 is an εPRF-secure family of pseudorandom functions such

that PRFN,ζ,s,t,λ : {0, 1}λ × [s+ t]→ Z/N ζZ.

HSS.Setup(1λ) :

1. (N,φ)
$← DJ.KeyGen(1λ)

2. cinv
$← DJ.EncN (φ−1 mod N ζ)

3. sh0,0
$← [0, N ] // ⟨φ · 1⟩0 (over Z)

4. sh0,1 ← φ · 1 + sh1,0 // ⟨φ · 1⟩1 (over Z)
5. kPRF

$← {0, 1}λ
6. sk← (φ,N), ek0 ← (N, cinv, kPRF, sh1,0), and ek1 = (N, cinv, kPRF, sh1,1)
7. Output (sk, (ek0, ek1))

HSS.Sharepriv(1
λ, sk, x) :

1. Parse sk = (φ,N)

2. cpriv
$← DJ.EncN (x)

3. Output (x
(0)
priv, x

(1)
priv)← (cpriv, cpriv)

HSS.Share0,s-priv(1
λ, sk) :

1. sh0
$← Z/N ζZ // ⟨φ · y⟩0 (over Z/N ζZ)

2. Output y(0) ← sh0

HSS.Share1,s-priv(1
λ, sk, y, st) :

1. Parse sk = (φ,N)
2. sh1 ← (φ · y + y(0)) mod N ζ // ⟨φ · y⟩1 (over Z/N ζZ)

3. Output y(1) ← (y, sh1)

HSS.Eval(σ, ekσ, (x
(σ)
i )i∈[npriv], (y

(σ)
i )i∈[ns-priv], C · Crm) :

// C is a B-bounded arithmetic circuit, Crm is a B′-bounded restricted-multiplication
arithmetic circuit

1. Parse ekσ = (N, cinv, kPRF, sh1,σ)

2. For i = 1, . . . , ns-priv, parse y(σ)i as

y
(σ)
i =

{
(y, shi,1) if σ = 1

shi,0 if σ = 0

// First, evaluate C on semi-private inputs
3. Parse C as a sequence of gates g1, g2, . . . , g|C|, where g1, . . . , gns-priv are the input gates.
4. For i = ns-priv + 1, . . . |C|:

// Invariant: shi,σ stores ⟨φ · Pi(y⃗)⟩σ (over Z), where Pi is the polynomial computed
up to gate gi
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– If gi is the constant gate 1,

shi,σ ← sh0,σ // ⟨φ · 1⟩σ
– If gi is an addition gate, whose parents are giL and giR :

shi,σ ← shiL,σ + shiR,σ // ⟨φ · Pi(y⃗)⟩σ ← ⟨φ · (PiL + PiR)(y⃗)⟩σ
– If gi is a multiplication gate, whose parents are giL and giR :

shi,σ ←

−DDLog
(
c
shiL,σ ·shiR,σ

inv

)
+ PiL(y⃗) · shiR,σ + PiR(y⃗) · shiL,σ if σ = 1

−DDLog
(
c
shiL,σ ·shiR,σ

inv

)
if σ = 0

shi,σ ← shi,σ + PRF(kPRF, i) mod N ζ // ⟨φ · Pi(y⃗)⟩σ = ⟨φ · (PiLPiR)(y⃗)⟩σ
– If gi is a scalar multiplication gate ·α, whose parent is gj :

shi,σ ← α · shj,σ // ⟨φ · α · Pj(y⃗)⟩σ ← α · ⟨φ · Pj(y⃗)⟩σ
// sh|C|,σ now stores ⟨φ · C(y⃗)⟩σ

5. For i ∈ [npriv], parse x(σ)i as ciphertext ci
// Next, evaluate Crm on the private inputs x⃗

6. Parse Crm as a sequence of gates g′1, g′2, . . . , g′|Crm|.
7. For i = 1, . . . , |Crm| :

// Invariant: sh|C|+i,σ stores ⟨φ · C(y⃗) · Pi(x⃗)⟩σ, where Pi is the polynomial computed
up to gate g′i
– If g′i is the constant 1:

sh|C|+i,σ ← sh|C|,σ //⟨φ · C(y⃗) · 1⟩σ
– If g′i is the jth input gate:

sh|C|+i,σ ← DDLog
(
(cj)

sh|C|,σ
)
+ PRF(kPRF, |C|+ i) mod N ζ

// ⟨φ · C(y⃗) · xj⟩σ
– If g′i is an addition gate, whose parents are g′iL and g′iR :

sh|C|+i,σ ← sh|C|+iL,σ + sh|C|+iR,σ

// ⟨φ · C(y⃗) · (PiL + PiR)(x⃗)⟩σ
– If g′i is a scalar multiplication gate ·α, whose parent is g′j :

sh|C|+i,σ ← α · sh|C|+j,σ

//⟨φ · C(y⃗) · α · Pj(x⃗)⟩σ ← α · ⟨φ · C(y⃗) · Pj(x⃗)⟩σ
– If g′i is a multiplication gate, whose parents are g′iL and g′iR , and g′iL is the jth

input:

sh|C|+i,σ ← DDLog
(
(cj)

sh|C|+iR,σ

)
+ PRF(kPRF, |C|+ i) mod N ζ

// ⟨φ · C(y⃗) · xj · PiR(x⃗)⟩σ
// sh|C|+|Crm|,σ stores ⟨φ · C(y⃗) · Crm(x⃗)⟩σ

8. zσ ← DDLog
(
(cinv)

sh|C|+|Crm|,σ
)
+PRF(kPRF, |C|+ |Crm|) mod N ζ // ⟨C(y⃗) · Crm(x⃗)⟩σ

9. Output zσ

HSS.AuthEval(σ, ekσ, (x
(σ)
i )i∈[npriv], (y

(σ)
i )i∈[ns-priv], C · Crm) :

1. Perform steps 1-8 of Eval
2. z̃σ ← (zσ, sh|C|+|Crm|,σ) //⟨(1, φ) · C(y⃗) · Crm(x⃗)⟩σ
3. Output z̃σ
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Fig. 6: Semi-private offline-online HSS from KDM-security of the Damgård-Jurik encryption
scheme.

Theorem 18 (Semi-private offline-online HSS for RMS ⊗ VP from KDM-security
of Damgård-Jurik). Let λ be a security parameter. Let ζ ≥ 2, and assume the KDM-
security of the Damgård-Jurik cryptosystem with parameter ζ with respect to the function
class (φ,N) 7→ φ−1; let ℓDCR denote the bit-length of the corresponding RSA modulus. For
every ε > 0, every input sizes npriv, ns-priv ∈ N⋆, and every bound B ≤ 2(ζ−1−ε)·ℓDCR/2, the
construction of fig. 6 is a semi-private HSS scheme (definition 16) with linear offline/online
sharing and authenticated evaluation (definition 17), supporting the class RMSns-priv ⊗1 VPnpriv

(definition 14).

The proof is deferred to appendix A.1.

Remark 19 (Supporting Rank-r Tensoring). As described, the HSS construction of fig. 6
supports evaluating circuits of the form C · Crm, for C ∈ VP[B] and Crm ∈ RMS[B], i.e.,
circuits in RMS[B]⊗1VP[B] as the first inputs go to Crm. This easily extends to evaluating any
(higher-rank) circuit in the tensor product class RMS[B]⊗VP[B]. Any such circuit computes∑r

i=1 Fi ·Gi, where Fi ∈ VP, Gi ∈ RMS, so we can evaluate each product separately and then
sum up the r sets of shares to obtain the result.

4.3 (Weakly succinct) semi-private construction from DCR

In this section, we present our second HSS construction, which avoids the KDM security
assumption.

4.3.1 Relinearisation, without a circular security assumption. We first present a
variant of the relinearisation technique, which avoids the need for the key-dependent en-
cryption of φ−1. Unlike our previous method, which multiplies two authenticated sharings
⟨k · x⟩, ⟨k · y⟩ to obtain a new sharing ⟨k · xy⟩ under the same key, this method is slightly
more restrictive: it starts with sharings ⟨k1 · x⟩, ⟨k2 · x⟩, for independent secret keys k1, k2,
and outputs a new sharing ⟨k2 · xy⟩.

Core Lemma 2 (Relinearisation, Damgård-Jurik-ElGamal variant). For all N, ζ, x, y ∈ Z,
g ∈ (Z/N ζZ)×, and k1, k2 ∈ [0, N), if

1. ⟨k1 · x⟩1, ⟨k1 · x⟩0 denote shares over Z of k1 · x (meaning they are integers satisfying
⟨k1 · x⟩1 − ⟨k1 · x⟩0 = k1x)

2. ⟨k2 · y⟩1, ⟨k2 · y⟩0 denote shares over Z of k2 · y

3. c is the matrix
(
c00 c01
c10 c11

)
:=

(
g gk2

gk1 gk1k2 · exp(k2)

)
then ⟨k2 · xy⟩1 − ⟨k2 · xy⟩0 ≡ k2 · xy mod N ζ , where ⟨k2 · xy⟩1 and ⟨k2 · xy⟩0 are defined as
follows: ⟨k2 · xy⟩1 ← DDLog

(
cxy11c

−x⟨k2·y⟩1
10 c

−y⟨k1·x⟩1
01 c

−⟨k1·x⟩1⟨k2·y⟩1
00

)
⟨k2 · xy⟩0 ← DDLog

(
c
−⟨k1·x⟩0⟨k2·y⟩0
00

)
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Proof. Consider the following algebraic identity:

k1k2 · xy = k1 · x · ⟨k2 · y⟩1 −
=⟨k1·x⟩1·⟨k2·y⟩0−⟨k1·x⟩0·⟨k2·y⟩0︷ ︸︸ ︷

k1 · x · ⟨k2 · y⟩0
= k1 · x · ⟨k2 · y⟩1 − ⟨k1 · x⟩1 · ⟨k2 · y⟩0︸ ︷︷ ︸

=⟨k1·x⟩1·⟨k2·y⟩1−k2·y·⟨k1·x⟩1

+⟨k1 · x⟩0 · ⟨k2 · y⟩0

= k1 · x · ⟨k2 · y⟩1 − ⟨k1 · x⟩1 · ⟨k2 · y⟩1 + k2 · y · ⟨k1 · x⟩1 + ⟨k1 · x⟩0 · ⟨k2 · y⟩0
It follows that

cxy11 = gk1k2·xy · exp(k2 · xy)
= c

x⟨k2·y⟩1
10 · c⟨k1·x⟩1⟨k2·y⟩100 · cy⟨k1·x⟩101 · c⟨k1·x⟩0⟨k2·y⟩000 · exp(k2 · xy)

After reorganising terms,

exp(k2 · xy) =
[
cxy11c

−x⟨k2·y⟩1
10 c

−y⟨k1·x⟩1
01 c

−⟨k1·x⟩1⟨k2·y⟩1
00

]
/c
−⟨k1·x⟩0⟨k2·y⟩0
00 ·

We get then get the desired result by [RS21, Theorem 18].

Regarding security, note that we need to give out the matrix c, which contains
(g, gk1 , gk2 , gk1k2 · exp(k2)). While this can be seen as a kind of ElGamal encryption of k2,
where k2 is also the randomness in the ciphertext, we observe that this is indistinguishable
from an encryption of a random value, via an argument similar to that used for proving
hardness of the extended-DDH assumption under DCR [HO12]. We prove the following in
section A.2.2.

Lemma 20. Let N $← RSA.Gen(1λ), g $← (Z/N ζ+1Z)×, x, y $← [0, N) and r
$← [0, N ζ).

Then, the distributions

(N, g, gx, gy, gxy · exp(y)) and (N, g, gx, gy, gxy · exp(r))

are computationally indistinguishable under the DCR assumption.

4.3.2 Key-switching. Since the circular-secure relinearisation technique changes the un-
derlying key, our HSS construction also needs a key-switching mechanism, to ensure that
shares input to an addition gate are encoded under the same key.
The KeySwitch algorithm, in fig. 7, uses public group elements h = g−k

′
, c = gkk

′ · exp(k′) to
convert a sharing ⟨k′ · x⟩ into ⟨k · x⟩, using DDLog. RecKeySwitch, shown in fig. 8, uses the
same method with a chain of keys ki, to iteratively convert the input sharing ⟨k1 · x⟩ into
⟨kd · x⟩. Regarding security, notice that starting with the key k1, we can apply Lemma 20 to
replace the exp term in c1 = gk1k2 · exp(k2) with exp(r) for a random r. In general, in the
i-th step of the proof, we will simulate gki−1ki using gki , and gki+1ki+2 exp(ki+2) using gki+1,
and replace exp(ki+2) with a random element. We give the complete argument in the security
proof of the HSS construction, shown in the next section.

Algorithm Key-Switching

KeySwitchN,ζ(⟨x⟩σ, ⟨k · x⟩σ, h, c, r): // where h = g−k
′ , c = gkk

′ · exp(k′)

1. Compute ⟨k′ · x⟩σ ← DDLog(c⟨x⟩σh⟨k·x⟩σ) + r mod N ζ

2. Output ⟨k′ · x⟩σ

Fig. 7: Key-switching algorithm.
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Algorithm Recursive Key-Switching

RecKeySwitchN,ζ(⟨x⟩σ, ⟨k1 · x⟩σ, d, (hi)i∈[d], (ci)i∈[d−1], (ri)i∈[d−1]) :
// where hi = g−ki and ci = gkiki+1 · exp(ki+1)

1. For i = 1, . . . , d− 1:
Compute ⟨ki+1 · x⟩σ ← DDLog(c

⟨x⟩σ
i h

⟨ki·x⟩σ
i+1 ) + ri mod N ζ

2. Output ⟨kd · x⟩σ

Fig. 8: Recursive key-switching algorithm.

Lemma 21 (Correctness of key-switching). Let ζ ≥ 1. For all x ∈ Z, (g,N) ∈
Supp(DJE.Setup), k, k′ ∈ [0, N), if ⟨x⟩1 and ⟨x⟩0 are shares of x over Z, ⟨k · x⟩1 and ⟨k · x⟩0
are shares of k · x over Z, then

Pr
r

$←Z/NζZ

[
⟨y⟩1 − ⟨y⟩0 = k′ · x

]
≥ 1− |x|

N ζ−1

where ⟨y⟩σ ← KeySwitch(⟨x⟩σ, ⟨k · x⟩σ, g−k
′
, gkk

′
exp(k′), r), for σ ∈ {0, 1}.

Moreover, for all x ∈ Z, (g,N) ∈ Supp(DJE.Setup), d ∈ N, (ki)i∈[1,d] ∈ [0, N)d, if ⟨x⟩1 and
⟨x⟩0 are shares of x over Z, ⟨k1 · x⟩1 and ⟨k1 · x⟩0 are shares of k · x over Z, then

Pr
r1,...,rd−1

$←Z/NζZ

[
⟨y⟩1 − ⟨y⟩0 = kd · x

]
≥ 1− (d− 1) · |x|

N ζ−1

where ⟨y⟩σ = RecKeySwitchN,ζ

(
⟨x⟩σ, ⟨k · x⟩σ, d, (g−ki)i∈[d],
(gkiki+1 exp(ki))i∈[d−1], (ri)i∈[d−1]

)
, for σ ∈ {0, 1}.

Proof. Let x ∈ Z, (g,N) ∈ Supp(DJE.Setup), k, k′ ∈ [0, N), and ⟨x⟩1, ⟨x⟩0, ⟨k · x⟩1, ⟨k · x⟩0 ∈
Z such that ⟨x⟩1 − ⟨x⟩0 = x and ⟨k · x⟩1 − ⟨k · x⟩0 = k · x .

Defining h ← g−k
′ and c ← gkk

′ · exp(k′), c⟨x⟩1h⟨k·x⟩1/c⟨x⟩0h⟨k·x⟩0 = cxhk·x = exp(k′ · x). It
follows by [RS21, theorem 18] that DDLog(c⟨x⟩1h⟨k·x⟩1)−DDLog(c⟨x⟩0h⟨k·x⟩0) ≡ k′ ·x mod N ζ .
Finally, by Lemma 9, we indeed get

Pr
r

$←Z/NζZ

[
KeySwitchN,ζ

(
⟨x⟩1, ⟨k · x⟩1, g−k

′
, gkk

′
exp(k′), r

)
− KeySwitchN,ζ(⟨x⟩0, ⟨k · x⟩0, g−k

′
, gkk

′
exp(k′), r

)
= k′ · x

]
≥ 1− |x|

N ζ−1 . (3)

Let x ∈ Z, (g,N) ∈ Supp(DJE.Setup), d ∈ N, (ki)i∈[1,d] ∈ [0, N)d, and
⟨x⟩1, ⟨x⟩0, ⟨k · x⟩1, ⟨k · x⟩0 ∈ Z such that ⟨x⟩1 − ⟨x⟩0 = x and ⟨k · x⟩1 − ⟨k · x⟩0 = k · x . For
i ∈ [d], define hi ← g−ki and for i ∈ [d− 1], define ci ← gkiki+1 exp(ki+1) .

For i ∈ [d − 1] and σ ∈ {0, 1}, let ⟨ki+1 · x⟩σ ∈ Z be defined recursively as ⟨ki+1 · x⟩σ ←
DDLog((ci)

⟨ki·x⟩σ(hi)
⟨ki+1·x⟩σ) + ri mod N ζ . For i ∈ [d], consider the random variables

r1, . . . , rn all i.i.d. uniform in Z/N ζZ consider the event Ei : “⟨ki · x⟩1 − ⟨ki · x⟩0 = ki · x”.
By the first part of this lemma (eq. (3)), ∀i ∈ [2, d],Pr[Ei|Ei−1] ≥ 1 − |x|/N ζ−1. Note that
Pr[E1] = 1 by assumption, and that Pr[Ed] ≥ Pr[Ed ∧ Ed−1] = Pr[Ed|Ed−1] · Pr[Ed−1] ≥
· · · ≥ (

∏d
i=2 Pr[Ei|Ei−1]) · Pr[E1] ≥ (1 − |x|/N ζ−1)d−1 ≥ 1 − (d − 1)|x|/N ζ−1. Since Ed is

exactly the event whose probability we wished to lower bound, this concludes the proof.
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4.3.3 HSS construction. During homomorphic evaluation of the semi-private part of
the circuit, our HSS construction uses key-switching to align secret keys of the input wire
shares. Due to this, the size of the evaluation keys, ekσ, scales linearly with the circuit’s
pebbling depth. One other difference is that with this version, we can only achieve the regular
evaluation procedure HSS.Eval, and not the authenticated evaluation HSS.AuthEval. This
makes it slightly more difficult to use in our garbling construction.

HSS Semi-private Offline-Online HSS (Damgård-Jurik-ElGamal variant)

Requires:

– DJE = (DJE.KeyGen,DJE.Enc,DJE.Dec) is the Damgård-Jurik-ElGamal cryptosys-
tem of fig. 3.

– DDLog is the algorithm of fig. 4.
– D is the pebbling depth (definition 13) of the online circuit
– (PRFN,ζ,s,t,λ)(N,ζ,s,t,λ)∈N5 is an εPRF-secure family of pseudorandom functions such

that PRFN,ζ,s,t,λ : ([s]× [D]× {0, 1}) ∪ [s] ∪ ([s+ t+ 1, s+ t]× {0, 1})→ Z/N ζZ.

HSS.Setup(1λ) :

1. (g,N)
$← DJE.Setup(1λ)

2. For i ∈ [0, D], (ski = (ki, N), pki = (g, hi, N))
$← DJE.KeyGen(1λ, pp)

3. For i ∈ [0, D), set ci ← gkiki+1 · exp(ki+1)

4. shauth1,0
$← Z/N ζZ // ⟨k0 · 1⟩0 (over Z/N ζZ)

5. shauth1,1 ← (k0 + shauth1,0 ) mod N ζ // ⟨k0 · 1⟩1 (over Z/N ζZ)
6. kPRF

$← {0, 1}λ
7. For σ ∈ {0, 1}, ekσ ← (N, g, (hi)

D
i=1, (ci)

D−1
i=0 , sh

auth
1,σ , kPRF)

8. sk← (g, (ki)
D
i=0, N)

9. Output (sk, (ek0, ek1))

HSS.Sharepriv(1
λ, sk, x) :

1. Parse sk = (g, (ki)
D
i=0, N), and compute pkD ← (g, hD, N)

2. c $← DJE.EncpkD(x)

3. cauth $← DJE.EncpkD(kD · x)
4. For σ ∈ {0, 1}, set x(σ) ← (c, cauth)
5. Output (x(0), x(1))

HSS.Share0,s-priv(1
λ, sk) :

1. Parse sk = (g, (ki)
D
i=0, N)

2. shauths-priv,0
$← Z/N ζZ // ⟨k0 · y⟩0 (over Z/N ζZ)

3. Set y(0) ← shauths-priv,0 and st← shauths-priv,0

4. Output (y(0), st)

HSS.Share1,s-priv(1
λ, sk, y, st) :

1. Parse sk = (g, (ki)
D
i=0, N)

2. shauths-priv,1 ← (k0 · y + st) mod N ζ // ⟨k0 · y⟩1 (over Z/N ζZ)
3. Output y(1) ← (y, shauths-priv,1)

HSS.Eval(σ, ekσ, (x
(σ)
i )i∈[npriv], (y

(σ)
,i )i∈[ns-priv], (C,Crm)) :

// C is aB-bounded arithmetic circuit, and Crm is aB′-bounded restricted-multiplication
arithmetic circuit.
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1. Parse ekσ ← (N, g, (hi)
D
i=1, (ci)

D−1
i=0 , sh

auth
1,σ , kPRF)

2. Parse y(σ)i as

y
(σ)
i =

{
(shs-priv,i,1, sh

auth
s-priv,i,1, y) if σ = 1

(shs-priv,i,0, sh
auth
s-priv,i,0) if σ = 0

3. Parse C as a sequence of gates g1, g2, . . . , g|C|.
4. For i = 1, . . . |C|:

// Invariant: shauthi,σ stores ⟨kdi · Pi(y⃗)⟩σ (over Z), where Pi is the polynomial computed
by gate gi and di is the pebbling depth of gi
– If gi is the constant gate 1,

shauthi,σ ← shauth1,σ // ⟨k0 · 1⟩σ

– If gi is the jth input gate,

shauthi,σ ← shauths-priv,j,σ // ⟨k0 · yj⟩σ

– If gi is an addition gate at pebbling depth di, whose parents are giL (at pebbling
depth dL) and giR (at pebbling depth diR):

shauth,dii,L,σ ← RecKeySwitchN,ζ( shiL,σ, sh
auth
iL,σ

, di − diL ,
((hi)i∈[diL ,di], (cj)j∈[diL ,di−1],

(PRF(kPRF, (i, j, 0)))j∈[diL ,di−1])

// ⟨kℓi · PiL(y⃗)⟩σ

shauth,dii,R,σ ← RecKeySwitchN,ζ( shiR,σ, sh
auth
iR,σ, di − diR ,

(hi)i∈[diR ,di], (cj)j∈[diR ,di−1],

(PRF(kPRF, (i, j, 1)))j∈[diL ,di−1])

// ⟨kℓi · PiR(y⃗)⟩σ

shauthi,σ ← shauth,dii,L,σ + shauth,dii,R,σ

// ⟨kℓi · Pi(y⃗)⟩σ ← ⟨kℓi · (PiL + PiR)(y⃗)⟩σ

– If gi is a multiplication gate at pebbling depth di, whose parents are giL (at
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pebbling depth dL) and giR (at pebbling depth diR):

shiL,σ ←

{
PiL(y⃗) If σ = 1

0 If σ = 0

shiR,σ ←

{
PiR(y⃗) If σ = 1

0 If σ = 0

shauth,di−1i,L,σ ← RecKeySwitchN,ζ( shiL,σ, sh
auth
iL,σ

, di − diL − 1,

(hj)j∈[diL ,di−1], (cj)j∈[diL ,di−2],

(PRF(kPRF, (i, j, 0)))j∈[diL ,di−1])

shauth,dii,R,σ ← RecKeySwitchN,ζ( shiR,σ, sh
auth
iR,σ, di − diR ,

(hj)j∈[diR ,di], (cj)j∈[diR ,di−1],

(PRF(kPRF, (i, j, 1)))j∈[diL ,di−1])

// ⟨kdi · PiR(y⃗)⟩σ

shauthi,σ ←



−DDLog
(
(cdi−1)

PiL
(y⃗)·PiR

(y⃗)

·(hi)PiL
(y⃗)·shauth,dii,R,1

·(hi+1)
PiR

(y⃗)·shauth,di−1
i,L,1

·g−sh
auth,di−1
i,L,1 ·shauth,dii,R,1

)
if σ = 1

−DDLog
(
g−sh

auth,di−1
i,L,0 ·shauth,dii,R,0

)
if σ = 0

shauthi,σ ← shauthi,σ + PRF(kPRF, i) mod N ζ

// ⟨kdi · Pi(y⃗)⟩σ = ⟨kdi · (PiLPiR)(y⃗)⟩σ
– If gi is a scalar multiplication gate ·α, whose parent is gj :

shauthi,σ ← α · shauthj,σ // ⟨kdi · α · Pj(y⃗)⟩σ ← α · ⟨kdi · Pj(y⃗)⟩σ

// shauth|C|,σ stores ⟨kD · C(y⃗)⟩σ
// Now, evaluate Crm on private inputs

5. For i ∈ [npriv], parse x(σ)i as (shauthxi,σ , ci = (ci,0, ci,1), c
auth
i = (cauthi,0 , cauthi,1 ))

6. Parse Crm as a sequence of gates g′1, g′2, . . . , g′|Crm|.
7. For i = 1, . . . , |Crm| :

// Invariant: sh|C|+i,σ stores ⟨C(y⃗) · Pi(x⃗)⟩σ and shauth|C|+i,σ stores
⟨kD · C(y⃗) · Pi(x⃗priv)⟩σ, where Pi is the polynomial computed by gate g′i
– If g′i is the constant 1:

sh|C|+i,σ ←

{
C(y⃗) if σ = 1

0 if σ = 0
//⟨C(y⃗) · 1⟩σ

shauth|C|+i,σ ← shauth|C|,σ //⟨kD · C(y⃗) · 1⟩σ ← ⟨kD · C(y⃗)⟩σ

– If g′i is the jth input gate:

sh|C|+i,σ ← DDLog
(
(cj,0)

shauth|C|,σ(cj,1)
sh|C|,σ

)
+ PRFkPRF(|C|+ i, 0) mod N ζ

// ⟨C(y⃗) · xj⟩σ
shauth|C|+i,σ ← DDLog

(
(cauthj )

shauth|C|,σ
)
+ PRF(kPRF, (|C|+ i, 1)) mod N ζ

// ⟨kD · C(y⃗) · xj⟩σ
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– If g′i is an addition gate, whose parents are g′iL and g′iR :

sh|C|+i,σ ← sh|C|+iL,σ + sh|C|+iR,σ

// ⟨C(y⃗) · (PiL + PiR)(x⃗)⟩σ
shauth|C|+i,σ ← shauth|C|+iL,σ

+ shauth|C|+iR,σ

// ⟨kD · C(y⃗) · (PiL + PiR)(x⃗)⟩σ

– If g′i is a scalar multiplication gate ·α, whose parent is g′j :

sh|C|+i,σ ← α · sh|C|+j,σ

//⟨C(y⃗) · α · Pj(x⃗)⟩σ ← α · ⟨C(y⃗) · Pj(x⃗)⟩σ
shauth|C|+i,σ ← α · shauth|C|+j,σ

//⟨kD · C(y⃗) · α · Pj(x⃗)⟩σ ← α · ⟨kD · C(y⃗) · Pj(x⃗)⟩σ

– If g′i is a multiplication gate, whose parents are g′iL and g′iR , and g′iL is the jth

input:
sh|C|+i,σ ← DDLog

(
(cj,0)

shauth|C|+iR,σ(cj,1)
sh|C|+iR,σ

)
+PRFkPRF(|C|+ i, 0) mod N ζ

// ⟨C(y⃗) · PiR(x⃗)⟩σ
shauth|C|+i,σ ← DDLog

(
(cauthj,0 )

shauth|C|+iR,σ(cauthj,1 )sh|C|+iR,σ

)
+PRFkPRF(|C|+ i, 1) mod N ζ

// ⟨kD · C(y⃗) · PiR(x⃗)⟩σ
8. yσ ← shauth|C|+|Crm|,σ // ⟨C(y⃗) · Crm(x⃗)⟩σ
9. Output yσ

Fig. 9: Semi-private offline-online HSS from KDM-security of the Damgård-Jurik encryption
scheme.

Theorem 22 (Semi-private offline-online HSS for RMS ⊗ VP from DCR). Let
λ be a security parameter and assume the DCR assumption with λDCR-bit RSA modu-
lus. For every ζ ≥ 1, every ε = ω(1),2 every input sizes npriv, ns-priv ∈ N⋆, and every
bound B ≤ 2(ζ−1−ε)·λDCR/2, the construction of fig. 6 is a semi-private offline-online HSS
scheme (definition 16) with linear online-input shares (definition 17), supporting the class
RMSns-priv ⊗1 VPnpriv (definition 14).

As in the previous construction (see remark 19), this also extends to support evaluating the
tensor product class RMS⊗ VP, beyond the rank 1 products in RMS⊗1 VP.

5 Sublinear-Size Garbled Circuits

Our garbling constructions are designed to garble some class of circuits consisting of higher
fan-in gates (which we call wide-gates), with constant rate, i.e., a constant size of plaintext
values for every gate. Since layered fan-in 2 circuits can be written as smaller wide-gate
circuits, with size sublinear in the size of the fan-in 2 circuit, this implies sublinear garbling
for fan-in 2 circuits.
2 ε could be chosen as a constant, provided (1 − 2−ε·λDCR)D were still negligible, where D is the pebbling

depth of the circuit applied to the online inputs.
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We base our constant rate garbling schemes on semi-private HSS with offline/online sharing.
At a high level, they work as follows: The garbler chooses masks for every wire in the circuit,
and gives the evaluator semi-private shares of its masked inputs. These masks and masked
values work similarly to the “permute bits’ and “color bits” of point-permute garbling, and
ensure that the masked values do not leak anything about the plaintext computation. Each
(masked) wide-gate is garbled using semi-private HSS, allowing the evaluator to learn its
masked output given its masked inputs. This garbled gate also outputs semi-private shares
of the masked output, so that the evaluator can evaluate further gates.
In section 5.1 we discuss our requirements on the class of wide-gates. In section 5.2 we present
our full construction of garbling of wide-gate circuits. Finally, section 5.3 presents two suitable
classes of wide-gates – boolean truth tables and arithmetic multivatiate polynomials – and
applies them to fan-in two garbling of boolean and bounded arithmetic circuits.

5.1 Wide-gates and Masking Schemes

Definition 23 (Wide-gates). Let X be the plaintext space. A class of wide-gates over X is
a class of functions G ⊆

⋃
ℓ(X ℓ → X ), possibly with multiple different arities ℓ.

The inputs and outputs of every wide-gate in our garbling scheme must be masked, so that
semi-private shares do not leak anything important. We define masking schemes as essentially
one-time pads for the plaintext wire values.

Definition 24 (Masking Scheme). Let λ be a security parameter, and let
(Kλ)λ∈N, (Xλ)λ∈N, (Yλ)λ∈N be infinite families of finite sets. A masking scheme (w.r.t.
(Kλ)λ∈N, (Xλ)λ∈N, (Yλ)λ∈N) is a pair of p.p.t. algorithms (Mask,UnMask) with the follow-
ing syntax and properties.

– Mask takes as input the security parameter 1λ, a mask k ∈ K, and a plaintext value x ∈ X ,
and outputs a masked value y ∈ Y; when convenient, we may use Maskk(x) as shorthand
for Mask(1λ, k, x).

– UnMask takes as input the security parameter 1λ, a masking key k ∈ K, and a masked value
y ∈ Y, and outputs a plaintext value x ∈ X ; when convenient, we may use UnMaskk(y)
as shorthand for UnMask(1λ, k, y).

– Correctness. There exists a negligible function negl such that

∀x ∈ Xλ,Pr [UnMaskk(Maskk(x)) = x] ≥ 1− negl(λ) .

– One-Time Privacy. There exists a PPT simulator Sim such that for all x ∈ Xλ, the
following distributions are computationally indistinguishable:[

y
$← Sim(1λ)

]
and

[
y ← Maskk(x) | k $← K

]
Next, while evaluating each gate we must be able to unmask, evaluate some gate, then mask
its output, all inside semi-private HSS. We formalize this by saying that the masking scheme
and wide-gate class must be admissible for the circuit class supported by the HSS.

Definition 25. A pair of a masking scheme (Mask,UnMask) and a class G of wide-gates is
admissible for a circuit class C if, for all g ∈ G, the function

(k1, . . . , kℓ, k
′, y1, . . . , yℓ) 7→ Maskk′(g(UnMaskk1(y1), . . . ,UnMaskkℓ(yℓ))

is in C . Additionally, a triplet of masking scheme, wide-gate class, and pseudorandom function
F is admissible for C if, for all i1, . . . , iℓ, i′ ∈ Dom(Fk),

(k, y1, . . . , yℓ) 7→ MaskFk(i′)(g(UnMaskFk(i1)(y1), . . . ,UnMaskFk(iℓ)(yℓ)))

is in C .
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We need this stronger version of admissibility because we need to compress the masking keys
using a pseudorandom function, similarly to hybrid encryption. However, for the circuit class
RMS⊗ VP supported by our offline-online HSS constructions, there’s no difference.

Lemma 26. Let F be a pseudorandom function in NC1, and let ((Mask,UnMask),G) be ad-
dmissible for RMS⊗ VP. Then ((Mask,UnMask),G, F ) is admissible for RMS⊗ VP.

Proof. The only difference between the two notions of admissibility is setting the mask keys
kj to be PRF evaluations Fk(ij). This is local to just the RMS side of the tensor product.
Since F is in NC1, it can be evaluated by an RMS program of size poly(λ). One can compose
two RMS programs, with the size being at most the product of the two original sizes, so after
composing with F the RMS side of the tensor product will still be in RMS.

5.2 General Template for Rate-1 Garbling from Offline-Online HSS

Definition 27. A garbling scheme AGC for a class of n-input m-output arithmetic functions
C ⊆ (Zm)Z

n and bounded input set B ⊆ Zn is a label group L together with p.p.t. algorithms:

– (Ĉ, (Ki)i∈[n])← Garble(C): garble a circuit C ∈ C to get a garbled circuit Ĉ ∈ {0, 1}∗ and
input wire label encoding functions Ki : Z→ L for all i ∈ [n]. Every Ki must be an affine
function.

– (yj)j∈[m] ← Eval(Ĉ, (Li)i∈[n]): evaluate a garbled circuit Ĉ on input wire labels Li ∈ L to
get outputs yj ∈ Z.

Correctness. AGC is ε-correct if for all C ∈ C and (xi)i∈[n]t ∈ B,

Pr

[
Eval(Ĉ, (Li)i∈[n]) ̸=Z C(x1, . . . , xn)

∣∣∣∣ (Ĉ, (Ki)i∈[n])← Garble(C)
Li ← Ki(xi)

]
≤ ε.

Privacy. AGC is private if there exists a p.p.t. simulator Sim such that for all C ∈ C and
(xi)i∈[n] ∈ B, the following distributions are indistinguishable.{

((Li)i∈[n], Ĉ) :
(Ĉ, (Ki)i∈[n])← Garble(C)

Li ← Ki(xi)

}
c
≈ {S(C, y) : y ← C(x)} .

5.2.1 From semi-private HSS. In this section, we provide a general template for rate-1
garbling schemes, given a masking scheme and a semi-private HSS (with linear, offline/online
sharing of semi-private inputs and authenticated evaluation) that is expressive enough to
capture “unmask, evaluating a single gate, then re-mask”.

Our garbling scheme works by having the evaluator iteratively compute a masked repre-
sentation MaskRw(w) of each wire w. The garbled circuit will then contain the mask of the
output wire, allowing the evaluator to retrieve its desired output.

We use semi-private homomorphic sharing, where the masked wires are the semi-private
inputs and the masks are the private inputs, in order to allow the evaluator to go from
masked representations of the input wires of a gate to a masked representation of its output
wire. Moreover, the additional properties we require of the HSS scheme (namely linear,
offline/online sharing of the semi-private inputs and authenticated evaluation) will guarantee
a form of “self reducibility” which will guarantee each gate’s output wire is ready to be used
as an input wire to the next gate.
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At a high level, a semi-private HSS scheme satisfies linear, offline/online sharing of the
semi-private inputs if the first share of a semi-private input y consists of ⟨sk · y⟩0 while the
second share consists of (y, ⟨sk · y⟩1). After performing authenticated evaluation, the parties
hold ⟨f(x, y)⟩σ and ⟨sk · f(x, y)⟩σ (where x is some private input). If the first party sends
⟨f(x, y)⟩0 to the second, they now hold ⟨sk · f(x, y)⟩0 and (f(x, y), ⟨sk · f(x, y)⟩1). These
values are now almost consistent with the sharing of a semi-private input, except there is no
guarantee that the ⟨sk · f(x, y)⟩σ are sampled uniformly at random. However, all is well if
garbler and evaluator offset these shares by a pseudorandom value.3

Combining all of the above ideas yields a garbling scheme, but which is not rate-1:

1. The garbler initially performs the HSS setup, samples the masks for each of the wires,
shares the masks (treated as private inputs), samples their offline shares of the masked in-
puts (treated as public inputs), and samples the PRF key used for share re-randomisation.

2. The garbler then proceeds gate by gate to compute ⟨MaskRw(w)⟩0 and ⟨sk ·MaskRw(w)⟩0
for each wire w of the circuit. Specifically, if gate f takes as input the wires
w1, . . . , wℓ and produces as output the wire w, then the garbler can convert private-
input shares of R1, . . . , Rℓ, R (the masks of the ℓ inputs to the gate as well as that
of its output) and semi-private-input shares of MaskRw1

(w1), . . . ,MaskRwℓ
(wℓ) into

⟨MaskRw(w)⟩0, ⟨sk ·MaskRw(w)⟩0 by homomorphically evaluating

(((Xi)
ℓ
i=1, X)︸ ︷︷ ︸

Private Inputs

, (Yi)
ℓ
i=1︸ ︷︷ ︸

Semi-private
Inputs

) 7→ MaskX(f(UnMaskX1(Y1), . . . ,UnMaskXℓ
(Yℓ))) .

3. The garbled circuit is then comprised of the PRF key, the second party’s HSS evaluation
key, ⟨MaskRw(w)⟩0 and the second party’s private-input-shares of Rw for each wire w,
and the masks for the output wires.

4. An input label for input x is computed as (MaskRx(x), ⟨sk ·MaskRx(x)⟩1).
5. At evaluation time, the evaluator proceeds gate-by-gate, computing ⟨MaskRw(w)⟩1 and
⟨sk ·MaskRw(w)⟩1 analogously to the garbler, and then using ⟨MaskRw(w)⟩0 (which is part
of the garbled circuit) to reconstruct MaskRw(w).

6. Finally, having computed MaskRw(w) for the output wire w, the evaluator uses Rw (which
is part of the garbled circuit) to retrieve the output value.

The first observation towards making this scheme rate-1 is that the garbled circuit need not
contain ⟨MaskRw(w)⟩0, only ⟨MaskRw(w)⟩0 mod |Y|, where MaskRw(w) ∈ Y outputs in an
interval [0, |Y|). If the masking scheme is rate-1 then this value is only about as large as the
wire value. The second observation is that if all the masks are generated using a PRF F to be
evaluated inside the HSS, the garbled circuit only needs to contain the private-input-shares
of the bits of the PRF key, not the private-input-shares of each mask. This means the HSS
scheme now needs to support the following evaluation:

(((Xi)
λ
i=1, X)︸ ︷︷ ︸

Private Inputs

, (Yi)
ℓ
i=1︸ ︷︷ ︸

Semi-private
Inputs

) 7→ MaskX

(
f
(
UnMaskFX1...Xλ

(i1)(Y1),

. . . ,

UnMaskFX1...Xλ
(iℓ)(Yℓ)

))
where i1, . . . , iℓ are the indices of the gate’s input wires. This is what admissibility (defini-
tion 25) guarantees.

3 Garbler and evaluator can know the PRF key: in the reduction to PRF security, the adversary is the next
call to HSS.AuthEval.
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Arithmetic Garbling AGC from HSS (for wide-gate circuits)

Requires:

– Bound S on the circuit size.
– A semi-private HSS with modulus M linear, offline/online sharing of semi-private

inputs, and supporting authenticated evaluation.
– An admissible triplet for the HSS’s circuit class, consisting of:

1. A class G of gates over X .
2. A masking scheme (K,X ,Y,Mask,UnMask), where the space Y of masked values

is an integer interval [0, |Y|).
3. A pseudorandom function F : {0, 1}λ × [S]→ K.

– A pseudorandom function PRF : {0, 1}λ × [S]→ Z/MZ.

The Garbling Scheme (gate-by-gate description):

Initialisation (performed by the garbler).

1. kPRF
$← {0, 1}λ

2. (sk, (ek0, ek1))
$← HSS.Setup(1λ)

3. r⃗ = (r1, . . . , rλ)
$← {0, 1}λ

4. For j ∈ [λ], (r(0)j , r
(1)
j )

$← HSS.Sharepriv(1
λ, sk, rj)

5. For each i ∈ [n], w(0)
i

$← HSS.Share0,s-priv(1
λ, sk)

HSS circuits (computed by both parties).
Garbling the ith gate f ∈ G, whose input wires are indexed i1, . . . , iℓ.

1. Let Ci be the circuit (in the circuit class of HSS) evaluating the function
gi(r⃗, y1, . . . , yℓ) = MaskFr⃗(i)(f(UnMaskFr⃗(i1)(y1), . . . ,UnMaskFr⃗(iℓ)(yℓ))).

2. (y
(0)
i , w̃

(0)
i )

$← HSS.AuthEval(0, ek0, (r
(0)
j )j∈[λ], (w

(0)
ij

)j∈[ℓ], Ci)

3. w(0)
i ←

(
w̃

(0)
i + PRF(kPRF, i)

)
modM

Garbler output. The garbler outputs the garbled circuit, comprised of kPRF, ek1, r
(1)
j

for j ∈ [λ], y(0)i ← (y
(0)
i mod |Y|) for each of the gates (indexed by i), and Rj := Fr⃗(j)

for each output gate index j.

Label generation. For each i ∈ [n], given input xi, compute the label
(yi, w

(1)
i )

$← HSS.Share1,s-priv(1
λ, sk, w

(0)
i ,MaskFr⃗(i)(xi)).

Evaluating the ith gate f ∈ G, whose input wires are indexed i1, . . . , iℓ.

1. Parse the garbled circuit as (kPRF, ek1, (r
(1)
j )j∈[λ], (y

(0)
i )i, (Rj)j)

2. Define Ci as at garbling time.
3. (y

(1)
i , w̃

(1)
i )

$← HSS.AuthEval(1, ek1, (r
(1)
j )j∈[λ], (yij , w

(1)
ij

)j∈[ℓ], Ci)

4. yi ← (y
(1)
i − y

(0)
i ) mod |Y|

5. w(1)
i ← w̃

(1)
i + PRF(kPRF, i) modM

Evaluator output. For each output gate index j, output UnMaskRj (yj) .

28



Fig. 10: Template for (arithmetic or boolean) garbled circuits from semi-private HSS with
linear offline/online sharing of semi-private inputs and supporting authenticated evaluation.

Theorem 28 (Template for (arithmetic or boolean) garbled circuits from semi-
private HSS with linear offline/online sharing of semi-private inputs and support-
ing authenticated evaluation). Let G be a set of wide-gates over X , (Mask,UnMask) be
a masking scheme with plaintext space X and masked value space Y = [0, |Y|), and F be a
PRF. If this triplet is admissible for some circuit class for which we have a semi-private HSS
scheme with linear, offline/online sharing of semi-private inputs and supporting authenticated
evaluation, then the construction of fig. 10 is an arithmetic garbling scheme for G wide-gate
circuits. For a size s wide-gate circuit with n inputs and m outputs, the size of the garbled
circuit and labels is s log(|Y|) +m log(|K|) + (n+ 1)poly(λ).

Proof.

– Strong correctness. Let us prove a stronger notion of correctness, namely that with all
but negligible probability the following invariants are maintained for every wire:

Ai : “yi = MaskFr⃗(i)(wi)
′′ (for i > n only)

Bi : “w
(1)
i − w

(0)
i = sk ·MaskFr⃗(i)(wi)

′′ (for i ≥ 1)

First observe that ∀i ∈ [n], Pr[Bi] = 1 by definition of Share0,s-priv and Share1,s-priv. Now,
assume towards a contradiction that there is a non-negligible probability that there exists
a wire index i ≥ n such that (yi ̸= MaskFr⃗(i)(wi)) ∨ (w

(1)
i − w

(0)
i ̸= sk · MaskFr⃗(i)(wi)).

By a union bound, because there are only polynomially many wires, there exists a wire
index i ≥ n such that (yi ̸= MaskFr⃗(i)(wi)) ∨ (w

(1)
i − w

(0)
i ̸= sk · MaskFr⃗(i)(wi)) with

non-negligible probability (indeed 1/poly ≤ Pr[∪i(¬Ai ∨ ¬Bi)] ≤
∑

i Pr[¬Ai ∨ ¬Bi]). Let
i⋆ be the smallest such index. It follows from its minimality that there exists a negligible
function ε and a non-negligible function δ such that Pr[∩i⋆−1i=1 (Ai ∩ Bi)] ≥ 1 − ε and
Pr[(¬Ai⋆ ∨ ¬Bi⋆)] ≥ δ. Let i1, . . . , iℓ be the indices of the wires which are inputs to gate
i⋆. With all but negligible probability, ∀j ∈ [ℓ], w̃

(1)
ij
− w̃(0)

ij
= w

(1)
ij
− w(0)

ij
= sk · wij and

yij = MaskFr1...rλ
(ij)(wij ).

Consider the following variant of the PRF security game for PRF: (1) the challenger sam-
ples kPRF, (2) the adversary gets the PRF evaluation on inputs [i⋆ − 1]∖ {i1, . . . , iℓ}, (3)
the challenger samples b $← {0, 1}, and sends to the adversary (PRF(kPRF, ij))j∈[ℓ] if b = 0,
and random values instead if b = 1, (4) the adversary output b′ and wins if b = b′. Clearly,
any p.p.t. adversary must have at most negligible advantage in this game, by PRF security.

Now, consider the following adversarial strategy: (1) run the garbler’s initialisation for
the Garbled circuit (which includes sampling sk), with the exception of sampling kPRF,
(2) garble the circuit up to gate i⋆, using the PRF queries on inputs [i⋆− 1]∖ {i1, . . . , iℓ}
for all gates except the the inputs to the i⋆-th, (3) receive the challenge (Y1, . . . , Yℓ),
(4) output the boolean value of (yi = MaskFr⃗(i)(wi)) ∧ (w̃

(1)
i⋆ − w̃

(0)
i⋆ = sk · wi⋆). Observe

that if b = 1 (i.e. the challenges R1, . . . , Rℓ are uniformly random) then this adversary
must output 1 with all but negligible probability by correctness of AuthEval. Least it
constitute an efficient distinguisher, it must therefore also output 1 with all but negligible
probability conditioned on b = 0. This means that Pr[¬Ai ∨¬Bi] is negligible, which is a
contradiction.

– Privacy. We must show that the evaluator’s view can be simulated using only the circuit
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and its output. We present a hybrid argument starting from the real garbled circuit and
wire labels. The final hybrid will be independent of the inputs xi, depending only on the
circuit C and its outputs zj , so we can make it be the simulator.

H1. This is the real world. The evaluator sees the garbled circuit: kPRF, ek1, r
(1)
j for j ∈ [λ],

y
(0)
i ← (y

(0)
i mod |Y|), and Rj := Fr⃗(j) for each output gate index j. The evaluator

also see its wire labels: (yi, w
(1)
i )

$← HSS.Share1,s-priv(1
λ, sk, w

(0)
i ,MaskFr⃗(i)(xi)).

H2. By strong correctness, with all but negligible probability every masked wire yi com-
puted by the evaluator will be correct. I.e., yi = MaskFr⃗(i)(wi) for all i, where wi is
the plaintext value on the wire. Now, yi is calculated from shares y(1)i and y(0)i , so we
rewrite the garbled gates y(0)i in terms of yi and y(1)i :

yi ← (y
(1)
i − y

(0)
i ) mod |Y|

⇓
y
(0)
i ← (y

(1)
i − yi) mod |Y|

H3. Notice that the garbler’s HSS evaluation key ek0 is no longer used, since we replaced
the garbler’s computation of y(0)i . Also, the HSS secret key sk is only used to run
HSS.Sharepriv and HSS.Shares-priv. Therefore, the semi-private security of HSS against
party 1 implies that we can simulate ek1, and the shares r(1)j and (yi, w

(1)
i ) from just

the semi-private inputs yi = MaskFr⃗(i)(xi).
H4. Since we are now using the HSS simulator, the key r⃗ = (r1, . . . , rλ) of F is only used

to evaluate F . Therefore, we can replace Fr⃗ by a uniformly random function R from
[S]→ K. This is indistinguishable by the PRF security of F .

H5. The evaluator’s view is now being generated using only the masked values yi =
MaskR(i)(wi) of every wire in the circuit. Note that for non-output wires, each R(i) is
used exactly once.4 For non-output wires i, use the one-time privacy (definition 24) of
the masking scheme to replace MaskR(i)(wi) by a simulation independent of wi. The
adversary’s view now only depends on the values of the circuit outputs, so this hybrid
is a valid simulator for garbled circuit privacy.

5.2.2 From semi-private HSS with linear offline/online shares.

Definition 29. Additionally, a triplet of masking scheme, wide-gate class, and pseudoran-
dom function F is authentication admissible for C if, for all i1, . . . , iℓ, i′ ∈ Dom(Fk),

(k, s, y1, . . . , yℓ) 7→ s ·MaskFk(i′)(g(UnMaskFk(i1)(y1), . . . ,UnMaskFk(iℓ)(yℓ)))

is in C .

Remark 30. Similarly to Lemma 26, for our supported HSS circuit class RMS⊗ VP, authen-
tication admissibility is equivalent to admissibility.

Arithmetic Garbling AGC from HSS (for wide-gate circuits)

Requires:

– Bound S on the circuit size.
– A semi-private HSS with modulus M linear, offline/online sharing of semi-private

inputs.
– An admissible (and authentication admissible) triplet for the HSS’s circuit class,

4 Recall that for output wires R(j) is also sent to the evaluator to alow it unmask the output.
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consisting of:
1. A class G of gates over X .
2. A masking scheme (K,X ,Y,Mask,UnMask), where the space Y of masked values

is an integer interval [0, |Y|).
3. A pseudorandom function F : {0, 1}λ × [S]→ K.

– A pseudorandom function PRF : {0, 1}λ × [S]→ Z/MZ.

The Garbling Scheme (gate-by-gate description):
We assume that the wires of the circuit (whose depth is D) are ordered in some fixed
topological order such that the n input wires are indexed 1, . . . , n.

Initialisation (performed by the garbler).

1. kPRF
$← {0, 1}λ

2. For d ∈ [0, D], (skd, (ek0,d, ek1,d))
$← HSS.Setup(1λ)

3. r⃗ = (r1, . . . , rλ)
$← {0, 1}λ

4. For d ∈ [0, D] and j ∈ [λ], (r(0)j,d , r
(1)
j,d )

$← HSS.Sharepriv(1
λ, skd, rj)

5. For d ∈ [1, D], (s(0)d , s
(1)
d )

$← HSS.Sharepriv(1
λ, skd−1, skd) // Key-switching gadget

6. For each i ∈ [n], w(0)
i

$← HSS.Share0,s-priv(1
λ, sk0) // ⟨sk0 ·MaskFr⃗(i)(wi)⟩0

7. Let C× be the a circuit for the function (s, y) 7→ s · y.
8. For each i ∈ [n], for d = 1, . . . , D:

w
(0)
i,d

$←
(
HSS.Eval(0, ek0,d−1, s

(0)
d , w

(0)
i,d−1, Ĉid) + PRF(kPRF, (i, d))

)
modM

Garbling the ith gate f at depth d, whose input wires are indexed i1, . . . , iℓ.

1. Let Ci, Ĉi be the circuits (in the circuit class of HSS) for the functions

gi(r⃗, y1, . . . , yℓ) = MaskFr⃗(i)(f(UnMaskFr⃗(i1)(y1), . . . ,UnMaskFr⃗(iℓ)(yℓ)))

ĝi(r⃗, s, y1, . . . , yℓ) = s · gi(r⃗, y1, . . . , yℓ).

2. y(0)i
$← HSS.Eval(0, ek0,d, (r

(0)
j,d )j∈[λ], (w

(0)
ij ,d

)j∈[ℓ], Ci) // ⟨MaskFr⃗(i)(wi)⟩0
3. For d′ = d, . . . ,D:

w
(0)
i,d′

$←
(
HSS.Eval(0, ek0,d′−1, ((r

(0)
j,d′−1)j∈[λ], s

(0)
d′ ), (w

(0)
ij ,d′−1)j∈[ℓ], Ĉi)

+ PRF(kPRF, (i, d
′))

)
modM // ⟨skd′ ·MaskFr⃗(i)(wi)⟩0

Garbler output. The garbler outputs the garbled circuit, comprised of kPRF, ek1,d for
d ∈ [0, D], r(1)j for j ∈ [λ], s(1)d for d ∈ [1, D], y(0)i ← (y

(0)
i mod |Y|) for each of the gates

(indexed by i), and Rj := Fr⃗(j) for each output gate index j.

Label generation. For each i ∈ [n], given input xi ∈ [0, |Y|), compute
yi ← MaskFr⃗(i)(xi) and w

(1)
i

$← HSS.Share1,s-priv(1
λ, sk0, w

(0)
i ,MaskFr⃗(i)(xi)), and

output the label (yi, w
(1)
i ).

Evaluating the ith input. For d = 1, . . . , D:

w
(1)
i,d

$←
(
HSS.Eval(1, ek1,d−1, s

(1)
d , (yi, w

(1)
i,d−1), Ĉid) + PRF(kPRF, (i, d))

)
modM

Evaluating the ith gate f , whose input wires are indexed i1, . . . , iℓ.
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1. Define Ci and Ĉi as at garbling time.
2. y(1)i

$← HSS.Eval(1, ek1,d, (r
(1)
j,d )j∈[λ], (yij , w

(1)
ij ,d

)j∈[ℓ], Ci) // ⟨MaskFr⃗(i)(wi)⟩1
3. yi ← (y

(1)
i − y

(0)
i ) mod |Y|

4. For d′ = d, . . . ,D:

w
(1)
i,d′

$←
(
HSS.Eval(1, ek1,d′−1, ((r

(1)
j,d′−1)j∈[λ], s

(1)
d′ ), (yij , w

(1)
ij ,d′−1)j∈[ℓ], Ĉi)

+ PRF(kPRF, (i, d
′))

)
modM // ⟨skd′ ·MaskFr⃗(i)(wi)⟩1

Evaluator output. For each output gate index j, output UnMaskRj (yj) .

Fig. 11: Template for (arithmetic or boolean) garbled circuits from semi-private HSS with
linear offline/online sharing of semi-private inputs.

Theorem 31 (Template for (arithmetic or boolean) garbled circuits from semi-
private HSS). Let G be a set of wide-gates over X , (Mask,UnMask) be a masking scheme
with plaintext space X and masked value space Y = [0, |Y|), and F be a PRF. If this triplet
is admissible (and multiplication admissible) for some circuit class for which we have a semi-
private HSS scheme with linear, offline/online sharing of semi-private inputs, then the con-
struction of fig. 11 is an arithmetic garbling scheme for G wide-gate circuits. For a size s,
depth D wide-gate circuit with n inputs and m outputs, the size of the garbled circuit and
labels is s log(|Y|) +m log(|K|) + (n+D + 1)poly(λ).

Proof.

– Strong correctness. Let us prove a stronger notion of correctness, namely that with all
but negligible probability the following invariants are maintained for every wire wi (whose
depth is denoted di):

Ai : “yi = MaskFr⃗(i)(wi)” (∀i ≥ 1)

Bi,d′ : “w
(1)
i,d′ − w

(0)
i,d′ = skd′ ·MaskFr⃗(i)(wi)” (∀i ≥ 1,∀d′ ∈ [di, D])

The proof is completely analogous to that of theorem 28. For all i ∈ [n], Pr[Ai] = 1
by definition of yi ← MaskFr⃗(i)(xi), and for all d′ ∈ [di, D] Pr[Bi,d′ ] = 1 by definition of
Share0,s-priv and Share1,s-priv. Assume towards a contradiction that there is a non-negligible
probability that there exists a wire index i ≥ n such that (¬Ai) ∨

∨D
d′=di

(¬Bi,d′). By
a union bound, because there are only polynomially many wires, there exists a wire
index i ≥ n such that (¬Ai) ∨

∨D
d′=di

(¬Bi,d′) with non-negligible probability. Let i⋆

be the smallest such index. It follows from its minimality that there exists a negligible
function ε and a non-negligible function δ such that Pr

[∧i⋆−1
i=1

(
Ai ∧

∧D
d′=di

Bi,d′

)]
≤ ε

and Pr
[
¬Ai⋆ ∨

∨D
d′=di⋆

¬Bi⋆,d′

]
≥ δ. By essentially the same reduction to PRF security as

used in the proof of strong correctness of theorem 28, because ∀j ∈ [ℓ], w̃
(1)
i,di
−w̃(0)

i,di
= skdi ·

MaskFr⃗(ij)(wij ), it follows that (y
(1)
i⋆ , w̃

(1)
i⋆,di⋆

) − (y
(0)
i⋆ , w̃

(0)
i⋆,di⋆

) = (1, skdi⋆ ) ·MaskFr⃗(i⋆)(wi⋆)
(and in turn Ai⋆ ∧Bi⋆,di⋆ ) with all but negligible probability. Similarly, by PRF security,
for every d′ ∈ [di⋆ , D − 1], if

∧
j∈[ℓ](Aj ∧ Bj,d′) then with all but negligible probability

Ai⋆∧Bi⋆,d′+1. By combining all of these polynomially many hybrids, (¬Ai)∨
∨D

d′=di
(¬Bi,d′)

is negligible, which constitutes a contradiction.

32



– Security. We must show that the evaluator’s view can be simulated using only the circuit
and its output. We present a hybrid argument starting from the real garbled circuit and
wire labels, with the goal of removing all dependence on the circuit inputs xi from the
view. The final hybrid will become the simulator.

H1. This is the real world. The evaluator sees the garbled circuit: kPRF, ek1,d for d ∈
[0, D], r(1)j for j ∈ [λ], s(1)d for d ∈ [1, D], y(0)i ← (y

(0)
i mod |Y|), and Rj := Fr⃗(j)

for each output gate index j. The evaluator also see its wire labels: (yi, w
(1)
i )

$←
HSS.Share1,s-priv(1

λ, sk0, w
(0)
i ,MaskFr⃗(i)(xi)).

H2. By strong correctness, with all but negligible probability every masked wire yi satisfies
computed by the evaluator satisfies yi = MaskFr⃗(i)(wi) for all i, where wi is the
plaintext value on the wire. Similarly to the proof of theorem 28, use strong correctness
to rewrite each garbled gates y(0)i in terms of yi and y(1)i :

yi ← (y
(1)
i − y

(0)
i ) mod |Y|

⇓
y
(0)
i ← (y

(1)
i − yi) mod |Y|

After this change, none of the garbler’s HSS evaluation keys ek0,d are used.
H3. Perform a sequence of hybridsH0

3 . . . ,H
D+1
3 , withH0

3 = H2 being the previous hybrid.
In the change from Hd

3 to Hd+1
3 , replace ek1,d and all calls to HSS.Sharepriv(1

λ, skd, . . .)
or HSS.Shares-priv(1

λ, skd, . . .) with their simulations from the semi-private secu-
rity of HSS against party 1. These shares include HSS.Sharepriv(1

λ, skd, rj) and
HSS.Sharepriv(1

λ, skd, skd+1) (for d < D). For d = 0, these shares also include
HSS.Share1,s-priv(1

λ, sk0, w
(0)
i ,MaskFr⃗(i)(xi)), and because these shares are semi-private

their simulation will still be based on yi = MaskFr⃗(i)(xi).
We now argue that the change from Hd

3 to Hd+1
3 is indistinguishable. In Hd

3, the key
skd is only used to generate shares, since the share s(1)d of skd under key skd−1 was
replaced with a simulation in the Hd−1

3 . Therefore, we can apply the semi-private
security of HSS to skd, which takes us to Hd+1

3 .
H4. The last two changes are the same as in theorem 28: replace Fr⃗ by a random function,

and then use one-time privacy of the masking scheme to replace non-output yi with
simulations. They work exactly as in theorem 28 After these changes, the distribution
depends only on the output values of the garbled circuit, so it is a valid simulator.

5.3 Instantiating the Template and Applications to Sublinear-Size Garbling

The garbling schemes in section 5.2 are parameterized by a class of wide-gates and a masking
scheme. In any instantiation, the wide-gate class and masking scheme must be admissible;
that is, the function that unmasks, evaluates, then remasks must be in RMS⊗ VP.
Due to space constraints we only state the main theorems here, and defer the details to
Appendix B.

Boolean Garbling For the Boolean case, putting Section together with theorems 18, 22, 28
and 31, we get rate 1 garbling for truth-table circuits.

Theorem 32. Assuming either DCR or KDM-security of Damgård-Jurik, there exists a gar-
bling scheme for boolean truth table wide-gate circuits. The size of the garbled circuit and labels
is s+m+ (n+D + 1) · poly(λ) for DCR, or s+m+ (n+ 1) · poly(λ) for KDM-security, if
the truth table circuit has size s, depth D, n inputs, and m outputs.
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This result can also be applied to fan-in 2 layered boolean circuits. log log(s)-depth fan-in 2
circuits have at most log(s) inputs, and so can be represented in truth tables of size poly(s).
Deep, but layered boolean circuits can then be chopped into chunks of depth log log(s), and
each bit of output of each chunk can be represented as a truth table. Therefore, m-output
layered boolean circuits with size s can equivalently be written as fan-in log log(s) boolean
truth table circuits of size n+m+ s/ log log(s) [Cou19].

Theorem 33. Assuming either DCR or KDM-security of Damgård-Jurik, there exists a sub-
linear communication garbling scheme for layered boolean circuits. The size of the garbled
circuit and labels is O(s/ log log(s)+m)+ (n+D+1) ·poly(λ) for DCR, or O(s/ log log(s)+
m) + (n+ 1) · poly(λ) for KDM-security, if the boolean circuit has size s, depth D, n inputs,
and m outputs.

Arithmetic Garbling. For the arithmetic case, putting together Section with theorems 18,
22, 28 and 31, we get rate 1 arithmetic garbling for B-bounded arithmetic circuits with
multivariate polynomial gates, if log(B) = ω(B).

Theorem 34. Assuming either DCR or KDM-security of Damgård-Jurik, there exists a gar-
bling scheme for B-bounded arithmetic circuits with multivariate polynomial wide-gates of
logarithmic degree and polynomial number of terms. The size of the garbled circuit and labels
is (s + m)(λ + logB + 2) + (n + D + 1) · poly(λ, logB) for DCR, or (s + m)(λ + logB +
2) + (n+ 1) · poly(λ, logB) for KDM-security, if the wide-gate circuit has size s, depth D, n
inputs, and m outputs.

And again, we can use a standard technique to convert to sublinear communication garbling
of fan-in 2 layered arithmetic circuits.

Theorem 35. Assuming either DCR or KDM-security of Damgård-Jurik, there exists a sub-
linear communication garbling scheme for B-bounded layered arithmetic circuits. The size of
the garbled circuit and labels is O((s/ log log(s)+m)(λ+logB))+ (n+D+1) ·poly(λ, logB)
for DCR, or O((s/ log log(s) +m)(λ+ logB)) + (n+ 1) · poly(λ, logB) for KDM-security, if
the arithmetic circuit has size s, depth D, n inputs, and m outputs.

Proof. By [Cou19], any fan-in 2 layered arithmetic circuit can be divided into layers of depth
log log(s), giving an equivalent wide-gate circuit of size O(s/ log log(s) + n +m). Each gate
of this circuit evaluates a multivariate polynomial of degree at most 2log log(s) = log(s) and
at most 2log log(s) = log(s) variables. By stars-and-bars counting, this polynomial has at most(2 log(s)
log(s)

)
≤ s2 monomials. Therefore, gates of this circuit can be evaluated by the garbling

scheme of theorem 34.
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—Supplementary material—

A Offline-Online HSS Proofs

A.1 From KDM-security of Damgård-Jurik

In this section, we prove theorem 18, to show that fig. 6 is a Semi-Private HSS scheme (defini-
tion 16) with linear offline/online sharing of semi-private inputs and supporting authenticated
evaluation (definition 17). We prove each property of the semi-private HSS scheme separately.

A.1.1 Correctness and authenticated correctness. Let λ ∈ N be a security param-
eter, B ≤ 2(ζ−1−ε)·λDCR/2 a bound, let C be an ns-priv-input circuit over Z, let Crm be a
restricted-multiplication npriv-input circuit over Z, let (xs-priv,i)i∈[ns-priv] and (xpriv,i)i∈[npriv] be
B-admissible inputs for C and Crm respectively.
Let us prove that correctness (definition 16) holds with probability at least p·(1−N−ε)−εPRF
and that authenticated correctness (definition 17) holds with probability at least p − εPRF,
where

p := 1− (ns-priv + 2npriv + |C×|+ |C ′×|) ·N−ε

(with |C×| and |C ′×| denoting the number of multiplication gates in C and Crm respectively)
and εPRF is tied to the security of PRF.

The proof boils down to showing that all of the comments in the pseudocode of fig. 6 are
invariants holding with all but negligible probability.

Idealised PRF. For simplicity, we first consider an idealised version of the HSS scheme
of fig. 6 where PRF is replaced with a truly random function (i.e. the evaluation keys
contain the same polynomial-size random string—because PRF has a polynomial-sized
domain—instead of the short PRF key). We will later remove this restriction by a reduction
to the security of PRF.

Consider the following random variables: (where sh|C|+|Crm|,0 and sh|C|+|Crm|,1 are random
variables implicitly defined by Eval)

1. (sk, (ek0, ek1))
$← Setup(1λ);

2. (x
(0)
priv,i, x

(1)
priv,i)

$← Sharepriv(1
λ, sk, xpriv,i)

3. y(0)s-priv,i
$← Share0,s-priv(1

λ, sk)

4. y(1)s-priv,i
$← Share1,s-priv(1

λ, sk, ys-priv,i, st)

5. z0
$← Eval(0, ek0, (x

(0)
priv,i)

npriv

i=1 , (y
(0)
s-priv,i)

ns-priv

i=1 , C)

6. z1
$← Eval(1, ek1, (x

(1)
priv,i)

npriv

i=1 , (y
(1)
s-priv,i)

ns-priv

i=1 , (C,Crm))

7. z̃0 ← (z0, sh|C|+|Crm|,0)

8. z̃1 ← (z1, sh|C|+|Crm|,1)

9. z $← z1 − z0
10. z̃ $← z̃1 − z̃0

Observe that if we show that Pr[z = C(y⃗s-priv) · Crm(x⃗priv)] ≥ 1 − negl(λ) and
Pr[z̃ = (1, φ) · C(y⃗s-priv) · Crm(x⃗priv)] ≥ 1 − negl(λ) then we will have proven both cor-
rectness and authenticated correctness.
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Consider the following events:

Ecorr : “Decφ(cinv) ≡ φ−1 mod N ζ”

Ecorr,j : “Decφ(cj) ≡ xpriv,j mod N ζ” (for j ∈ [npriv])

E0 : “sh0,1 − sh0,0 = φ · 1”

Ei : “shi,1 − shi,0 = φ · ys-priv,i” (for i ∈ [ns-priv])

Ei : “shi,1 − shi,0 = φ · Pi(y⃗s-priv)” (for i ∈ [ns-priv + 1, |C|])

E′i : “sh|C|+i,1 − sh|C|+i,0 = φ · C(y⃗s-priv) ·Qi(x⃗priv)” (for i ∈ [|Crm|])

where for i ∈ [ns-priv + 1, |C|], Pi is the polynomial computed by the ith gate of C, while for
i ∈ [|Crm|], Qi is the polynomial computed by the ith gate of Crm.

Lemma 36. Pr[E0] = 1 .

Lemma 36 follows immediately from the definition of sh0,1 and sh0,0.

Lemma 37. ∀i ∈ [ns-priv],Pr[Ei] ≥ 1−N−ε .

Proof of lemma Lemma 37. By definition of the shi,1 and shi,0 (i ∈ [ns-priv]), the following
relation holds with probability 1:

∀i ∈ [ns-priv], shi,1 − shi,0 ≡ φ · xs-priv,i mod N ζ

Because the offline and the online inputs are all B-admissible, and because φ·B ≤ N ·B =
N ζ−ε << N ζ , we get the desired results by invoking Lemma 9 (in particular because the
shi,0 for i ∈ [ns-priv] are sampled uniformly at random from Z/N ζZ).

Lemma 38. Let i ∈ [ns-priv + 1, |C|]. If gi (the ith gate of C) is the constant gate, then
Pr[Ei] = 1 .

Proof of Lemma 38. If gi is the constant gate 1 then by definition Ei ≡ E0 so Pr[Ei] = 1
by Lemma 36.

Lemma 39. Let i ∈ [ns-priv + 1, |C|]. If gi (the ith gate of C) is the jth input gate, then
Pr[Ei|Ej ] = 1 .

Proof of Lemma 39. If gi is the jth input then by definition Ei ≡ Ej . By Lemma 37,
Pr[Ej ] ̸= 0 so Pr[Ei|Ej ] = 1 (because any non-impossible event is certain when condi-
tioned on itself).

Lemma 40. Let i ∈ [ns-priv + 1, |C|]. If gi (the ith gate of C) is an addition whose parents
are giL and giR , then Pr[Ei|EiL , EiR ] = 1 .

Proof of Lemma 40. If gi is an addition gate, whose parents we denote iR and iL, then,
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conditioned on EiL and EiR :

shi,1 − shi,0 = (shiR,1 + shiL,1)− (shiR,0 + shiL,0)

= (shiL,1 − shiL,0) + (shiR,1 − shiR,0)

= φ · PiL(y⃗s-priv) + φ · PiR(y⃗s-priv)

= φ · Pi(y⃗s-priv)

Therefore Pr[Ei|EiL , EiR ] = 1.

Lemma 41. Let i ∈ [ns-priv + 1, |C|]. If gi (the ith gate of C) is a scalar multiplication gate
whose parent is gj, then Pr[Ei|Ej ] = 1 .

Proof of Lemma 41. If gi is the scalar multiplication ·α with predecessor gj , then,
conditioned on Ej :

shi,1 − shi,0 = α · shj,1 − α · shj,0
= α · (shj,1 − shj,0)

= α · φ · Pj(y⃗s-priv)

= φ · Pi(y⃗s-priv)

Therefore Pr[Ei|Ej ] = 1.

Lemma 42. Let i ∈ [ns-priv+1, |C|]. If gi (the ith gate of C) is a multiplication whose parents
are giL and giR , then Pr[Ei|EiL , EiR , Ecorr] ≥ 1−N−ε .

Proof of Lemma 42. Let i ∈ [ns-priv + 1, |C|] such that gi is a multiplication gate whose
two operands are giL and giR (with iL, iR < i). Denote PiL and PiR the polynomials
computed by giL and giR respectively. By core lemma 1, conditioned on EiL , EiR , and
Ecorr:(
−DDLog

(
c
shiL,1·shiR,1

inv

)
+ PiL(y⃗s-priv) · shiR,1 + PiR(x⃗priv) · shiL,1

)
−
(
−DDLog

(
c
shiL,0·shiR,0

inv

))
≡ φ · Pi(y⃗s-priv) mod N ζ

We conclude, by Lemma 9 (because φ · Pi(y⃗s-priv) ≤ N · B ≤ N ζ−ε), that
Pr [Ei|EiL , EiR , Ecorr] ≥ 1−N−ε.

Lemma 43. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is a constant gate then Pr[E′i|E|C|] = 1 .

Proof of Lemma 43. If g′i is the constant gate 1, then by definition E′i ≡ E|C| so
Pr[E′i|E|C|] = 1.

Lemma 44. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is an addition whose parents are g′iL
and g′iR , then Pr[E′i|E′iL , E

′
iR
] = 1 .

Proof of Lemma 44. If g′i is an addition gate, whose parents are indexed iR and iL,
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then, conditioned on E′iL and E′iR :

sh|C|+i,1 − sh|C|+i,0 = (sh|C|+iR,1 + sh|C|+iL,1)− (sh|C|+iR,0 + sh|C|+iL,0)

= (sh|C|+iL,1 − sh|C|+iL,0) + (sh|C|+iR,1 − sh|C|+iR,0)

= φ · C(y⃗s-priv) ·Q|C|+iL(x⃗priv) + φ · C(y⃗s-priv) ·Q|C|+iR(x⃗priv)

= φ · C(y⃗s-priv) ·Qi(x⃗priv)

Therefore Pr[E′i|E′iL , E
′
iR
] = 1.

Lemma 45. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is a scalar multiplication gate whose
parent is g′j, then Pr[E′i|E′j ] = 1 .

Proof of Lemma 45. If g′i is the scalar multiplication ·α with predecessor g′j , then,
conditioned on E′j :

sh|C|+i,1 − sh|C|+i,0 = α · sh|C|+j,1 − α · sh|C|+j,0

= α · (sh|C|+j,1 − sh|C|+j,0)

= α · φ · C(y⃗s-priv) ·Qj(x⃗priv)

= φ · C(y⃗s-priv) ·Qi(x⃗priv)

Therefore Pr[E′i|E′j ] = 1.

Lemma 46. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is the jth input gate, then
Pr[E′i|E|C|, Epriv,j ] ≥ 1−N−ε .

Proof of Lemma 46. If g′i is the jth input gate xpriv,j and we condition on E|C|, then by
Lemma 7

DDLog
(
(cj)

sh|C|,1
)
− DDLog

(
(cj)

sh|C|,0
)
≡ DJ.DecN,ζ,φ(cj) · C(y⃗s-priv) · φ mod N ζ

If we further condition on Epriv,j , then

DDLog
(
(cj)

sh|C|,1
)
− DDLog

(
(cj)

sh|C|,0
)
≡ φ · C(y⃗s-priv) · xpriv,j mod N ζ

Finally, because C(y⃗s-priv) ·xpriv,j ≤ N ·B2 ≤ N ζ−ε, (still conditioned on E|C| and Epriv,j)
E′i holds with probability at least 1−N−ε by Lemma 9.

Lemma 47. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is a multiplication gate whose parents
are the jth input gate and giR , then Pr[E′i|E′iR , Ecorr,j ] ≥ 1−N−ε .

Proof of Lemma 47. If g′i is the multiplication of the jth input gate xpriv,j and gate g′iR ,
then, conditioning on E′iR , by Lemma 7

DDLog
(
(cj)

sh|C|+iR,1

)
− DDLog

(
(cj)

sh|C|+iR,0

)
≡ DJ.DecN,ζ,φ(cj) · C(y⃗s-priv) ·QiR(x⃗priv) · φ mod N ζ

If we further condition on Ecorr,j , then

DDLog
(
(cj)

sh|C|+iR,1

)
− DDLog

(
(cj)

sh|C|+iR,0

)
≡ φ · C(y⃗s-priv) ·Qi(x⃗priv) mod N ζ
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Finally, because C(y⃗s-priv) ·Qi(x⃗priv) ≤ N ·B2 ≤ N ζ−ε, (still conditioned on E|C|+iR and
Epriv,j) E′i holds with probability at least 1−N−ε by Lemma 9.

Lemma 48. Authenticated correctness with an idealised PRF ( i.e. the event “ ỹ = φ ·
C(y⃗s-priv) · Crm(x⃗priv)”) holds with probability at least 1− (ns-priv + npriv + |C×|+ |C ′×|) ·N−ε,
where |C×| and |C ′×| are the number of multiplication gates in C and Crm respectively.

Proof of Lemma 48. To simplify notations, we rename/order the events
Ecorr, (Ecorr,j)j∈[npriv], (Ei)i∈[0,|C|], (E

′
i)i∈[|Crm|] as A1, . . . , Anpriv+|C|+|Crm|+2:

1. A1 := Ecorr

2. For j ∈ [npriv], Aj+1 := Ecorr,j

3. For j ∈ [0, |C|], Ans-priv+2+j := Ej

4. For j ∈ [|Crm|], Ans-priv+2+|C|+j := E′j

Observe that

Pr[E′|Crm|] = Pr[Anpriv+|C|+|Crm|+2]

≥ Pr[
⋂npriv+|C|+|Crm|+2

i=1 Ai]

= 1− Pr[
⋃npriv+|C|+|Crm|+2

i=1 Ai]

= 1− Pr[
⊔npriv+|C|+|Crm|+2

i=1 (Ai ∩
⋂

1≤j<iAj)]

= 1−
∑npriv+|C|+|Crm|+2

i=1 Pr[Ai ∩
⋂

1≤j<iAj ]

Let us now upper bound each of the Pr[Ai∩
⋂

1≤j<iAj ], which in turn allows us to lower
bound Pr[E′|Crm|].

1. Pr[A1] = Pr[Ecorr] = 0 by perfect correct of the Damgård-Jurik encryption scheme.
2. For i ∈ [2, npriv+1], Pr[Ai∩

⋂
1≤j<iAj ] ≤ Pr[Ai] = Pr[Ecorr,i−1] = 0 by perfect correct

of the Damgård-Jurik encryption scheme.
3. Pr[Anpriv+2 ∩

⋂
1≤j<npriv+2Aj ] ≤ Pr[Anpriv+2] = Pr[E0] = 0 by Lemma 36.

4. For i ∈ [npriv+3, npriv+ns-priv+2], Pr[Ai∩
⋂

1≤j<iAj ] ≤ Pr[Ai] = Pr[Ej−npriv−2] ≤ N−ε
by Lemma 37.

5. For i ∈ [npriv + ns-priv + 3, npriv + ns-priv + |C|+ 2],
– If gi−ns-priv−npriv−2 is the constant gate, then Pr[Ai ∩

⋂
1≤j<iAj ] ≤ Pr[Ai] =

Pr[Ei−ns-priv−npriv−2] = 0 by Lemma 38.
– If gi−ns-priv−npriv−2 is the jth input gate, then Pr[Ai ∩

⋂
1≤k<iAk] ≤ Pr[Ai ∩

Anpriv+j+2] = Pr[Ei−ns-priv−npriv−2 ∩ Ej ] = Pr[Ei−ns-priv−npriv−2|Ej ] · Pr[Es-priv,j ] = 0
by Lemma 39.

– If gi−ns-priv−npriv−2 is an addition gate whose parents are giL and giR ,
then Pr[Ai ∩

⋂
1≤j<iAj ] ≤ Pr[Ai ∩ Ans-priv+2+iL ∩ Ans-priv+2+iR ] =

Pr[Ei−ns-priv−npriv−2 ∩ EiL ∩ EiR ] = Pr[Ei−ns-priv−npriv−2|EiL , EiR ] · Pr[EiL ∩ EiR ] ≤
Pr[Ei−ns-priv−npriv−2|EiL , EiR ] = 0 by Lemma 40.

– If gi−ns-priv−npriv−2 is a scalar multiplication gate whose parent is gj , then
Pr[Ai ∩

⋂
1≤k<iAk] ≤ Pr[Ai ∩ Ans-priv+2+j ] = Pr[Ei−ns-priv−npriv−2 ∩ Ej ] =

Pr[Ei−ns-priv−npriv−2|Ej ] · Pr[Ej ] ≤ Pr[Ei−ns-priv−npriv−2|Ej ] = 0 by Lemma 41.
– If gi−ns-priv−npriv−2 is a multiplication gate whose parents are giL and giR , then

Pr[Ai∩
⋂

1≤j<iAj ] ≤ Pr[Ai∩Anpriv+2+iL ∩Anpriv+2+iR ∩A1] = Pr[Ei−ns-priv−npriv−2∩
EiL ∩ EiR ∩ Ecorr] = Pr[Ei−ns-priv−npriv−2|EiL , EiR , Ecorr] · Pr[EiL ∩ EiR ∩ Ecorr] ≤
Pr[Ei−ns-priv−npriv−2|EiL , EiR , Ecorr] ≤ N−ε by Lemma 42.

6. For i ∈ [ns-priv + npriv + |C|+ 3, ns-priv + npriv + |C|+ |Crm|+ 2],
– If g′i−ns-priv−npriv−|C|−2 is the constant gate, then Pr[Ai ∩

⋂
1≤j<iAj ] ≤ Pr[Ai] =

Pr[E′i−ns-priv−npriv−|C|−2] = 0 by Lemma 43.
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– If g′i−ns-priv−npriv−|C|−2 is an addition gate whose parents are g′iL and g′iR , then
Pr[Ai ∩

⋂
1≤j<iAj ] ≤ Pr[Ai ∩ Ans-priv+npriv+|C|+2+iL ∩ Ans-priv+npriv+|C|+2+iR ] =

Pr[E′i−ns-priv−npriv−|C|−2 ∩ E
′
iL
∩ E′iR ] = Pr[E′i−ns-priv−npriv−|C|−2|E

′
iL
, E′iR ] · Pr[E

′
iL
∩

E′iR ] ≤ Pr[E′i−ns-priv−npriv−|C|−2|E
′
iL
, E′iR ] = 0 by Lemma 44.

– If g′i−ns-priv−npriv−|C|−2 is an scalar multiplication gate whose parent is g′j ,

then Pr[Ai ∩
⋂

1≤k<iAk] ≤ Pr[Ai ∩ Aj ] = Pr[E′i−ns-priv−npriv−|C|−2 ∩ E′j ] =

Pr[E′i−ns-priv−npriv−|C|−2|E
′
j ]·Pr[E′j ] ≤ Pr[E′i−ns-priv−npriv−|C|−2|E

′
j ] = 0 by Lemma 45.

– If g′i−ns-priv−npriv−|C|−2 is the jth input gate, then Pr[Ai ∩
⋂

1≤k<iAk] ≤
Pr[Ai ∩ Ans-priv+npriv+|C|+2, Aj+1, A1] = Pr[E′i ∩ E|C| ∩ Ecorr,j ∩ Ecorr] =

Pr[E′i|E|C|, Ecorr,j , Ecorr]·Pr[E|C|∩Ecorr,j∩Ecorr] ≤ Pr[E′i|E|C|, Ecorr,j , Ecorr] ≤ N−ε
by Lemma 46.

– If g′i−ns-priv−npriv−|C|−2 is a multiplication gate whose parents are the
jth input and g′iR , then Pr[Ai ∩

⋂
1≤k<iAk] ≤ Pr[Ai ∩ Aj+1 ∩

Ans-priv+npriv+iR+2 ∩ A1] = Pr[Ei−ns-priv−npriv−|C|−2
′ ∩ Ecorr,j ∩ E′iR ∩ Ecorr] =

Pr[Ei−ns-priv−npriv−|C|−2
′|Ecorr,j , E

′
iR
, Ecorr] · Pr[Ecorr,j ∩ E′iR ∩ Ecorr] ≤

Pr[Ei−ns-priv−npriv−|C|−2
′|Ecorr,j , E

′
iR
, Ecorr] ≤ N−ε by Lemma 47.

By combining all of the above, Pr[E′|Crm|] ≥ 1 − (ns-priv + npriv + |C×| + |C ′×|) · N−ε.a

Because E′|Crm| coincides with authenticated correctness, this concludes the proof.

a This bound is obtained by making the assumption that there are no duplicate input gates, i.e. that
there are at most ns-priv input gates in C and at most npriv in Crm.

Lemma 49. Correctness with an idealised PRF ( i.e. the event “y = C(y⃗s-priv) · Crm(x⃗priv)”)
holds with probability at least (1−N−ε) · (1− (ns-priv +npriv + |C×|+ |C ′×|) ·N−ε), where |C×|
and |C ′×| are the number of multiplication gates in C and Crm respectively.

Proof of Lemma 49. By Lemma 9, Pr[“y = C(y⃗s-priv) ·Crm(x⃗priv)”|E′|Crm|, Ecorr] ≥ 1−N−ε

(using the fact that C(y⃗s-priv) · Crm(x⃗priv) ≤ B2 ≤ N ζ−ε).

Pr[“y = C(y⃗s-priv) · Crm(x⃗priv)”] ≥ Pr[“y = C(y⃗s-priv) · Crm(x⃗priv)”, E′|Crm|, Ecorr]

= Pr[“y = C(y⃗s-priv) · Crm(x⃗priv)”|E′|Crm|, Ecorr] · Pr[E′|Crm|, Ecorr]

Because Pr[Ecorr] = 0 by perfect correctness of the Damgård-Jurik encryption scheme,
and Pr[E′|Crm|] ≥ 1− (ns-priv+npriv+ |C×|+ |C ′×|) ·N−ε by Lemma 48, Pr[“y = C(y⃗s-priv) ·
Crm(x⃗priv)”] ≥ (1 − N−ε) · 1 − (ns-priv + npriv + |C×| + |C ′×|) · N−ε, which concludes the
proof.

Real PRF. We now no longer assume that PRF is instantiated as a truly random function.
Consider the adversary which, tasked with distinguishing outputs of PRF and a random
oracle, runs the “HSS correctness experiment” and outputs 1 if and only if correctness holds.
By security of PRF, the advantage of this adversary can be at most εPRF, and since we have
already established that correctness (respectively authenticated correctness) in the ideal world
holds with probability at least p · (1−N−ε) (respectively p), where

p :=
[
(1−N−ε)|C×| · (1− ns-priv ·N−ε − εcorr)− npriv ·N−ε

]
· (1−N−ε)|C′

×|+npriv ,
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it follows that correctness (respectively authenticated correctness) in the real world holds
with probability at least p · (1−N−ε)− εPRF (respectively p− εPRF).

A.1.2 Security against party σ = 0. We need to simulate the view of party σ = 0
using just the numbers npriv, ns-priv. We present a hybrid argument, in which the last world
the view of party 0 will depend only on these values. This last hybrid world becomes the
simulation.

H1. This is the real world. The adversary sees ek0 ← (N, cinv, kPRF, sh1,0), x
(0)
i (output by

Sharepriv) for i ∈ [npriv], and y
(0)
i (output by Share1,s-priv) for i ∈ ns-priv. Notice that the

only thing in the adversary’s view that depends on private information that the simulator
will not know are the Damgård-Jurik ciphertexts x(0)i .

H2. Notice that the only part of the adversary’s view that φ is used for is cinv
$←

DJ.EncN (φ−1 mod N ζ). Replace this with cinv
$← DJ.EncN (0). This is indistinguishable

assuming KDM security of Damgård-Jurik.
H3. Now that the secret key φ is unused, we can simulate the encryptions x(0)i

$← DJ.EncN (x)

as encryptions of zero x(0)i
$← DJ.EncN (x). This is indistinguishable by CPA security of

Damgård-Jurik (which is implied by KDM security). The adversary’s view is now being
simulated using only the number of inputs, npriv and ns-priv.

A.1.3 Security against party σ = 1. We need to simulate the view of party σ = 1
using just the numbers npriv, ns-priv of shares, and the values of the semi-private shares yi. We
present a hybrid argument, in which the last world the view of party 1 will depend only on
these values. This last hybrid world becomes the simulation.

H1. This is the real world. The adversary sees ek1 = (N, cinv, kPRF, sh1,1), x
(1)
i (output by

Sharepriv) for i ∈ [npriv], and y(1)i = (yi, shi,1) (output by Share1,s-priv) for i ∈ ns-priv.
H2. Instead of sampling shi,0

$← Z/N ζZ and setting shi,1 ← (φ · yi + shi,0) mod N ζ , sample
shi,1

$← Z/N ζZ. This is an identical distribution because shi,0 is unused.
H3. Make a similar change to sh1,1. Instead of sampling sh1,0

$← [0, N ] and setting sh1,1 ←
φ+sh1,0, sample sh1,1

$← [N, 2N ] (and sh1,1 is unused). This shifts the distribution of sh1,1
from uniform on [φ,N + φ] to uniform on [N, 2N ]. Therefore, this change has statistical
distance of

N − φ
N + 1

=
N − (pq − p− q + 1)

N + 1
=
p+ q − 1

N + 1
= O(N−

1
2 ).

where p and q are the factors of the semi-prime N , each of size roughly N
1
2 .

H4. Notice that φ is now used in only one place: cinv
$← DJ.EncN (φ−1 mod N ζ). Instead sample

cinv
$← DJ.EncN (0). This is indistinguishable assuming KDM security of Damgård-Jurik.

H5. Replace the encryptions x(1)i
$← DJ.EncN (x) with encryptions of zero x(1)i

$← DJ.EncN (0).
This is indistinguishable by CPA security of Damgård-Jurik (which is implied by KDM
security). The adversary’s view now only depends on the semi-private inputs yi, so this
hybrid is a valid simulator for the HSS security game.

A.2 From DCR

In this section, we prove theorem 22. That is, we show that fig. 9 is a Semi-Private HSS
scheme (definition 16) with linear offline/online sharing of semi-private inputs. We prove
each property of the Offline-Online HSS separately.
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A.2.1 Correctness. Let λ ∈ N be a security parameter and B ≤ 2(ζ−1−ε)·λDCR/2 a
bound, let C be an ns-priv-input circuit over Z of pebbling depth D, let Crm be a restricted-
multiplication npriv-input circuit over Z, let (ys-priv,i)i∈[ns-priv] and (xpriv,i)i∈[npriv] beB-admissible
inputs for C and Crm respectively.
Let us prove that correctness (definition 16) holds with all but negligible probability. The
proof boils down to showing that all of the comments in the pseudocode of fig. 9 (e.g.
“shauthys-priv,0

and shauthys-priv,1
are substractive shares of k0 · ys-priv over Z/N ζZ”) are invariants

holding with all but negligible probability.

Idealised PRF. For simplicity, we first consider an idealised version of the HSS scheme
of fig. 9 where PRF is replaced with a truly random function (i.e. the evaluation keys
contain the same polynomial-size random string—because PRF has a polynomial-sized
domain—instead of the short PRF key). We will later remove this restriction by a reduction
to the security of PRF.

Consider the following random variables: (where shauth|C|+|Crm|,0 and shauth|C|+|Crm|,1 are random
variables implicitly defined by Eval)

1. (sk, (ek0, ek1))
$← Setup(1λ);

2. (x
(0)
priv,i, x

(1)
priv,i)

$← Sharepriv(1
λ, sk, xpriv,i);

3. x(0)s-priv,i
$← Share0,s-priv(1

λ, sk);
4. x(1)s-priv,i

$← Share1,s-priv(1
λ, sk, ys-priv,i, st);

5. y0
$← Eval(0, ek0, (x

(0)
priv,i)

npriv

i=1 , (y
(0)
s-priv,i)

ns-priv

i=1 , C);

6. y1
$← Eval(1, ek1, (x

(1)
priv,i)

npriv

i=1 , (y
(1)
s-priv,i)

ns-priv

i=1 , (C,Crm));

7. y $← Rec(y0, y1)

Observe that if we show that Pr[y = C(y⃗s-priv) · Crm(x⃗priv)] ≥ 1 − negl(λ) then we will have
proven correctness.

Further consider all the random variables introduced by Eval (we identify the algorithmic
variables and the corresponding random variables), and consider the following events:

Ecst : “shauth1,1 − shauth1,0 = k0 · 1”

Eauth
s-priv,i : “sh

auth
s-priv,i,1 − shauths-priv,i,0 = k0 · ys-priv,i” (for i ∈ [ns-priv])

Eauth
i : “shauthi,1 − shauthi,0 = kdi · Pi(y⃗s-priv)” (for i ∈ [|C|])

E′i : “sh|C|+i,1 − sh|C|+i,0 = C(y⃗s-priv) ·Qi(x⃗priv)” (for i ∈ [|Crm|])

E′i,auth : “shauth|C|+i,1 − shauth|C|+i,0 = kd′i · C(y⃗s-priv) ·Qi(x⃗priv)” (for i ∈ [|Crm|])

where for i ∈ [ns-priv], Pi is the polynomial computed by the ith gate of C (and whose
pebbling depth we denote di), while for i ∈ [npriv], Qi is the polynomial computed by the ith

gate of Crm (and whose pebbling depth we denote d′i).

Let C+ ⊆ [|C|] denote the set of indices of the addition gates of C (i.e. i ∈ C+ iff gi is an
addition). For all i ∈ C+ we consider the events EKS

i,L and EKS
i,R

EKS
i,L : “shauth,dii,L,1 − shauth,dii,L,0 = kdi · PiL(y⃗s-priv)”

EKS
i,R : “shauth,dii,R,1 − shauth,dii,R,0 = kdi · PiR(y⃗s-priv)”

where iL and iR are the indices of the parents of gate gi, and Pi, PiL , PiR are the polynomials
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computed by gates gi, giL , giR (recall that di denotes the pebbling depth of gate gi).

Let C× ⊆ [|C|] denote the set of indices of the multiplication gates of C (i.e. i ∈ C× iff gi is
a multiplication). For all i ∈ C× we consider the events EKS

i,L and EKS
i,R

EKS
i,L : “shauth,di−1i,L,1 − shauth,di−1i,L,0 = kdi−1 · PiL(y⃗s-priv)”

EKS
i,R : “shauth,dii,R,1 − shauth,dii,R,0 = kdi · PiR(y⃗s-priv)”

where iL and iR are the indices of the parents of gate gi, and Pi, PiL , PiR are the polynomials
computed by gates gi, giL , giR (recall that di denotes the pebbling depth of gate gi).

Lemma 50. Pr[Ecst] = 1 .

Lemma 36 follows immediately from the definition of shauth0,1 and shauth0,1 .

Lemma 51. ∀i ∈ [ns-priv],Pr[E
auth
s-priv,i] ≥ 1−N−ε .

Proof of Lemma 51. By definition of the shauths-priv,i,1 (i ∈ [ns-priv]) the following relation
holds with probability 1:

∀i ∈ [ns-priv], sh
auth
s-priv,i,1 − shauths-priv,i,0 ≡ k0 · ys-priv,i mod N ζ

Because the offline inputs are all B-admissible, and because k0 ·B ·B ≤ N ·B = N ζ−ε <
< N ζ , we get the desired results by invoking Lemma 9 (because the shauths-priv,i,0 , shpriv,j,0,
and shauthpriv,j,0 are sampled uniformly at random from Z/N ζZ).

Lemma 52. Let i ∈ [|C|]. If gi (the ith gate of C) is the constant gate then Pr[Eauth
i ] = 1 .

Proof of Lemma 52. If gi is the constant gate 1, then by definition Eauth
i ≡ Ecst so

Pr[Eauth
i ] = 1 by Lemma 50.

Lemma 53. Let i ∈ [|C|]. If gi (the ith gate of C) is the jth input then Pr[Eauth
i |Eauth

s-priv,j ] = 1 .

Proof of Lemma 53. If gi is the jth input gate ys-priv,j , then by definition Eauth
i ≡ Eauth

s-priv,j

so Pr[Eauth
i |Eauth

s-priv,j ] = 1 because any event is certain when conditioned on itself.

Lemma 54. Let i ∈ [|C|]. If gi (the ith gate of C) is a scalar multiplication with parent gj,
then Pr[Eauth

i |Eauth
j ] = 1 .

Proof of Lemma 54. If gi is the scalar multiplication ·α with predecessor gj , note that by
definition of the pebbling depth gj and gi have the same pebbling depth di. Therefore,
conditioned on Ej :

shauthi,1 − shauthi,0 = α · shauthj,1 − α · shauthj,0

= α · (shauthj,1 − shauthj,0 )

= α · kdi · Pj(y⃗s-priv)

= kdi · Pi(y⃗s-priv)

Therefore Pr[Eauth
i |Eauth

j ] = 1.

Lemma 55. For all i ∈ C+, if the parents of (the addition) gi are giL and giR ,
Pr[EKS

i,L|Eauth
iL

] ≥ 1 − (di − diL) · N−ε and Pr[EKS
i,R|Eauth

iR
] ≥ 1 − (di − diR) · N−ε (where

iL and iR are the indices of the parents of multiplication gi, and di, diL , diR are the pebbling
depths of gi, giL , giR).
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Proof of Lemma 55. Let i ∈ C+, and let iL and iR be the indices of the parents of addition
gi. Let di, diL , diR be the pebbling depths of gi, giL , giR . By definition, shiL,1 − shiL,0 =
PiL(y⃗s-priv) and shiR,1 − shiR,0 = PiR(y⃗s-priv), so, by Lemma 21:

Pr
[
shauth,diiL,1

− shauth,diiL,0
= kdi · PiL(y⃗s-priv)|E

auth
iL

]
≥ 1− (di − diL) ·N

−ε

Pr
[
shauth,diiR,1 − shauth,diiR,0 = kdi · PiR(y⃗s-priv)|E

auth
iR

]
≥ 1− (di − diR) ·N

−ε .

Lemma 56. For all i ∈ C+, Pr[Eauth
i |EKS

i,L, E
KS
i,R] = 1 .

Proof of Lemma 56. Let i ∈ C+. If EKS
i,L and EKS

i,R then

shauthi,1 − shauthi,0 = (shauth,diiR,1 + shauth,diiL,1
)− (shauth,diiR,0 + shauth,diiL,0

)

= (shauth,diiL,1
− shauth,diiL,0

) + (shauth,diiR,1 − shauth,diiR,0 )

= kdi · PiL(y⃗s-priv) + kdi · PiR(y⃗s-priv)

= kdi · Pi(y⃗s-priv)

Lemma 57. For all i ∈ C×, Pr[EKS
i,L|Eauth

iL
] ≥ 1− (di − diL − 1) ·N−ε and Pr[EKS

i,R|Eauth
iR

] ≥
1− (di − diR) ·N−ε (where iL and iR are the indices of the parents of multiplication gi, and
di, diL , diR are the pebbling depths of gi, giL , giR).

Proof of Lemma 57. By definition, shiL,1 − shiL,0 = PiL(y⃗s-priv) and shiR,1 − shiR,0 =
PiR(y⃗s-priv), so, by Lemma 21:

Pr
[
shauth,di−1iL,1

− shauth,di−1iL,0
= kdi−1 · PiL(y⃗s-priv)|E

auth
iL

]
≥ 1− (di − 1− diL) ·N

−ε

Pr
[
shauth,diiR,1 − shauth,diiR,0 = kdi · PiR(y⃗s-priv)|E

auth
iR

]
≥ 1− (di − diR) ·N

−ε .

Lemma 58. For all i ∈ C×, Pr[Ei|EKS
i,L, E

KS
i,R, Ecorr] ≥ 1−N−ε .

Proof of Lemma 58. Let i ∈ [|C|] such that gi is a multiplication gate whose two operands
are giL and giR (with iL, iR < i). Denote PiL and PiR the polynomials computed by giL
and giR respectively. By core lemma 1, conditioned on EKS

iL
, EKS

iR
, and Ecorr:[

− DDLog

(
(cdi−1)

PiL
(y⃗s-priv)·PiR

(y⃗s-priv) + (hi)
PiL

(y⃗s-priv)·sh
auth,di
i,R,1

+ (hi+1)
PiR

(y⃗s-priv)·sh
auth,di−1
i,L,1 + g−sh

auth,di−1
i,L,1 ·shauth,dii,R,1

)]
−
[
−DDLog

(
g−sh

auth,di−1
i,L,0 ·shauth,dii,R,0

)]
≡ kdi · Pi(y⃗s-priv) mod N ζ

We conclude, by Lemma 9 (because kdi · Pi(y⃗s-priv) ≤ N · B ≤ N ζ−ε), that
Pr

[
Ei|EKS

iL
, EKS

iR
, Ecorr

]
≥ 1−N−ε.

Lemma 59. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is the constant gate 1, then Pr[E′i] = 1
and Pr[E′i,auth|E|C|] = 1 .
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Lemma 59 follows immediately from the definitions of sh|C|+i,1, sh|C|+i,0, shauth|C|+i,1, and
shauth|C|+i,0.

Lemma 60. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is the addition of gates g′iL and g′iR ,
then Pr[E′i|E′iL , E

′
iR
] = 1 and Pr[E′i,auth|E′iL,auth, E

′
iR,auth] = 1 .

Proof of Lemma 60. Conditioned on E′iL and E′iR ,

sh|C|+i,1 − sh|C|+i,0 = (sh|C|+iL,1 + sh|C|+iR,1)− (sh|C|+iL,0 + sh|C|+iR,0)

= (sh|C|+iL,1 − sh|C|+iL,0) + (sh|C|+iR,1 − sh|C|+iR,0)

= C(y⃗s-priv) · PiL(x⃗priv) + C(y⃗s-priv) · PiR(x⃗priv)
= C(y⃗s-priv) · (PiL + PiR)(x⃗priv)
= C(y⃗s-priv) · Pi(x⃗priv)

and therefore Pr[E′i|E′iL , E
′
iR
] = 1.

Similarly, conditioned on E′iL,auth and E′iR,auth,

shauth|C|+i,1 − shauth|C|+i,0 = (shauth|C|+iL,1
+ shauth|C|+iR,1)− (shauth|C|+iL,0

+ shauth|C|+iR,0)

= (shauth|C|+iL,1
− shauth|C|+iL,0

) + (shauth|C|+iR,1 − shauth|C|+iR,0)

= kD · C(y⃗s-priv) · PiL(x⃗priv) + kD · C(y⃗s-priv) · PiR(x⃗priv)
= kD · C(y⃗s-priv) · (PiL + PiR)(x⃗priv)
= kD · C(y⃗s-priv) · Pi(x⃗priv)

and therefore Pr[E′i,auth|E′iL,auth, E
′
iR,auth] = 1.

Lemma 61. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is a scalar multiplication gate with
parent g′j, then Pr[E′i|E′j ] = 1 and Pr[E′i,auth|E′j ] = 1 .

Proof of Lemma 61. Conditioned on E′j ,

sh|C|+i,1 − sh|C|+i,0 = (α · sh|C|+j,1)− (α · sh|C|+j,0)

= α · (sh|C|+j,1 − sh|C|+j,0)

= α · C(y⃗s-priv) · Pj(x⃗priv)
= C(y⃗s-priv) · (α · Pj)(x⃗priv)
= C(y⃗s-priv) · Pi(x⃗priv)

and therefore Pr[E′i|E′iL , E
′
iR
] = 1.

Similarly, conditioned on E′j,auth,

shauth|C|+i,1 − shauth|C|+i,0 = (α · shauth|C|+j,1)− (α · shauth|C|+j,0)

= α · (shauth|C|+j,1 − shauth|C|+j,0)

= α · kD · C(y⃗s-priv) · Pj(x⃗priv)
= kD · C(y⃗s-priv) · (α · Pj)(x⃗priv)
= kD · C(y⃗s-priv) · Pi(x⃗priv)

and therefore Pr[E′i,auth|E′j,auth] = 1.

Lemma 62. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is the jth input gate, then Pr[E′i|E|C|] ≥
1−N−ε and Pr[E′i,auth|E|C|] ≥ 1−N−ε .
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Proof of Lemma 62. By Lemma 8, conditioned on E|C|,

DDLog((c
shauth|C|,1
j,0 ) · (c

shauth|C|,1
j,1 ))− DDLog((c

shauth|C|,0
j,0 ) · (c

shauth|C|,0
j,1 )) ≡ C(y⃗s-priv) · xpriv,j mod [N ζ ]

and

DDLog(((cauthj,0 )
shauth|C|,1) · ((cauthj,1 )

shauth|C|,1))

− DDLog(((cauthj,0 )
shauth|C|,0) · ((cauthj,1 )

shauth|C|,0)) ≡ kD · C(y⃗s-priv) · xpriv,j mod [N ζ ]

Because C(y⃗s-priv) · xpriv,j , kD · C(y⃗s-priv) · xpriv,j ≤ N · B2 ≤ N ζ−ε, the desired results
therefore follow from Lemma 9.

Lemma 63. Let i ∈ [|Crm|]. If g′i (the ith gate of Crm) is a multiplication of the jth input
gate and gate g′iR , then Pr[E′i|E′j , E|C|+iR ] ≥ 1−N−ε and Pr[E′i,auth|E′j , E|C|+iR ] ≥ 1−N−ε .

Proof of Lemma 63. By Lemma 8, conditioned on E|C|+iR ,

DDLog((c
shauth|C|+iR,1

j,0 )·(c
shauth|C|+iR,1

j,1 ))−DDLog((c
shauth|C|+iR,0

j,0 )·(c
shauth|C|+iR,0

j,1 )) ≡ C(y⃗s-priv)·PiR(x⃗priv) mod [N ζ ]

and

DDLog(((cauthj,0 )
shauth|C|+iR,1) · ((cauthj,1 )

shauth|C|+iR,1))

− DDLog(((cauthj,0 )
shauth|C|+iR,0) · ((cauthj,1 )

shauth|C|+iR,0)) ≡ kD · C(y⃗s-priv) · PiR(x⃗priv) mod [N ζ ]

Because C(y⃗s-priv) · PiR(x⃗priv), kD · C(y⃗s-priv) · PiR(x⃗priv) ≤ N · B2 ≤ N ζ−ε, the desired
results therefore follow from Lemma 9.

Lemma 64. Correctness with an idealised PRF ( i.e. the event “y = C(y⃗s-priv) · Crm(x⃗priv)”)
holds with all but negligible probability.

Proof of Lemma 64. The proof is completely analogous to
that of Lemma 48. We first rename/order the events
Ecst, E

auth
s-priv,1, . . . , E

auth
s-priv,ns-priv

, Eauth
1 , . . . , Eauth

|C| , E
′
1, E

′
1,auth, . . . , E

′
|Crm|, E

′
|Crm|,auth as

A1, . . . , Ans-priv+|C|+2|Crm|+1.

Pr[E′|Crm|] ≥ 1−
ns-priv+|C|+2|Crm|+1∑

i=1

Pr[Ai ∩
⋂

1≤j<i

Aj ]

Note that:

– If i = 1, Pr[Ai ∩
⋂

1≤j<iAj ] is negligible by Lemma 50.
– If 2 ≤ i ≤ ns-priv + 1, Pr[Ai ∩

⋂
1≤j<iAj ] is negligible by Lemma 51.

– If 2+ns-priv+1 ≤ n ≤ 2+ns-priv+ |C|, Pr[Ai∩
⋂

1≤j<iAj ] is negligible by Lemmata 52
to 58 (the precise lemmata to be invoked depend on the nature of the ith gate of C).

– If 2+ns-priv + |C|+1 ≤ n ≤ 2+ns-priv + |C|+2|Crm|, Pr[Ai ∩
⋂

1≤j<iAj ] is negligible
by Lemmata 59 to 63 (the precise lemmata to be invoked depend on the nature of
the ith gate of Crm).

Therefore there is a negligible function negl such that Pr[E′|Crm|,auth] ≥ 1− negl.
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Real PRF. We now no longer assume that PRF is instantiated as a truly random function.
Consider the adversary which, tasked with distinguishing outputs of PRF and a random
oracle, runs the “HSS correctness experiment” and outputs 1 if and only if correctness holds.
By security of PRF, the advantage of this adversary can be at most εPRF, and since we have
already established that correctness (respectively authenticated correctness) in the ideal world
holds with probability at least p · (1 − N−ε) (respectively p), where p = 1 − negl, it follows
that correctness (respectively authenticated correctness) in the real world holds with all but
negligible probability.

A.2.2 Key-switching security.

Lemma 20. Let N $← RSA.Gen(1λ), g $← (Z/N ζ+1Z)×, x, y $← [0, N) and r
$← [0, N ζ).

Then, the distributions

(N, g, gx, gy, gxy · exp(y)) and (N, g, gx, gy, gxy · exp(r))

are computationally indistinguishable under the DCR assumption.

Proof. We give a hybrid proof, starting from the real distribution (N, g, gx, gy, gxy · exp(y)).

H1. Let gN = gN
ζ . Use DCR to replace g with gN in the distribution. 5

H2. Sample x $← [0, 2λN ζ+1) instead of x $← [0, N). This is indistinguishable because x is
only used in the exponent of gN , which has order dividing φ, and both distributions have
x mod φ statistically indistinguishable from uniform. x $← [0, N) can be divided into x ∈
[0, φ), where x mod φ is uniform, and x ∈ [φ,N), which has negligible probability N−φ

N <
p+q
N = O(N−

1
2 ). Here, p and q are the prime factors of N , which are roughly of order N

1
2 .

Similarly, x $← [0, 2λN ζ+1) can be divided into x ∈ [0, 2λN ζ+1− (2λN ζ+1 mod φ)), where
x mod φ is uniform, and x ∈ [2λN ζ+1 − (2λN ζ+1 mod φ), 2λN ζ+1), which has negligible
probability less than φ

2λNζ+1 < 2−λ.
H3. Set gN = gN

ζ
exp(1). By DCR, both distributions for gN are indistinguishable from

uniform.
H4. Let d = φ(φ−1 mod N ζ), and replace x with x−d. This has statistical distance d

2λNζ+1 <
2−secpar. We can then simplify using

gx−dN = gxNg
−d
N = gxN (gN

ζ
exp(1))−d = gxN exp(−d) = gxN exp(−1),

since gNζ has order dividing φ | d, and d ≡ 1 mod N ζ . Therefore, g(x−d)yN · exp(y) =
gxyN · exp(−y) · exp(y) = gxyN . The distribution is now (N, gN , g

x
N exp(−1), gyN , g

xy
N ).

H5. Use DCR to set gN back to gNζ .
H6. Sample y $← [0, 2λN ζ+1) instead of y $← [0, N). This is indistinguishable by the same

argument as H2.
H7. Use DCR to again set gN to gNζ

exp(1).
H8. Replace x by x + d, and simplify using gx+d

N = gxN exp(1). This is statistically indistin-
guishable, same as H4. The distribution is now (N, gN , g

x
N , g

y
N , g

xy
N exp(y)).

H9. DCR to again set gN back to gNζ . We’re essentially back at H1, except that x and y are
now sampled uniformly from [0, 2λN ζ+1) instead of [0, N).

5 While this is only directly DCR when ζ = 1, the assumption is equivalent to a version where ζ is any
poly(λ). [DJ01]
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H10. y is used in two places: in the exponent of gyN , and in exp(y). The former only depends
on y mod φ, while the latter only depends on y mod N ζ . Since y mod φN ζ has statistical
distance at most φNζ

2λNζ+1 < 2−λ from uniform, we can use CRT to replace y with two
variables: y $← [0, φ) used for gyN , and r

$← N ζ used for exp(r). The distribution is now
(N, gN , g

x
N , g

y
N , g

xy
N exp(r)).

H11. Replace x $← [0, 2λN ζ+1) and y
$← [0, φ) by x, y $← [0, N). This is indistinguishable by a

similar argument to H1.
H12. Use DCR to change replace gN with g. We are now at the random distribution.

A.2.3 Security against party σ = 0. We need to simulate the view of party σ = 0
using just the numbers npriv, ns-priv. We present a sequnece of hybrids, starting from the real
world, and ending in world where the view of party 0 will depend only on these values. This
last world becomes the simulation.

H1. This is the real world. The adversary sees ek0 ← (N, g, (hi)
D
i=1, (ci)

D−1
i=0 , sh

auth
1,0 , kPRF), x

(0)
i

(output by Sharepriv) for i ∈ [npriv], and y
(0)
i (output by Share1,s-priv) for i ∈ ns-priv. Note

that HSS.Share0,s-priv is not provided yi as an input, so the only thing that depends on
private information is the ciphertexts x(0)i = (cxi , c

auth
xi

), so this is what we must show can
be simulated.

H2. Perform a sequence of hybrids H0
2 . . . ,HD

2 . Let H0
2 = H1 be the real world and let

H2 = HD
2 . In the change from Hi

2 to Hi+1
2 , we replace ci ← gkiki+1 · exp(ki+1) with

ci ← gkiki+1 · exp(ri+1), where ri+1
$← [0, N ζ). Finally, in HD

2 = H2 we have set every
ci = gkiki+1 · exp(ri+1).
We show for all i that the change from Hi

2 to Hi+1
2 is indistinguishable, by reduction

to Lemma 20. Let A = gx, B = gy, C = gxy exp(y) in the challenge from Lemma 20.
Set ci ← C, hi = A, and hi+1 = B. Sample all kj for j /∈ {i, i + 1} as normal, and
compute hj as normal. Also compute cj for j /∈ [i− 1, i+ 1] as normal, using rj+1 when
j < i. Finally, we have to compute ci−1 and ci+1, which depend on the challenge keys
x = ki and y = ki+1. We can compute these just given A and B: ci−1 = Aki−1 exp(ri)
and ci+1 = Bki+2 exp(ki+2). These are the only places where ki and ki+1 are used in the
adversary’s view. Therefore, a distinguisher for Hi

2 and Hi+1
2 implies a distinguisher for

the real and random distributions in Lemma 20.
H3. Now, the only use of kD in the adversry view is to compute the public keys hD = gkD

and cD−1 = gkD−1kD exp(rD), and to compute the private share ciphertexts cauthxi

$←
DJE.EncpkD(kD ·xi). Note that hD is a standard Damgård-Jurik-ElGamal public key, while
cD−1 can be computed from hD, kD−1, and exp(rD). Therefore, we can use KDM security
(theorem 6) to replace cauthxi

$← DJE.EncpkD(kD · x) with encryptions of uniformly random
plaintexts. Simultainously, we replace cxi

$← DJE.EncpkD(xi) with more encryptions of a
random plaintexts.
The distribution is now independent of all private inputs xi, and indeed of everything the
HSS security simulator is not given. Therefore, we can view the adversary’s view in this
hybrid as the simulator.

A.2.4 Semi-private security against party σ = 1. We need to simulate the view of
party σ = 1 using just the numbers npriv, ns-priv, and the values of the semi-private shares yi.
We present a sequnece of hybrids, starting from the real world, and ending in world where
the view of party 1 will depend only on these values. This last world becomes the simulation.

H1. This is the real world. The adversary sees ek1 ← (N, g, (hi)
D
i=1, (ci)

D−1
i=0 , sh

auth
1,1 , kPRF), x

(1)
i
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(output by Sharepriv) for i ∈ [npriv], and y
(1)
i = (yi, sh

auth
s-priv,i,1) (output by Share1,s-priv) for

i ∈ ns-priv.
H2. Instead of sampling shauths-priv,i,0

$← Z/N ζZ in HSS.Share0,s-priv and setting shauths-priv,i,1) ←
(k0 · yi + shauths-priv,i,0) mod N ζ in HSS.Share1,s-priv, sample shauths-priv,i,1

$← Z/N ζZ and set
shauths-priv,i,0)← (−k0 · yi + shauths-priv,i,0) mod N ζ . This is an identical distribution.

H3. Make a similar change to shauth1,0 and shauth1,1 . Instead of sampling shauth1,0
$← Z/N ζZ and

setting shauth1,1 ← (k0 + shauth1,0 ) mod N ζ , sample shauth1,1
$← Z/N ζZ and set shauth1,0 ← (−k0 +

shauth1,0 ) mod N ζ . Again, this is an identical distribution.
H4. Notice that the adversary’s view (other than yj) is essentially the same as it would if

party σ = 0 were corrupted instead. That is, the real distribution for ek0 is the same as
the previous hybrid’s distribution for ek1, the private input ciphertexts are equal always
(x(0)i = x

(1)
i ), and the real distribution for shs-priv,i,0 is the same as the previous hybrid’s

distribution for shs-priv,i,1. Therefore, we can replace all of these by a simulation that
depends on only npriv and ns-priv, by security against σ = 0 proven in the previous section.
Putting these together with the semi-private inputs yi revealed to the simulator, this gives
a simulation of the σ = 1 adversary’s view.

B Deferred Material on Masking

We now present two instantiations of admissible masking schemes for our garbling scheme.

B.0.1 Boolean Truth Tables First, we consider arbitrary boolean gates with ℓ =
O(log(s)) inputs, i.e., truth tables of size poly(s). We now show that a simple XOR masking
scheme is admissible with these wide-gates.

K = X = Y = {0, 1} Maskk(x) = k ⊕ x UnMaskk(y) = k ⊕ y (4)

Lemma 65. The XOR masking scheme (eq. (4)) and size poly(s) boolean truth tables are
admissible for RMS⊗ VP.

Proof. Need to be able to evaluate a masked version of any arbitrary truth table T [x1, . . . , xℓ]
on ℓ = O(log(s)) bits. That is, we need to write

(k1, . . . , kℓ, k
′, y1, . . . , yℓ) 7→ T [k1 ⊕ y1, . . . , kℓ ⊕ yℓ]⊕ k′

as an RMS⊗ VP circuit over Z:

2ℓ−1∑
i=0

Fi(k1, . . . , kℓ, k
′)Gi(y1, . . . , yℓ).

We do this by setting

Fi = T [k1 ⊕ i1, . . . , kℓ ⊕ iℓ]⊕ k′ Gi = (1⊕ i1 ⊕ y1) · · · (1⊕ iℓ ⊕ yℓ),

where (i1, . . . , iℓ) are the bits of the ℓ-bit integer i. That is, Fi computes the masked truth
table on input y = i, while Gi computes 1 if x = i and 0 otherwise. Here, we have used that
any truth table on logarithmically many inputs can be evaluated by a polynomial-sized RMS
program.
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B.0.2 Multivariate Polynomials Next, we consider rate-1 garbling of arithmetic circuits
with plaintext values in some bounded subset [−B,B] of Z, à la [MORS24]. Since both the
HSS and arithmetic circuit are defined over Z, we use additive masking over Z.

K = [B,B + 2B(2λ − 1)]

X = [−B,B] Maskk(x) = x+ k

Y = [0, 2B 2λ] UnMaskk(y) = y − k
(5)

Because Z is infinite, we have to make the set of masks K much wider than the set of plaintext
values X , and even then we only get statistical privacy. Note that while the masked values
are bigger than the unmasked ones, the rate log2(B)

log2(B)+λ approaches 1 if log2 = ω(λ).

Lemma 66. Additive masking (eq. (5)) is a one-time private masking scheme (definition 24).

Proof. Let the simulator sample y $← Y. For all x ∈ [−B,B], the only time when y is more
likely to be sampled as y $← Y than as y ← Maskk(x) is when y /∈ K + x. Therefore, the
statistical distance from the simulation is

Pr
y

$←Y
[y /∈ K + x] =

2B2λ + 1− 2B(2λ − 1)− 1

2B2λ + 1
=

2B

2B2λ + 1
< 2−λ.

Next, we must show admissibility together with a class of wide-gates. Following [Cou19,
BCM23], we choose our wide-gate class to be log(s)-degree multivariate polynomials that can
be written explicitly with poly(s) monomials.

Lemma 67. Additive masking, together with the class of gates that can evaluate any polyno-
mial p with degree log(s) and poly(s) monomials, is admissible for RMS⊗ VP. That is,

(k1, . . . , kℓ, k
′, y1, . . . , yℓ) 7→ T [y1 − k1, . . . , yℓ − kℓ] + k′

can be written as an RMS⊗ VP circuit

r∑
i=1

Fi(k1, . . . , kℓ, k
′)Gi(y1, . . . , yℓ)

for some circuits Fi, Gi, and r = poly(s).

Proof. Because in the end we get to sum over polynomially many terms, we only need to
prove the case where p is a single monomial xi1xi2 · · ·xilog(s) .6 Setting xij = UnMaskkij (yij )

and expanding, we get

xi1xi2 · · ·xilog(s) =
∑

t1,...,tlog(s)∈{0,1}

(−ki1)1−ti1 · · · (−kilog(s))
1−tlog(s) · yti1i1

· · · ytlog(s)ilog(s)
.

This is a sum of 2log(s) = poly(s) terms, and each is a product of a monomial in k and a
monomial in y. Therefore, p can be written as an RMS⊗ VP circuit.

6 With the indices allowed to repeat.
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