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Abstract. The present article is a natural extension of the previous
one [17] about the GLV method of accelerating a (multi-)scalar multi-
plication on elliptic curves of moderate CM discriminants D < 0. In
comparison with the first article, much greater magnitudes of D (in ab-
solute value) are achieved, although the base finite fields of the curves
have to be pretty large. This becomes feasible by resorting to quite pow-
erful algorithmic tools developed primarily in the context of lattice-based
and isogeny-based cryptography. Curiously, pre-quantum cryptography
borrows research outcomes obtained when seeking conversely quantum-
resistant solutions or attacks on them.

For instance, some 2-cycle of pairing-friendly MNT curves (with −D ≈
100,000,000, i.e., log2(−D) ≈ 26.5) is relevant for the result of the current
article (as opposed to [17]). The given 2-cycle was generated at one time
by Guillevic to provide ≈ 128 security bits, hence it was close to applica-
tion in real-world zk-SNARKs. Another more performant MNT 2-cycle
(with slightly smaller security level, but with much larger D) was really
employed in the protocol Coda (now Mina) until zero-knowledge proof
systems on significantly faster pairing-free (or half-pairing) 2-cycles were
invented. It is also shown in the given work that more lollipop curves,
recently proposed by Costello and Korpal to replace MNT ones, are now
covered by the GLV technique.
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1 Introduction

In 2025, ECC (elliptic curve cryptography) celebrates 40 glorious years of its
development, which is a sufficient term to be sure in its reliability and efficiency.
An excellent recent survey of ECC is given in the treatise [7] updating and
extending its older web version [6]. The most important operation in this kind
of cryptography is scalar multiplication. Sometimes, it can be sped up by the
GLV (Gallant–Lambert–Vanstone) technique [12]. To avoid repetitions, let’s omit
here its standard explanation. The only additional comment is that the GLV
method is inherently extended to MSM (multi-scalar multiplication) with N
“basis” curve points instead of a unique one. However, the method in fact remains
useful whenever the number N is moderate, that is, its benefit fades as N → ∞
as justified in [22, Section 4.2].

This article is essentially founded on the first one [17], hence with the reader’s
permission, we will stick to the majority of its notions and notation. The most
basic of them will be nonetheless repeated where appropriate. As a consequence,
we immediately proceed to technical description of the given work. Its objective
is to systemize the anterior result. As it will be shown, the new insight enables
to efficiently implement the GLV approach on certain elliptic curves for which
[17] in its original form does not cope with.

As usual, let E : y2 = x3 + a4x+ a6 be an ordinary (i.e., non-supersingular)
Weierstrass curve over a finite field Fq of large characteristic. Recall that the
GLV method needs a quick non-scalar Fq-endomorphism ϕ on E. In a nutshell,
the approach of [17] suggests for the role of ϕ the composition of m isogenies
ϕj : Ej → Ej+1 (where E = E1 = Em+1) also defined over Fq and of the same
(prime) degree w. Thereby, ϕ is evaluated at points of E via the sequential
application of ϕj . The obstacle is that for the huge m, the isogeny loop becomes
too long and hence ϕ is no longer a cheap endomorphism even if w is itself small.
As a generalization, the present article aims to establish shorter isogeny loops
admitting the variable degrees deg(ϕj) that still do not exceed some modest
bound.

As well as in the previous article, we will deal exclusively with elliptic curves
E of fundamental CM (complex multiplication) discriminants D < 0 to cir-
cumvent redundant complications. The set of all such curves constitutes the
so-called crater (or surface). The central instrument for us is the ideal (or form)
class group Cl of finite order h and its regular action on the crater. The ele-
ments of Cl can be either full ideal (form) equivalence classes or their canonical
representatives, namely reduced ideals (binary quadratic forms) of discriminant
D. To be definite, let’s operate with reduced forms. In [17], the isogenies ϕj

are derived with the help of the successive action by such an m-order form
f = (w,w′, w′′) = wx2 + w′xy + w′′y2, where D = (w′)2 − 4ww′′, starting with
E. In this language, w is nothing but the norm of (the ideal associated with) f .

Unfortunately, for the sufficiently big D, the group Cl may not have an
element such that its parameters m, w are both little and the resulting endo-
morphism ϕ is non-scalar. To mitigate this situation, it is logical to pick in Cl a
few distinct reduced forms of bounded norms, eliminating (severe) conditions on
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their orders. We will find out how to choose the forms (and in what quantities)
more optimally given D. In a nutshell, it is proposed to resolve a specific in-
stance of the small-dimensional SVP (shortest vector problem) approximated in
a satisfactory manner. By the way, the GLV method is itself founded on solving
the approximated CVP (closest vector problem) in another 2-rank lattice.

2 Relation lattices and weighted norms

Fix n pairwise-different reduced forms fi ∈ Cl of norms wi ∈ N. To be definite,
suppose that the forms generate Cl, albeit they should be dependent as far as
possible. Otherwise, the material of this section becomes degenerated and hence
meaningless for our goals. Consider the group homomorphism

Zn → Cl v = (vi)
n
i=1 7→

n∏
i=1

fvi
i .

Its kernel L is known as relation (or period) lattice. Since Zn/L ≃ Cl, we deal
with a full-rank sublattice of index (Zn : L) = h. It is appropriate to say that
the identity of the group Cl is the form f0 = (1, w′

0, dmin) for which w′
0 ∈ {0, 1}.

Let’s introduce the weighted 1-norm

ℓ1w : Zn → N v 7→
n∑

i=1

wi|vi|,

where the weight vector w := (wi)
n
i=1. It is a logical generalization of the classical

1-norm ℓ1 when w is the unit vector, i.e., all wi = 1. The function ℓ1w is actually
a norm in the strict sense of [20, Section XII.2], but it is not a quadratic form
on Zn. The “closest” one to ℓ1w is the weighted form

Qw : Zn → N v 7→
n∑

i=1

wiv
2
i .

To complete the picture, we lack the weighted 2-norm ℓ2w(v) :=
√
Qw(v). Notice

that Qw is the standard quadratic form Q when all wi = 1 and thereby ℓ2(v) :=√
Q(v) is the usual 2-norm. The Gram matrix of the form Qw is the diagonal

matrix W with the vector w on the main diagonal. In particular, the Gram
matrix of Q is the unit matrix In. Besides, we see that ℓ1w(v) = ℓ1(Wv).

The norms ℓ1, ℓ2 are known to be equivalent. By virtue of [23, Theorem
2.14.2.1], the same statement holds for the general w. Even though we will not
leverage this statement directly, it will not hurt to formulate it as the next lemma
to better perceive the relationship between ℓ1w, ℓ

2
w (and so between ℓ1w, Qw).

Lemma 1. For every v ∈ Zn, we have the inequality sequence

ℓ1w(v)√
c

⩽ ℓ2w(v) ⩽ ℓ1w(v) ⩽
√
c · ℓ2w(v),
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that is,
ℓ1w(v)

2

c
⩽ Qw(v) ⩽ ℓ1w(v)

2 ⩽ c ·Qw(v),

where c := ℓ1(w). Thus, the norms ℓ1w, ℓ
2
w are equivalent regardless of w ∈ Nn.

Let v = (vi)
n
i=1 ∈ Zn and j =

∑i−1
i′=1 |vi′ | + j′, where 1 ⩽ j′ ⩽ |vi|. Denote

by ϕj : Ej → Ej+1 the Fq-isogeny derived from the action of the form fi on the
elliptic curve Ej , starting with E1 = E. Note that m := ℓ1(v) is the length of the
isogeny chain. By definition of L, the vector v ∈ L if and only if

∏n
i=1 f

vi
i = f0.

In turn, this condition is necessary and sufficient for ϕ := ϕm ◦ . . . ◦ ϕ1 to be
an endomorphism on E or, equivalently, Em+1 = E as we want. In addition, it
is needed to guarantee that ϕ ∈ End(E) is non-scalar. In particular, this holds

whenever d := deg(ϕ) =
∏n

i=1 w
|vi|
i is not a square in Z, which is often met.

Hereafter, the norms wi are assumed to be little primes, although nothing
is required for the orders of fi. The shortest vectors (with respect to ℓ1w) of the
lattice L precisely correspond to the fastest isogeny loops of the curve E, at least
if solely the forms fi are at our disposal. Indeed, the number of multiplications in
Fq for evaluating (in projective coordinates) any isogeny obtained by fi amounts
to ≈ 7.5wi as explained in [17, Section 2.2]. Consequently, the cost of ϕ is equal
to ≈ 7.5 · ℓ1w(v) field multiplications. By the way, in a similar context the norm
ℓ1w is already encountered in [25].

We come to a famous lattice problem of computing a fairly short vector.
Nonetheless, it is not expected to be one of the shortest vectors in L, because
the latter may give rise to scalar endomorphisms on E. The rank n will be small
in the further examples, so we can benefit from widespread (but exponential-
time in n) lattice algorithms such as LLL (Lenstra–Lenstra–Lovász) [21, Section
1]. On the one hand, the computer algebra systems Magma and Sage, preferred
by the authors, apparently do not enable to return a short vector with respect
to a norm unlike a quadratic form. On the other hand, Magma provides the
functionality in selecting a more desirable form than the standard one Q. As an
approximation, it is thus reasonable for us to operate with the function Qw less
exact than ℓ1w, but more exact than Q.

3 Examples

It is time to illustrate the article idea in several elliptic curves E/Fq of moderate
fundamental CM discriminants D from the cryptographic literature. Table 1 (cf.
[17, Table 1]) contains main parameters associated with E as well as with D
and interesting for us. Inter alia, e := ⌈log2(q)⌉ and ℓ := ⌈log2(r)⌉, where r is
the order of a cryptographically strong subgroup G ⊂ E(Fq). Each curve will be
separately discussed below. As a supplementary source, they (along with suitable
Fq-isogenous curves) are implemented in Sage on the web page [18]. Besides, it
stores Magma code allowing to instantly verify the tables of this section.

Tables 2, 3 (cf. [17, Table 2]) demonstrate all (up to inversion in Cl) the
reduced binary quadratic forms fi of prime norms < 150 and < 50 (apart from
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Curve Reference e ℓ D ⌈log2(−D)⌉ Cl

MNT curves [14]
753 −331787862733683 49 Z/2× Z/1335648

992 −95718723 27 Z/2× Z/784

lollipop curve [10, Section 5] 956 451 −160807944 28 (Z/2)3 × Z/632

Table 1. Certain curves (remarkable for ECC) of moderate fundamental CM discrim-
inants D and their derived parameters

the identity f0) for the curves MNT-753 and MNT-992, lollipop-956-451, re-
spectively. The bounds 150 and 50 were chosen manually as round numbers. If
desired, the reader can play by choosing the other bounds. The authors tried 200
and 100 as an alternative, but this led to nothing new, that is, the next tables
remained unchanged.

Denote by {ui}ni=1 the standard basis of Zn. Tables 2, 3 help to construct the
relation lattice L, namely one {bi}ni=1 of its long bases. To be definite, let’s ex-
plain this in the case of MNT-753. For the others, there is no principal difference,
hence the details are omitted. As is seen in the table, the forms f2, f10 (of orders
2 and h10 := h/2, respectively) are picked as a basis of the group Cl. By defini-
tion, the remaining forms are uniquely expressed via them. If fi = fe2

2 fe10
10 , where

e2 ∈ Z/2 and e10 ∈ Z/h10, then the corresponding vector bi := ui+e2u2−e10u10

for i ̸∈ {0, 2, 10}. In turn, b2 := 2u2 and b10 := h10u10. It is worth saying that
Magma automatically returns an LLL-reduced basis of L once {bi}ni=1 is in-
putted. Curiously, in [8, Section 3] the class group structure (for the CSIDH-512
parameter set) is conversely found through establishing a lot of non-trivial rela-
tions in the 74-rank relation lattice. Note that ⌈log2(h)⌉ = 256 in this situation,
being the largest determined class group of fundamental discriminant to the
authors’ knowledge.

Table 4 exhibits fairly short vectors s = (si)
n
i=1 ∈ L (and the related forms

in Cl) with respect to the weighted norm ℓ1w. For comparison, the values of the
weighted quadratic form Qw are equally included in the given table. The vectors
s are obtained by brute force over the ball B := {v ∈ L | Qw(v) ⩽ R} for some
round radius R ∈ N. Once again, Magma (as well as Sage) does not possess an
intrinsic outputting a vector short in terms of ℓ1w rather than Qw. Meanwhile,
the inequalities from Lemma 1 do not seem to be tight enough to reasonably
reduce the search. And in general, it is probably difficult to deduce (much)
tighter inequalities between ℓ1w, Qw. Nevertheless, since we deal with lattices of
little ranks, the brute force promptly yields quite good results. Importantly, if
we made use of another quadratic form (for example Q) as a measure on L, the
ball B would be less adequate (or R should have be greater) and thereby the
resulting vectors (or their search time) might be longer. This is especially wise
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№ Form Order =

0 (1, 1, 82946965683421) 1 1

1 (3, 3, 27648988561141)
2

f667824
10

2 (131, 131, 633182944181) f2

3 (43, 13, 1928999201941) 83478 f185168
10

4 (109, 41, 760981336549) 222608 f349554
10

5 (149, 33, 556691044857) 333912 f2f
845740
10

6 (139, 117, 596740760337) 445216 f1189197
10

7 (7, 1, 11849566526203)

667824

f1027390
10

8 (47, 41, 1764829057103) f2f
656686
10

9 (137, 89, 605452304273) f2f
639566
10

10 (31, 3, 2675708570433)

1335648

f10

11 (41, 29, 2023096723991) f2f
1248073
10

12 (53, 11, 1565037088367) f2f
767525
10

13 (103, 3, 805310346441) f1102297
10

14 (107, 5, 775205286761) f2f
1070359
10

15 (113, 67, 734043944111) f2f
275059
10

16 (127, 65, 653125714051) f955363
10

Table 2. The reduced binary quadratic forms fi ∈ Cl (up to the sign) of prime norms
wi < 150 in the case of MNT-753
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№ Form Order =

0 (1, 1, 23929681) 1 1

1 (3, 3, 7976561)
2

f1

2 (41, 41, 583661) f1f
392
6

3 (23, 3, 1040421) 112 f1f
91
6

4 (17, 7, 1407629)
392

f1f
486
6

5 (31, 15, 771927) f130
6

6 (13, 11, 1840747)
784

f6

7 (19, 3, 1259457) f333
6

The case of MNT-992

№ Form Order =

0 (1, 0, 40201986) 1 1

1 (2, 0, 20100993)

2

f1

2 (3, 0, 13400662) f2

3 (11, 0, 3654726) f3

4 (19, 0, 2115894) f1f2f3f
316
7

5 (41, 40, 980546)
158

f1f
344
7

6 (43, 4, 934930) f1f2f3f
24
7

7 (5, 4, 8040398)

632

f7

8 (7, 2, 5743141) f1f2f
179
7

9 (23, 12, 1747914) f365
7

10 (47, 26, 855365) f517
7

The case of lollipop-956-451

Table 3. The reduced binary quadratic forms fi ∈ Cl (up to the sign) of prime norms
wi < 50
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if the reader (like the authors) does not dispose the paid Magma version, but
only the free online one.

Curve Short vector Form ℓ1w(s) Qw(s) σ

MNT curves
(1, 0, 1, 1, 0, 0,−1, 0, 0,−6, 2, 0, 0, 0, 0, 0)

f1f3f4f
2
11

f7f6
10

430 1442 207280768

(1, 1,−1, 1, 0,−3, 0)
f1f2f4
f3f3

6

123 201 1095

lollipop curve (0, 0, 0, 0, 0, 0, 7, 2,−1, 0)
f7
7 f

2
8

f9
72 296 32094

Table 4. Certain short vectors s ∈ L and their derived parameters (apart from σ)

Recall that dmin (the third coefficient of f0) coincides with the minimal
possible degree of non-scalar endomorphisms on E, whereas ϕmin stands here
for one of them. Table 5 shows the prime factorizations dmin =

∏N
i=1 p

ki
i and

d =
∏n

i=1 w
|si|
i for the degrees of ϕmin, ϕ. Among other things, we lack a symbol

for the sum σ :=
∑N

i=1 piki playing the same role as ℓ1w(s). To better reflect
a big gap between these quantities, they are simultaneously represented in the
previous table. Finally, in Table 6 (cf. [17, Table 3]) one can see the estimated
numbers of multiplications in Fq for evaluating the endomorphisms [2ℓ

′
], ϕmin,

and ϕ, where ℓ′ := ⌈ℓ/2⌉. In other words, the columns mean the values 8ℓ′,
⌈7.5σ⌉, and ⌈7.5 · ℓ1w(s)⌉, respectively.

Curve dmin d

MNT curves
72 · 8167 · 207272587 3 · 7 · 316 · 412 · 43 · 109

103 · 379 · 613 3 · 133 · 17 · 23 · 41

lollipop curve 2 · 3 · 11 · 19 · 32059 57 · 72 · 23

Table 5. The prime factorizations for the degrees of the endomorphisms ϕmin, ϕ

3.1 MNT curves

MNT (Miyaji–Nakabayashi–Takano) curves [24] are historically the first ordinary
pairing-friendly curves of prime orders r. Their embedding degrees k are 3, 4, or
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Curve [2ℓ
′
] ϕmin ϕ

MNT curves
3016 1554605760 3225

3968 8213 923

lollipop curve 1808 240705 540

Table 6. Approximate numbers of field multiplications for evaluating the endomor-
phisms [2ℓ

′
], ϕmin, and ϕ

6. Afterwards, other such curves appeared, namely Freeman and BN (Barreto–
Naehrig) ones enjoying the greater k equal to 10 and 12, respectively. So, MNT
curves lost their practical significance for a while. By the way, the requirement
on r to be prime is redundant, since uselessly increases the Miller loop during
pairing computation. That is why the most optimal curves (at least for the 128-
bit security level) appropriate for pairings are widely recognized to be BLS12
(Barreto–Lynn–Scott) ones with k = 12 and value ρ ≈ 1.5. More information on
pairing-friendly families can be found, e.g., in [11, Section 4].

The situation is flipped on its head if we are talking about (2-)cycles of
pairing-friendly curves. At the moment, the humanity does not know examples
of such cycles (with bigger k) different from MNT ones. This is an open aca-
demic problem (see details in [1]). If it was resolved, one could fully benefit,
e.g., from Groth16 [13], a very famous zk-SNARK (succinct non-interactive ar-
gument of knowledge). Nowadays, the problem nevertheless has nothing to do
with real-world cryptography, since some time ago people managed to deploy zk-
SNARKs (e.g., Nova [19]) by means of (semi-)plain 2-cycles such as Pasta curves
[15] or Pluto/Eris [16]. In other words, the pairing-friendly property eventually
became superfluous for cycles. It is worth stressing that this concept is essen-
tially the unique known way in overall cryptography to bring to life succinct
zero-knowledge proofs of unrestricted recursion. And vice versa, this niche is in
essence the only pertinent cryptographic application of cycles.

The most prominent pairing-friendly 2-cycle is perhaps MNT-753 [14]. Ex-
perts in the area are equally aware of the 2-cycles MNT-298 [3, Section 3.2] and
MNT-992 [14]. Each mentioned 2-cycle consists of one curve with k = 4 and
of another with k = 6. Both curves possess the identical D, as their Frobenius
discriminants are described by the function s(q, r) := (q+ 1− r)2 − 4q symmet-
ric in q, r. 3 Furthermore, the number in every name means ℓ and obviously

3 In fact, the CM discriminant D′ indicated in [14] for the MNT-753 curves E′ is not
fundamental for unexplained reasons, namely D′ = 272D for the fundamental one
D (from Table 1). Put another way, elliptic curves related to D′ are not located
on the crater, although the CM method is (usually) launched for fundamental CM
discriminants. Since D is large and the authors do not possess necessary computa-
tional resources, they did not manage to determine the true CM discriminant for
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coincides with e. In the past, the MNT-753 cycle was employed in Coda [28] (af-
ter rebranding, Mina [26]) protocol, although it now also gives the preference to
Pasta curves as follows from [27]. In accordance with Guillevic, the given MNT
cycle provides 113 security bits, while MNT-298, MNT-992 correspond to 77
and 126 bits, respectively. MNT-298 is a too weak cycle, hence it has never been
leveraged in practice to the authors’ knowledge. It was generated at one time
exclusively as a demonstration. In turn, MNT-992 is even slower than MNT-753.
Indeed, the fields Fq, Fr of the former (unlike the latter) are not highly 2-adic
(not to mention the larger bit length): q − 1 and r − 1 are not divided by suf-
ficient powers of 2. The point is that highly 2-adic fields are the most suitable
for implementing FFT (fast Fourier transform), which dramatically speeds up
execution of zk-SNARKs.

In 2019, the Coda–Dekrypt challenge [29] was held with the purpose to ex-
haustively accelerate the MNT-753 cycle (including MSM optimization). The
authors did not hear about fundamental advances in the challenge except for
the invention of lollipops [10]. According to Table 6, the technique of the present
article does not improve upon [2ℓ

′
] (so far) on the cycle in question. Nevertheless,

in the running-time estimation of the new endomorphism ϕ we do not take in
account that the higher-degree isogenies ϕj defining ϕ (let’s say when wi > 40)
may be evaluated more rapidly than in [17, Section 2.2], e.g., via square-root
Vélu’s formulas [5]. For conciseness, we leave this subtle work for the future
in the hope to attract attention of experienced developers to the given compu-
tational task. Despite the fact that the Coda–Dekrypt challenge expired many
years ago, any noteworthy progress in solving its concerns should be fascinating
and (potentially) useful in diverse branches of ECC. On the other hand, there
is apparently no room for optimizing [2ℓ

′
].

3.2 Lollipop curve

This section is dedicated to an ordinary pairing-friendly curve E/Fq of embedding
degree k = 4 in the stick of lollipop-956-451 from [10, Section 5]. The field Fq is
of the length e = 956, but the discrete logarithm problem is considered in the
prime subgroup G ⊂ E(Fq) of length ℓ = 451. Thereby, the value ρ > 2, that is,
G is more than two times smaller than the whole group E(Fq). Furthermore, the
bit security of G itself is equal to ℓ′−1 = 225 (much greater than 128), while the
true one (of the lollipop) is 142 bits because of the MOV (Menezes–Okamoto–
Vanstone) attack through the multiplicative group F∗

q4 .

Recall that the anterior paper [17] analyzes a few curves constituting lollipop-
489-201 and lollipop-574-261, but those are plain (i.e., non-pairing-friendly) and
located in another part of the stick: more far than E from the corresponding

the MNT-753 curves to which Guillevic refers. Fortunately, it is easily verified that
D is the square-free part of the Frobenius discriminant s(q, r). Even if the curves E′

have the CM discriminant D′ rather than D, there are in this case uniquely defined
crater curves E and vertical Fq-isogenies E → E′ (as well as their duals E′ → E) of
the modest degree 27. So, we can actually work on the crater without any remorse.
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supersingular 2-cycle. In particular, the CM discriminants of the plain lollipop
curves are much more modest than that of E (denoted by D as earlier). The
authors decided to take the curve E for diversity to tackle the cardinally new
case. However, it is highly likely that the relation-lattice method of this article
is relevant to all the plain lollipop curves from [10, Section 5], not solely to those
of [17].

The example under consideration has the largest value ℓ (and hence ℓ′) among
all the ordinary pairing-friendly lollipop curves generated by Costello and Kor-
pal: ℓ ⩽ 262 ≪ 451 for the others. Meanwhile, their CM discriminants are not
an order of magnitude smaller than D. As a result, E seems to be the unique
curve for which the endomorphism ϕ (noticeably) outperforms the conventional
scalar one [2ℓ

′
].

4 Conclusion

This article justifies the relevance of the GLV method for a series of elliptic curves
arising in pairing-based recursive zk-SNARKs. These include a certain 2-cycle
of MNT curves and yet another ordinary pairing-friendly curve participating
in formation of a lollipop. In theory, lollipops are intended to supersede MNT
2-cycles. However, it is unlikely that the GLV technique (even in view of the
current work) is applicable to supersingular curves forming lollipop 2-cycles.
Moreover, lollipops provide in a sense restricted recursion. Thus, MNT 2-cycles
may have some benefits over lollipops.

Advances in accelerating MSM on (pairing-friendly) 2-cycles/lollipops are
partially able to increase interest to zero-knowledge proof systems based on
ECC. It is not a secret that cryptographic hash functions (from [4,9]) are usable
for implementing zk-STARKs (zero-knowledge scalable transparent argument of
knowledge) [2]. Nevertheless, hash-based cryptography does not respect the suc-
cinctness property, which is often crucial for blockchain technology. So, the au-
thors think that further investigations are necessary to better understand the
full cryptographic capabilities of elliptic curves. Of course, this point of view is
vital only if the probability of creating a multi-qubit quantum computer is not
higher than that of finding a novel attack on (or a backdoor in) a used hash
function.

To conclude, one more step is done in the given paper towards more rapid
cryptography on elliptic curves. This definitely deserves attention of the scientific
community, since the speed is frequently one of the main advantages of ECC ver-
sus trendy (presumably) PQC. The more efficient the former, the more tempting
to keep it at least for the sake of niche time-critical scenarios (especially with
short-term data) than to make the entire transition to the latter.
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