
Finding a polytope: A practical fault attack
against Dilithium

Paco Azevedo-Oliveira1,2, Andersson Calle Viera1,3, Benoît Cogliati1, and
Louis Goubin2

1 Thales DIS, France
paco.azevedo-oliveira@thalesgroup.com
andersson.calle-viera@thalesgroup.com
benoit-michel.cogliati@thalesgroup.com

2 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université
Paris-Saclay, 78035 Versailles, France

louis.goubin@uvsq.fr
3 Sorbonne Université, CNRS, Inria, LIP6, F-75005 Paris, France

Abstract. In Dilithium, the rejection sampling step is crucial for the
proof of security and correctness of the scheme. However, to our knowl-
edge, there is no attack in the literature that takes advantage of an
attacker knowing rejected signatures. The aim of this paper is to create
a practical black-box attack against Dilithium with a weakened rejection
sampling. We succeed in showing that an adversary with enough rejected
signatures can recover Dilithium’s secret key in less than half an hour on
a desktop computer. There is one possible application for this result: by
physically preventing one of the rejection sampling tests from happening,
we obtain two fault attacks against Dilithium.

1 Introduction

In July 2022, the National Institute of Standards and Technology (NIST) selected
CRYSTALS-Dilithium, also known as Dilithium, as a new post-quantum digital
signature scheme. It is being standardized under the name ML-DSA [NIS23], and
the National Security Agency (NSA) has included it in the Commercial National
Security Algorithm (CNSA 2.0) suite for national security systems [NSA22].
Moreover, due to its relative efficiency compared to other post-quantum schemes,
Dilithium is recommended for computing quantum-secure signatures in most use
cases.

From a theoretical point of view, Dilithium benefits from security proofs
supporting its Strong existential Unforgeability under Chosen Message Attack
(SUF-CMA) in the classical and quantum random oracle models [BDK+21].
To complement this cryptanalytic approach, it is necessary to investigate the
security of embedded implementations. The security of Dilithium against Side-
Channel Attacks (SCA) and Fault Attacks (FA) thus needs to be carefully as-
sessed.

1

Following this direction, many papers have already been published about
physical attacks [BBK16],[BVC+23] [BP18] [CKA+21] [KLH+20] [MUTS22]
[RJH+18] [EAB+23] [BAE+24] [WNGD23] [KPLG24] against Dilithium, see also
this survey [RCDB22].

In the present paper, we use Linear Programming (LP) [NW88] in several
attack scenarios. This kind of technique has already been used in [MUTS22]
[UMB+23] to mount a fault attack and recover the s1 value of Dilithium from
noisy values, and hence the whole secret key. Note that, in the (very) rare pa-
pers using linear programming, this technique has, up to now, been seen as a
complement to a computationally heavy profiling phase.

Our LP-based technique is first applied to fault attacks against Dilithium. Up
to now, all the developed strategies have consisted of faulting either the NTT-
based computations, the nonce y used to sign, or additions/multiplications with
secret polynomials. However, none of the previous attacks have targeted the tests
used in the rejection sampling mechanism. This is the core of the fault attack
we elaborate in the present paper.

For each attack described here, we consider two versions of the Dilithium
signature algorithm. The first is the official specification published in the FIPS
(draft) standard [NIS23]. The second one corresponds to the alternative way
(described in Section 5.1 of [BDK+21]) to perform the validity checks on r0 and
to compute h, which corresponds to the reference implementation [DKL+].

It is essential to analyze the impact of the attacks on these two versions of
Dilithium. Indeed, even if they are functionally equivalent, this is no longer true
when we consider perturbations of the tests involved in the rejection sampling
mechanism or when we have access to internal values in the context of multi-
party computation.

In all the attacks we describe in the present paper, the parameter t0 of
Dilithium plays a particular role that has been debated in the literature. In the
draft of the FIPS ML-DSA standard [NIS23], t0 is officially considered as part
of the secret key. However, as indicated in the same document: “The vector t is
compressed in the actual public key by dropping the d least significant bits from
each coefficient, thus producing the polynomial vector t1. This compression is
an optimization for performance, not security. The low order bits of t can be
reconstructed from a small number of signatures and, therefore, need not be
regarded as secret.” Note that the EUF-CMA security proof provided by the
authors of Dilithium [BDK+21] makes the same assumption and considers that t
is public. In the same spirit, Schwabe writes [Sch19]: “t0 is not part of the secret
key, but actually a public value (taken into account in the security analysis).
The reason not to make it part of the public key is that it’s not needed for
verification so we can have smaller public keys.” Furthermore, a recent eprint
paper [AOCVCG24], would seem to show that t0 can be reconstructed with
4 000 000 Dilithium signatures signed under the same secret key. Therefore, in

2

the rest of the paper, we will assume –as in most of the literature about the
security of Dilithium– that t0 is a public parameter.

Our Contributions. In this paper, we describe several kinds of attacks that take
advantage of potential weaknesses in the implementations of the tests involved
in the rejection sampling mechanism. Our attacks require from 1 million to 4
millions signatures, depending on the security level of Dilithium that is targeted.

The first kind of attack depends on fault injections that allow the attacker
to skip the second test (on r0) involved in the rejection sampling mechanism.
Two scenarios are considered:

– If the target is the official specification of Dilithium [LDK+22], knowing that
the faulty signatures are not valid (they are not accepted by the verification
algorithm) allows to recover the secret value s2. It is well known that s1 can
then be deduced, assuming the attacker knows the t0 parameter.

– If the target is the official reference implementation of Dilithium [DKL+22],
based on an alternative way of performing the validity checks on r0 and com-
puting h, this time the obtained (faulty) signatures do pass the verification
phase, as well as normal (non-faulty) signatures. However, the knowledge of
t0 enables to detect the faulty signatures, leading to a recovery of s2, then
s1.

In both cases, the attack uses Linear Programming (LP) tools, and experiments
show that it is very efficient on usual Dilithium parameters (typically less than
30 minutes).

The second kind of attack is also based on fault injections that are used
to skip the first test (on z) in the rejection sampling mechanism. We describe
a method that is similar to the previous attacks and also makes use of (LP)
tools. This attack (which remains the same for all versions of Dilithium) allows
to recover s1 (and thus enables to forge arbitrary many signatures). It is very
efficient and does not even require the knowledge of the t0 parameter.

All these attacks illustrate the power of LP-based methods to recover secret
information from faulty/rejected signatures. This can be applied in several at-
tack models (fault attacks, side-channels, white-box, multi-party computation)
and bring new arguments supporting the need for protecting not only the val-
ues manipulated during the Dilithium signature computation but also the very
execution of the tests during the rejection sampling phase.

Outline. This paper is organized as follows. In Section 2, we review the neces-
sary knowledge on Dilithium and linear programming. In Section 3, we define
an attack scenario and an associated problem, then show how this problem can
be reformulated in terms of integer optimization. In Section 4, we discuss the
difference between the algorithm specification, proposed as a standard imple-
mentation, and the reference implementation, which does not follow this speci-
fication. We explain how to adapt the attack on the reference implementation.

3

In Section 5, we propose a method for solving the problem defined in Section 3.
In Section 6, we present our practical results obtained by attacking Dilithium-2,
Dilithium-3, and Dilithium-5. Finally, in Section 7 we discuss the results ob-
tained, their limitations and their implications in our opinion.

2 Background and notations

This section recalls the definitions and results already known, which will be useful
throughout the rest of the paper. To pose the problem, we recall the notations
used in Dilithium and briefly explain how the algorithm works. To reformulate
the problem, we give the basic definitions of polytope theory, and finally, to solve
the problem, we provide the main linear programming results.

2.1 Lattices

Definition 1 (Modular reductions)
Let α an even integer (resp. odd), we define r′ := r mod±(α) the unique

-α2 < r′ ≤ α
2 (resp. − α−1

2 ≤ r′ ≤ α−1
2) such that r′ = r mod (α). We will

speak of centered reduction modulo α. We define r′′ := r mod+(α) the unique
0 ≤ r′′ < α such that r′′ = r mod (α).

Definition 2 (Cyclotomic ring)
We define ϕn = xn + 1 with n a power of 2. This is a cyclotomic polynomial

(One can show that ϕn is the 2n-th cyclotomic polynomial.) In particular, it is
irreducible over Q.

For q a prime, we define:

Q := Q[x]/(ϕn) , R := Z[x]/(ϕn) and Rq := Zq[x]/(ϕn).

Definition 3 For w ∈ Zq :

||w||∞ := |w mod± (q)|.

For w =
∑

wix
i ∈ R :

||w||∞ := max ||wi mod±(q)||∞ and ||w|| :=
(∑

||wi||2∞
)1/2

and for w = (w[1], ...,w[k]) ∈ Rk,

||w||∞ := max ||w[i]||∞ and ||w|| :=
(∑

||w[i]||2
)1/2

.

Finally, we define two sets Sη, S̃η ⊂ R :

Sη := {w ∈ R | ||w||∞ ≤ η} and S̃η := {w mod± (2η) | w ∈ R}.

Notation 1 For an element w1 ∈ Rl we will note w1 =(w
[1]
1 , ...,w

[l]
1) ∈ Rl

and w
[j]
1,i will be the i− th coefficient of the polynomial w[j]

1 .

Notation 2 We will note [[statement]] the boolean operator wich evaluates to
1 if statement is true, and to 0 otherwise.

4

2.2 Dilithium, hints and inequalities

Dilithium uses Rk×l
q with k, l varying according to the level of security required

and with n and q chosen as:

n = 256, q = 223 − 213 + 1 = 8 380 417

Dilithium uses algorithms that split elements in Zq. Informally speaking, for an
even α divisor of q− 1, r ∈ Zq one can define r = r1α+ r0 with r0 = r mod±(α)
and r1 = (r − r0)/α. We will call r1 the most significant bits of r and r0 the
least significant bits of r. As shown in Figure 1, for z ∈ Zq such that |z| ≤ α/2,
adding z to r can increase or decrease the most significant bits of r by ±1. The
aim is to be able to calculate the most significant bits of an addition between
r ∈ Zq and a small element z ∈ Zq, without having to store z. To do this, an
algorithm which generates a one bit hint h is used. In Algorithm 1 we give the
description of the algorithms and recall in Lemma 1 the main property used.

Fig. 1. carry caused by x

Algorithm 1 Supporting algorithms for Dilithium

Decomposeq(r, α) :

1: r = r mod+q
2: r0 = r mod±α
3: if r−r0 = q−1 then r1 = 0 r0 = r0−1
4: else r1 = (r − r0)/α

5: return (r1, r0)

HighBitsq(r, α) :
1: (r1, r0) = Decomposeq(r, α)
2: return r1

LowBitsq(r, α) :
1: (r1, r0) = Decomposeq(r, α)
2: return r0

MakeHintq(z, r, α) :
1: r1 = HighBitsq(r, α)
2: v1 = HighBitsq(r + z, α)
3: return [[r1 ̸= v1]]

UseHintq(h, r, α) :
1: m = (q − 1)/α
2: (r1, r0) = Decomposeq(r, α)
3: if h = 1 and r0 > 0 then return

(r1 + 1) mod+m

4: if h = 1 and r0 ≤ 0 then return
(r1 − 1) mod+m

5: return r1

5

Lemma 1 [LDK+22] Let q and α be two positive integers such that q > 2α, q ≡
1 mod (α) and α even. Let r and z be two vectors of Rq such that ||z||∞ ≤ α/2
and let h,h′ be bit vectors. So the algorithms HighBitsq , MakeHintq, UseHintq
satisfy the properties:

UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r+ z, α).

Remark 1 Dilithium uses these algorithms to reduce the size of the public key: it
splits a part of the public key t into two using an algorithm named Power2Round
defined in the specification of Dilithium [BDK+21] and makes public only t1,
the most significant bits of t. In return, the signer adds a few hint bits to the
signature to enable the signature to be verified without knowledge of the least
significant bits of t.

2.3 Algorithm description

The remainder of this section gives a quick overview of Dilithium, for an exhaus-
tive description of the functions used see [BDK+21].

Key Generation: The key generation consists of sampling two short vectors of
polynomials s1 and s2 with a public matrix A. We then calculate t = As1 + s2,
which will also become public. To reduce the size of the public key, only the most
significant bits of t, t1, are part of the public key. For the same reason, we keep
only the seed ρ used to generate A. The vectors of small polynomials s1 and s2
remain secret. The key generation algorithm is described in Algorithm 2.

Algorithm 2 KeyGen
Ensure: (pk, sk)
1: ζ ← {0, 1}256

2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)

3: A ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated and stored in NTT as Â

4: (s1, s2) ∈ Sl
η × Sk

η := ExpandS(ρ′)

5: t := As1 + s2 ▷ Compute As1 as NTT−1(Â · NTT(s1))
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ || t1)
8: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

Signature: Dilithium is based on the "Fiat-Shamir with aborts" framework:
a signature is generated and accepted if it meets certain conditions; if it does
not, the process is repeated until a valid signature is obtained. The signer draws
a random polynomial vector y ∈ S̃l

γ1
. Then from HighBitsq(Ay, 2 γ2) using a

6

hash function, it creates a challenge c. Then, it calculates z := y + c s1 the
definition of z and t gives:

HighBitsq(Az − ct, 2 γ2) = HighBitsq(Ay − cs2, 2 γ2).

Furthermore, y is chosen such that:

HighBitsq(Ay − cs2, 2 γ2) = HighBitsq(Ay, 2 γ2)

As t0 is not public, the signer adds a vector of hint h = MakeHintq(−ct0,Ay −
cs2 + ct0, 2γ2) to enable the verifier to calculate HighBitsq(Az − ct, 2 γ2) and
then recalculate c without knowledge of t0. The signature algorithm is described
in Algorithm 3.

Algorithm 3 Sig
Require: sk,M
Ensure: σ = (c̃, z,h)
1: A ∈ Rk×l

q := ExpandA(ρ) ▷ A is generated and stored in NTT as Â
2: µ ∈ {0, 1}512 := H(tr ||M)

3: κ := 0, (z,h) :=⊥
4: ρ′ ∈ {0, 1}512 := H(K ||µ)
5: while (z,h) =⊥ do ▷ Pre-compute ŝ1 := NTT(s1), ŝ2 := NTT(s2) and t̂0 := NTT(t0)
6: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay ▷ w := NTT−1(Â · NTT(y))
8: w1 = HighBitsq(w, 2 γ2)

9: c̃ ∈ {0, 1}256 := H(µ ||w1)

10: c ∈ Bτ := SampleInBall(c̃) ▷ Store c in NTT representation as ĉ = NTT(c)

11: z := y + c s1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
12: r0 := LowBitsq(w− cs2, 2 γ2) ▷ Compute cs2 as NTT−1(ĉ · ŝ2)
13: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14: (z,h) :=⊥
15: else
16: h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2) ▷ Compute c t0 as NTT−1(ĉ · t̂0)
17: if ||c t0||∞ ≥ γ2 or |h|hj=1 > ω then
18: (z,h) :=⊥
19: κ := κ+ l

20: return σ = (c̃, z,h)

Verification: From the signature, c is recalculated. The verifier then uses the
hints to recalculate w′

1 the value to which the signer has committed. If the

7

commitment is correct and z meets other conditions, the signature is accepted.
Otherwise it is rejected. The verification algorithm is described in Algorithm 4.

Algorithm 4 Ver
Require: pk, σ
1: A ∈ Rk×l

q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(H(ρ || t1) ||M)

3: c := SampleInBall(c̃)

4: w′
1 := UseHintq(h,Az− ct1 · 2d, 2γ2)

5: return [[||z||∞ < γ1 − β]] and [[c̃ = H(µ ||w′
1)]] and [[|h|hj=1 ≤ ω]]

2.4 The basis of Polyhedral Theory

In the rest of the paper, we will show that some rejected signatures of Dilithium
provide inequalities on the coefficients of s2. Therefore s2 is one of the solutions
to a set of inequalities. We are going to show that this type of set has certain
properties, and we will need to define a natural notion of dimension. As this
dimension is linked to the number of points in the set, we will need a practical
way of estimating it. We would like to point out that the general definitions and
unproven propositions come from [NW88].

Definition 4 A set of points x1, ..., xk ∈ Rn is affinely independent if the unique
solution of

∑k
i=1 αixi = 0,

∑k
i=1 αi = 0 is αi = 0 for i = 1, ..., k.

Remark 2 When dealing with linear inequalities it is often more appropriate
to use the concept of affine independence, linear independence implies affine
independence, but the converse is not true.

Definition 5 A polyhedron P ⊂ Rn is the set of points that satisfy a finite
number of linear inequalities, P = {x ∈ Rn : Ax ≤ b} where (A, b) is a m×(n+1)
matrix.

Definition 6 A polyhedron P ⊂ Rn is bounded if there exists an w ∈ R+ such
that P ⊂ {x ∈ Rn : −w ≤ xj ≤ w for j = 1, ..., n}. A bounded polyhedron is
called a polytope.

Definition 7 A polyhedron P is of dimension k, denoted by dim(P) = k, if the
maximum number of affinely independent points in P is k + 1.

Remark 3 It is essential to calculate the dimension of a polytope formed by a
set of inequalities efficiently, as the dimension of the polytope gives us a upper-
bound on the number of its elements. More importantly, if we collect enough
inequalities so that the dimension of the associated polytope becomes 0, we know
that s2 will be the only solution to this set of inequalities.

8

Definition 8 We note ai the i−th row of A. Let M = {1, 2, ...,m}, M= = {i ∈
M : aix = bi for all x ∈ P} and let M≤ = M\M=. Let (A=, b=) and (A≤, b≤)
be the corresponding rows of (A, b). We refer to the equality and inequality sets
of representation (A, b) of P, that is:

P = {x ∈ Rn : A= = b=, A≤x ≤ b≤}.

Proposition 1 If P ⊂ Rn, then dim(P) + rank(A=, b=) = n.

Remark 4 Unfortunately, finding the matrix (A=, b=) corresponding to a poly-
hedron P can be computationally expensive. Instead, we will use the following
proposition, which is more appropriate in our case.

Proposition 2 Let P ⊂ Rn be a polyhedron, let I = {i ∈ M : ∃wi ∈ R,∀x ∈
P, xi = wi} then:

dim(P) ≤ n− card(I).

Proof. There exist real numbers (wi)i∈I such that P ⊂ P̃ = {x ∈ Rn : ∀i ∈
I, xi = wi} and according to the previous proposition: dim(P̃) = n− card(I).

2.5 The basis of Integer Programming

In the previous section we looked at the properties of polytopes, which represent
sets of solutions to inequalities. Even if we collect enough inequalities for s2 to be
the only solution, we still need to find s2 efficiently. The aim of this section is to
study the basics of integer linear programming, this will enable us to efficiently
find a solution to a set of inequalities, in other words: To find a point on the
polytope containing s2. The general linear programming problem is to find:

zLP = max{cx : Ax ≤ b, x ∈ R+}

where A is a m × n matrix and c, b are m × 1 matrices. This problem is well
defined is the sense that if it is feasible and does not have unbounded optimal
values, then it has an optimal solution. In the rest of this paper, we will note
(LP) and write it in the following form:

maximize cx
subject to Ax ≤ b

x ∈ R

One can also define the integer programming problem, noted (IP):

maximize cx
subject to Ax ≤ b

x ∈ Z

Integer programming is a harder problem than linear programming, linear pro-
gramming algorithms are very often used as a subroutine in integer programming
algorithms to obtain upper bounds on the value of the integer program. Exact
resolution algorithms exist and we believe it is important from a theoretical point
of view to recall the following theorems:

9

Theorem 1 [NW88] For a fixed n there is a polynomial algorithm for the integer
programming problem (IP).

Theorem 2 [NW88] For a fixed m there is a polynomial algorithm for the in-
teger programming problem (IP).

For a fixed m, the degree of the polynomial by which the running time of the
algorithm in [NW88] is bounded as an exponential function of n. Therefore it
does not achieve the performance required to solve certain problems. Instead,
a wide range of approximate solvers have been developed which provide much
more efficient results. In this paper, we use a free solver called lpsolve [MB04],
which uses heuristic methods that are very efficient in practice.

Remark 5 In our case, we are trying to find s2 from a number of inequalities on
its coefficients. If we collect enough inequalities on the coefficients of s2, solving
an (IP) or (LP) problem will give the same result because s2 will be the only
solution (integer or not). Since solving a (LP) problem is much more efficient,
in the rest of the document we will focus on (LP) problems related to s2.

3 Problem definition and reformulation

We study the case of an attacker who retrieves rejected signatures. More pre-
cisely, we want to mount a practical attack against Dilithium without the first
or second condition from the line 13. The attack methodology we used is in-
dependent of the condition. However, attacking Dilithium without the second
condition in line 13 of Algorithm 3 is less straightforward because we first need
to retrieve w1 to exploit such signatures. In this paper, we have chosen to focus
on this attack. Nonetheless, sub-section 6.4 briefly explains how to transpose the
attack on Dilithium without the first condition and gives the obtained experi-
mental results. Formally, we define another signature algorithm called F-Sig in
Algorithm 5, and we demonstrate the existence of a practical attack against it.

Remark 6 As Dilithium’s proof of security does not use the knowledge of t0,
most of the literature considers it public data. Recently, a paper published on
eprint [AOCVCG24] appears to prove that t0 can indeed be reconstructed from a
reasonable amount of Dilithium signatures. From now on and in the rest of the
paper, we will assume that t0 is public.

Remark 7 The verification algorithm will not always accept the signature gen-
erated by F-Sig. Moreover, we know in advance that the Dilithium security proof
does not apply here, as we have deliberately removed a security check. In the event
of a physical attack that would skip this condition, the security of Dilithium would
fall back to F-Sig.

10

Algorithm 5 F-Sig
Require: sk,M
Ensure: σ = (c̃, z,h)
1: A ∈ Rk×l

q := ExpandA(ρ) ▷ A is generated and stored in NTT as Â
2: µ ∈ {0, 1}512 := H(tr ||M)

3: κ := 0, (z,h) :=⊥
4: ρ′ ∈ {0, 1}512 := H(K ||µ)
5: while (z,h) =⊥ do ▷ Pre-compute ŝ1 := NTT(s1), ŝ2 := NTT(s2) and t̂0 := NTT(t0)
6: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay ▷ w := NTT−1(Â · NTT(y))
8: w1 = HighBitsq(w, 2 γ2)

9: c̃ ∈ {0, 1}256 := H(µ ||w1)

10: c ∈ Bτ := SampleInBall(c̃) ▷ Store c in NTT representation as ĉ = NTT(c)

11: z := y + c s1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
12: r0 := LowBitsq(w− cs2, 2 γ2) ▷ Compute cs2 as NTT−1(ĉ · ŝ2)
13: if ∥z∥∞ ≥ γ1 − β then
14: (z,h) :=⊥
15: else
16: h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2) ▷ Compute c t0 as NTT−1(ĉ · t̂0)
17: if ||c t0||∞ ≥ γ2 or |h|hj=1 > ω then
18: (z,h) :=⊥
19: κ := κ+ l

20: return σ = (c̃, z,h)

3.1 Turning it into a linear programming problem

The aim of this part is to prove (under hypotheses verified in practice) that
a non-negligible proportion of signatures of F-Sig provide inequalities on the
coefficients of s2. Thus, finding s2 from a set of signatures of F-Sig is equivalent
to finding s2 among the points of a polytope defined by a set of inequalities. If
we collect enough inequations so that the dimension of the polytope containing
s2 is 0, we can find it using linear programming. The first step is to show the
following: from a signature σ = (c̃, z,h) of F-Sig we can find the polynomial
vector w1 used in the signature. To do this, we need a hypothesis that will be
verified in practice, through simulations.

Assumption 1 With overwhelming probability, for a signature of F-Sig the
polynomial vector w1 −w′

1 has at most one non-zero coefficient, which will be 1
or −1.

Proposition 3 Under Assumption 1, if σ is a signature of F-Sig, with over-
whelming probability we can find w1 by knowing w′

1.

11

Proof. If the signature is accepted by the verification, we get directly w1 = w′
1.

If the signature is rejected, we carry out an exhaustive search on the coefficients
of w1 (because we know that c = H(µ ||w1)). According to Assumption 1, we
will have at most 2× k × 256 values to test.

Proposition 4 For any σ = (c̃, z,h) signature of F-Sig that is not accepted
by the verification algorithm, there exists a unique j ∈ {1, ..., k} and a unique
i ∈ {0, ..., 255} such that:

– if (w1 − w′
1)

[j]
i = 1:

(cs2)
[j]
i ≥ γ2 − r[j]0,i ≥ 0,

– if (w1 − w′
1)

[j]
i = −1:

(cs2)
[j]
i ≤ −γ2 − r[j]0,i ≤ 0.

Proof. Let σ = (c̃, z,h) be a rejected signature. We have w1 ̸= w′
1. If we assume

that the non-zero coefficient of w1 − w′
1 is 1, according to Assumption 1, there

exists a unique j ∈ {1, ..., k} and a unique i ∈ {0, ..., 255} such that:

HighBitsq((w)
[j]
i , 2 γ2) = HighBitsq((w

′)
[j]
i , 2 γ2) + 1.

Thus, one has

HighBitsq(Ay, 2 γ2)
[j]
i = HighBitsq(Ay − cs2, 2 γ2)

[j]
i + 1,

since r0 = LowBitsq(Ay − cs2, 2 γ2)
[j]
i , we have:

(cs2)
[j]
i ≥ γ2 − r[j]0,i ≥ 0.

Fig. 2. In red, impossible values for (cs2)[j]i

The same arguments can be used to show the second inequality when the
non-zero coefficient of w1 − w′

1 is −1.

Remark 8 Since σ = (c̃, z,h), A and t0 are known, r0 can be calculated, using
the relation Az − ct = Ay − cs2. Therefore, each signature not accepted by the

12

verification algorithm Ver will provide an inequality verified by certain coeffi-
cients of the polynomial vector s2. We are going to use the linear programming
theory, firstly to estimate how many inequalities it would take for s2 to be the only
solution, and secondly to find this solution efficiently. As [BP18,RJH+18] shows,
recovering t0 and s2 allows to forge arbitrary signatures, and to an equivalent
key recovery.

Building the (LP) system After collecting enough signatures, we will have
multiple inequalities on the k polynomials of s2 independently, so we can split
the problem into k smaller ones, one for each polynomial of the vector s2. For
the sake of clarity, let us explain the methodology for a single polynomial of the
vector s2 = (s

[1]
2 , ..., s

[k]
2). We select a signature that gives an inequation on s[1]2 .

Let σ = (c̃, z,h) be such a signature, we have:
If (w1 − w′

1)
[1]
i = 1:

(cs2)
[1]
i ≥ γ2 − r[1]0,i (1)

n−1∑
j=0

s
[1]
2,j(cx

j)i ≥ γ2 − r[1]0,i (2)

Since the polynomial c is known, σ gives us an inequality on the coefficients
of s[1]2 . The case of (w1 −w′

1)
[1]
i = −1 is treated in the same way. Thus, with its

rejected signatures, we can construct two matrices A+ and A− and two vectors
b+ and b− such that s[1]2 ∈ {x ∈ [−η, η]n | A+x ≥ b+ and A−x ≤ b−}. Each row
of one of these matrices representing an inequality collected on s[1]2 . In particular,
if we collect enough inequalities for s[1]2 to be the only solution, we can find s[1]2

by solving the following (LP) problem of dimension n = 256:

maximize 0
subject to A+x ≥ b+

A−x ≤ b−
x ∈ [−η, η]n

Fig. 3. The (LP) problem related to s[1]2 .

4 Differences between specification algorithm and
reference implementation

For Dilithium, the reference implementation noted SigRef uses an alternative way
of decomposing and calculating hints, to avoid calling the Decomposeq function

13

three times. This method, which we will note MakeHint_refq, is detailed in the
Dilithium specification [DKL+22], in Section 5.1. Remark that this alternative
method to compute the hints is no longer equivalent if we remove the condition
on r̃0. Rather than re-describing an attack by detailing the entire procedure, we
explain only the main ideas for transforming our attack into an attack against
SigRef. Algorithm 6 gives the pseudo code of SigRef.

Remark 9 To avoid copying the SigRef and F-SigRef algorithms, which are
similar, we only write SigRef . F-SigRef is obtained by removing the condition
∥r̃0∥∞ ≥ γ2 − β on line 13. Even if SigRef and Sig work in the same way, our
attack on F-SigRef will be more difficult to detect, as all the signatures produced
will be accepted by the verification algorithm.

Algorithm 6 SigRef

Require: sk,M
Ensure: σ = (c̃, z,h)
1: A ∈ Rk×l

q := ExpandA(ρ) ▷ A is generated and stored in NTT as Â
2: µ ∈ {0, 1}512 := H(tr ||M)

3: κ := 0, (z,h) :=⊥
4: ρ′ ∈ {0, 1}512 := H(K ||µ)
5: while (z,h) =⊥ do ▷ Pre-compute ŝ1 := NTT(s1), ŝ2 := NTT(s2) and t̂0 := NTT(t0)
6: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay ▷ w := NTT−1(Â · NTT(y))
8: (w1,w0) = Decomposeq(w, 2 γ2)

9: c̃ ∈ {0, 1}256 := H(µ ||w1)

10: c ∈ Bτ := SampleInBall(c̃) ▷ Store c in NTT representation as ĉ = NTT(c)

11: z := y + c s1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
12: r̃0 := w0 − cs2 ▷ Compute cs2 as NTT−1(ĉ · ŝ2)
13: if ∥z∥∞ ≥ γ1 − β or ∥r̃0∥∞ ≥ γ2 − β then
14: (z,h) :=⊥
15: else
16: h := MakeHint_refq(w1,w0 − cs2 + ct0, 2γ2)
17: if ||c t0||∞ ≥ γ2 or |h|hj=1 > ω then
18: (z,h) :=⊥
19: κ := κ+ l

20: return σ = (c̃, z,h)

Assumption 2 The signature made by F-SigRef will always be accepted by the
Dilithium verification algorithm Ver.

14

Proposition 5 Under Assumption 2, let σ = (c̃, z,h) be a signature of F-SigRef,
then either w1 = HighBitsq(Az − ct, 2γ2) or there exists at least one j ∈
{1, ..., k} and at least one i ∈ {0, ..., 255} such that:

– if (w′
1 − HighBitsq(Az − ct, 2γ2))

[j]
i is positive:

(cs2)
[j]
i ≥ γ2 − r[j]0,i ≥ 0,

– if (w′
1 − HighBitsq(Az − ct, 2γ2))

[j]
i is negative:

(cs2)
[j]
i ≤ −γ2 − r[j]0,i ≤ 0.

Proof. Let σ = (c̃, z,h) be a signature of F-SigRefwhich verifies Assumption 2.
Since the signature is validated by the verification algorithm, w1 = w′

1. Lets
assume that for this σ, w1 ̸= HighBitsq(Az − ct, 2γ2). We have Az − ct =
Ay− cs2 so w1 ̸= HighBitsq(Ay− cs2, 2γ2). There exists a j ∈ {1, ..., k} and a
i ∈ {0, ..., 255} such that:

HighBitsq((Ay)[j]i , 2 γ2) ̸= HighBitsq((Ay − cs2)
[j]
i , 2 γ2).

If (w′
1 − HighBitsq(Az − ct, 2γ2))

[j]
i is positive, then because ∥cs2∥∞ ≤ β:

HighBitsq((Ay)[j]i , 2 γ2) = HighBitsq((Ay − cs2)
[j]
i , 2 γ2) + 1,

and:
(cs2)

[j]
i ≥ γ2 − LowBitsq((Ay − cs2)

[j]
i , 2 γ2) ≥ 0.

But by definition, r0 := LowBitsq(Ay − cs2, 2 γ2), finally:

(cs2)
[j]
i ≥ γ2 − r[j]0,i ≥ 0.

The same arguments can be used to show the second inequality when (w′
1 −

HighBitsq(Az − ct, 2γ2))
[j]
i is negative.

5 Finding a polytope

The aim is to find the k × 256 coefficients of the polynomial vector s2. But
as explained in Section 3, we can find the coefficients of each polynomial of s2
separately. In the following, we will only study how to find the first polynomial
of s2. By signing messages, we will obtain inequalities verified by s[1]2 . Once we
have obtained enough inequalities, s[1]2 is the only solution, and we can find it
by solving a (LP) problem with a arbitrary objective function, such as the null
function. In other words, we want enough inequalities so that the dimension
of the associated polytope P ⊂ [−η, . . . , η]256 is 0. By the same procedure, we
will find all the polynomials in s2, in practice in Section 6. To estimate the

15

dimension of the polytope P , we will use proposition 2 proved in Section 2. For
i ∈ {1, . . . , n}, by solving the following two (LP) problems:

minimize xi

subject to A+x ≥ b+
A−x ≤ b−
x ∈ [−η, η]n

maximize xi

subject to A+x ≥ b+
A−x ≤ b−
x ∈ [−η, η]n

Fig. 4. The 2× 256 (LP) problems related to s[1]2 .

We can calculate card({i ∈ {1, . . . , n} : ∃wi ∈ R,∀x ∈ P, xi = wi}) and
therefore upper-bound the dimension of the polytope containing s[1]2 .

Remark 10 To estimate dim(P) we need to solve 2 × 256 (LP) problems (2
for each coordinate function). Some of these problems were costly because the
solution time depends on the function chosen and can soar when the number of
inequations is insufficient. Despite efforts, we were unable to produce statistics
using exactly this method. In the following section, we described a slightly modi-
fied method to estimate the number of inequalities required for the dimension of
the polytope containing s[1]2 to become 0.

5.1 Evolution of polytopes dimensions

Our goal is to provide an empirical justification for the number of inequalities
required to find s[1]2 . We will do what an attacker might do: we choose random
keys and simulate not having access to the j first coefficients of s[1]2 . By collecting
rejected signatures, we will obtain inequalities on the "missing" s[1]2 coefficients.
By doing this, we reduce ourselves to a polytope of lower maximum dimension
(of maximum dimension j). The corresponding 2× j (LP) problems will be less
costly to solve. By solving these problems for increasing values of j, we can try
to guess the number of inequalities required when no coefficients are known. In
this subsection only, we assume that some coefficients of s[1]2 are known. We sign
messages with F-Sig to obtain inequalities on the missing coefficients of s[1]2 .
Table 1 summarizes the obtained results, for Dilithium-2 4

4 For each time and probability of success, this is an average over 100 randoms keys.

16

Unknown coefficients 32 64 128 256
Nb tests 100 100 100 -

Inequalities 323 1306 3917 10 445 (predicted)
Polytopes dimensions 0 0 0 -

Attack time 1.36 s 17.4s 227.3s -
Table 1. Evolution of the dimension as a function of the unknowns

The number of inequations appears to be linear on the number of unknowns.
Based on the results, we conjecture that on average 10 000 inequalities will be
sufficient to guarantee that s[1]2 is the unique solution to the associated (LP)

problem. Hence an opponent who does not know any coefficient of s[1]2 will need
10 000 inequalities on average to find it.

Remark 11 Note that even if the theory remains unchanged, these practical
results are highly dependent on the size of the secret coefficients s2, and therefore
on the security level of Dilithium. So, the expected number of inequalities needed
to recover the 256 coefficients is likely to change with the security level.

6 Experimental results

The purpose of this section is to evaluate the usability of Proposition 4 and
5 in practice. We tested the key recovery methodology for both versions of
Dilithium, Sig and SigRef, as well as the three different security levels, Dilithium-
2, Dilithium-3, and Dilithium-5.

Experimental Setup We use the C reference implementation of Dilithium from
[DKL+22] as well as a modified version that follows the specification [LDK+22].
We adapt both of them to get implementations of F-Sig and F-SigRef, as stated
in Algorithm 5 and Algorithm 6. We use the resulting signatures in a Sage script
that allows us to formulate the (LP) problems for a given secret key. The (LP)
solving is done using the lpsolve library from Python. The tests were done on a
laptop equipped with an Intel(R) Core(TM) i7-10850H 2.70GHz CPU. All the
materials used to collect the signatures and perform the attack are available at
https://github.com/anders1901/Polytope_attack. For our study, we focus
on finding all polynomials of s2. In our evaluations attack time means the time
taken to find s2 once the inequations have been extracted from the signatures
generated.

Remark 12 In a fault attack scenario, various fault injection techniques, such
as clock and voltage glitches, laser, and electromagnetic pulse injection can lead
to the skipping of an instruction [DRPR19,MDP+20,CPHR21]. In the context
of our attack, we are interested in skipping the call to the polyveck_checknorm
function, which allows us to output signatures without checking the norm of

17

https://github.com/anders1901/Polytope_attack

z or r0. Our attack applies to both the deterministic and randomized versions
of Dilithium. However, targeting the randomized version may require a more
powerful attacker model. Indeed, injecting faults into the randomized version
generally involves taking into account the rejection sampling step of the signature
algorithm without prior analysis of the signature execution trace.

Remark 13 For both the specification and implementation of Dilithium we focus
on retrieving the 100 keys produced by the KAT from [DKL+22].

6.1 Attack on Dilithium’s specification

In the previous section, we conjectured that approximately 10 445 inequalities
per polynomial of s2 are needed to determine its k× 256 coefficients. Therefore,
the primary goal is to determine the number of signatures of F-Sig required to
collect the given number of inequalities.

Assumption 1 in practice To measure the frequency with which Assumption 1
was verified, we collected 1 250 000 signatures for an equal number of random
messages for each of the 100 keys obtained from the KAT files. Of the total
1 250 000 signatures for each key, more than half have at least one coefficient
among the k × n exceeding the bound γ2 − β. On average within this subset of
717 448 signatures, 46 459 do not pass signature verification, indicating potential
exploitability under Assumption 1. This assumption states that the vast majority
of these 46 459 signatures are likely to have no more than one coefficient where
w1 and w′

1 differ by a magnitude of 1 or −1. We tested for this on the set of
46 459 signatures and the experimental results are summarized in Table 2.

signatures 1 coefficient changed 2 or more coefficients changed inequalities/polynomial
1 250 000 45 584 874 11 085

Table 2. Average Inequalities collected for 46 459 signatures over 100 keys

From these results we conclude that around 3.6% of the 1 250 000 signatures
can be exploited. The vast majority of rejected signatures will provide an in-
equation on one of the coefficients of a polynomial of s2, and can be used in
the formulation of the (LP) problem. In the worst case, if the hypothesis is not
verified, in other words if w1 − w′

1 ̸= ±1, the attacker will be unable to exploit
the signature produced by F-Sig, as he cannot find the inequation verified by
s2. He simply discards this signature and proceeds with the next one.

Attack results After collecting enough inequalities for each of the k polyno-
mials, we expect to recover the entirety of the s2 vector based on the analysis

18

in Section 5. For this, we formulated the k (LP) problem for s2, as depicted in
Fig. 3. In order to be able to produce statistics in a reasonable amount of time,
we set the solver resolution time to 30 minutes maximum. Table 3 summarizes
the results obtained.

Signatures Average inequalities Success probability Average time Median Time
1 250 000 11 085 0.99 277.53s 180.00s

Table 3. Average results of the attack on F-Sig

We conclude that our attack is very efficient. Moreover, when the key is not
found, it is systematically because the solver was unable to solve the system of
inequalities in the given time. By increasing the limit we have set to more than
30 minutes, in about 2 and a half hours of calculation we were able to find the
missing key.

6.2 Attack on Dilithium’s implementation

As stated in Section 4, the attack can easily be mounted for signatures produced
by the reference implementation, by using Proposition 5. For completeness, we
detail the results obtained for the reference implementation of Dilithium-2.

Assumption 2 in practice Just like in the previous sub-section, we collected
1 250 000 signatures for random messages for each of the 100 keys obtained from
the KAT files. Among the 1 250 000 signatures collected for each key, in average
717 448 have at least one coefficient among the k×n exceeding the bound γ2−β.
But, this time, all the signatures of the algorithm F-SigRef are accepted by the
verification algorithm Ver, as stated in Assumption 2.

signatures 1 coefficient changed 2 or more coefficients changed inequalities/polynomial
1 250 000 45 578 875 11 083

Table 4. Average Inequalities collected over 100 keys

Attack results Here also we formulate the (LP) problem as in Fig. 3 but with
the inequalities from Proposition 5. Using the same methodology as for sub-
section 6.1, we tried to recover the 100 keys from the KAT files. The results are
summarized in Table 5.

19

Signatures Average inequalities Sucess probability Average time Median time
1 250 000 11 083 0.98 261.79s 148.79s

Table 5. Average results of the attack on F-SigRef

Once again, we can see that the attack is very effective and works as the
attack described for Dilithium’s specification. Note also that when the keys are
not recovered, it is always due to solver timeouts. Therefore, we can assume that
increasing the solver’s limit to more than 30 minutes would allow us to recover
the missed keys.

6.3 Attack on Dilithium-3 and Dilithium-5

Since the theory presented above does not change according to the security level
of Dilithium, we give the results obtained for the same attack against Dilithium-
3 and Dilithium-5. The relevant parameters are summarized in Table 6. Note
that the Dilithium specification and its reference implementation are also func-
tionally equivalent. The only change in the attack is the condition to collect the
inequality, not the inequality itself. Therefore, as a proof of concept, we decided
to focus on evaluating the sensitivity of Dilithium’s reference implementation.
For this subsection, the evaluation is done only on the first 10 of KAT files.
Finally, to confirm that we could eventually have a success rate of 100%, we
decided not to set a timeout for the solver.

Security level 2 3 5
(k, l) (4, 4) (6, 5) (8, 7)

γ1 217 219 219

γ2 (q − 1)/88 (q − 1)/32 (q − 1)/32

η 2 4 2
τ 39 49 60

Table 6. Settings for different security levels of Dilithium

The primary difference between the different security levels is the dimension
of the module, parameterized by k and l. Specifically, for s2, the relevant dimen-
sion is k = 6 for Dilithium-3 and k = 8 for Dilithium-5. Consequently, due to the
increased size of the vector, a larger number of signatures is required to ensure
the minimum number of inequalities needed to initiate the attack. Additionally,
another difference is the size of η, which is larger for Dilithium-3 compared to
both Dilithium-2 and Dilithium-5. This change requires either a greater number
of inequalities or an extended solver runtime to recover the coefficients of s2 for
Dilithium-3.

20

For Dilithium-3: Based on the statistics we ran on the dimension of the poly-
tope for the parameters in Table 6, we estimated that we could run our attack
with 3 000 000 signatures collected (i.e., about 18 000 inequalities). In practice,
since no timeout was set, and to keep the solver’s runtime to no more than twice
that of Dilithium-2, we set the number of signatures to 3 500 000 (i.e., about
22 000 of inequalities). It provided a balanced trade-off between the number of
signatures to collect and the solver’s runtime. Table 7 summarizes the results
obtained.

Signatures Average inequalities Success probability Average time Median time
3 500 000 22 020 1 1 239.36s 767.69s

Table 7. Average results of the attack for Dilithium-3

For Dilithium-5: Once again, using the statistics made on the dimension of the
polytope, we estimate that the same number of inequalities as for Dilithium-2
will need to be collected. However, because there is twice as much polynomials in
the vector s2, we will need to acquire at least twice more signatures. To be con-
servative, we collected 4 000 000 signatures. The results obtained are summarized
in Table 8.

Signatures Average inequalities Success probability Average time Median time
4 000 000 15 348 1 186.78s 177.59s

Table 8. Average results of the attack for Dilithium-5

6.4 Impact on the norm check of z

If we remove the condition on z line 13 of the algorithm Sig, we can obtain
vectors of polynomials z which satisfy ∥z∥∞ ≥ γ1. According to the definition of
y, such a z provides an inequality on one of the coefficients of s1. We can exploit
these inequalities in the same way as in Section 3 to find s1. We believe that it
is easy for an attentive reader to use these inequalities to find s1 using the same
method as described in this paper. Nevertheless, we explicit the proposition that
allows us to obtain the inequalities:

Proposition 6 Let σ = (c̃, z,h) be a rejected signature of Sig such that ∥z∥∞ ≥
γ1, then there exists j ∈ {1, ..., l} and i ∈ {0, ..., 255} such that:

– if z[j]i ≥ γ1:
(cs1)

[j]
i ≥ z[j]i − γ1 ≥ 0,

21

– if z[j]i ≤ −γ1:
(cs1)

[j]
i ≤ z[j]i + γ1 ≤ 0.

Proof. If ∥z∥∞ ≥ γ1, then there exists j ∈ {1, ..., l} and i ∈ {0, ..., 255} such
that |z[j]i | ≥ γ1. Lets assume that z[j]i ≥ γ1. We have z[j]i = y[j]

i + (cs1)
[j]
i and by

definition of y, |y[j]
i | ≤ γ1. Thus,

(cs1)
[j]
i ≥ z[j]i − γ1 ≥ 0.

The same arguments can be used to show the second inequality when z[j]i ≤ −γ1.

As a proof of concept, we ran this attack on s1 for the first 10 keys in the
KAT files, for Dilithium-2. Table 9 summarizes the results obtained.

Signatures Average inequalities Success probability Average time Median time
2 000 000 13 584 1 51.94s 49.76s

Table 9. Average results of the attack for Dilithium-2

Remark 14 In the Dilithium implementation, the way the signature is packed
does not allow us to apply the attack directly, as we have to invert the polyz_pack
function in order to find the coefficient of z which provides an inequality on the
coefficients of s1. For our proof of concept, we simply attacked the Dilithium
specification, without trying to invert this function.

7 Conclusion and discussion

In this paper, we created an attack on Dilithium with weakened rejection sam-
pling, using linear programming tools. Since Dilithium’s rejection sampling en-
sures that the scheme is zero knowledge, the existence of such an attack is not
surprising. On the other hand, we think it is surprising that this attack is so ef-
fective, requiring just a few million signatures and a few minutes of computation
on a modern computer. The main use of this result is that it reformulates as a
fault-based attack against Dilithium. We have tested this attack against the offi-
cial Dilithium implementation with simulated faults, as well as another modified
version that strictly follows the main specification, for the three security levels
of each implementation.

With regard to the feasibility of the attack, it requires between 1 and 4 million
signatures, this amount is considered significant but realistic in the side-channel
literature. Regarding the solving method, any lp solver can solve the systems
provided by the obtained signatures. In this work we have chosen to use lpsolve,
a MILP solver, even though in reality it is only used to solve (LP) problems.

22

The main reason being the solver’s performance, we tested the same key recovery
with a more generic (and less optimised) lp solver (the one provided by scipy
in python) and the solution times were up to 16 times slower. However, as the
installation of lp solve can be rather complex, in the artifact we propose a solving
with scipy and with lp solve. Finally, to be conservative we have reformulated
the problems in the (IP) form for the Dilithium-2 reference implementation,
and unsurprisingly we kept the same results with roughly identical computation
times.

There are two main consequences of our results. Firstly, we show that rejec-
tion sampling is essential for the practical safety of Dilithium: the tests must be
protected and not just the values manipulated during the test. Secondly, and per-
haps more importantly, the reference implementation behaves differently. Faulty
signatures will be accepted by the verification algorithm, which makes fault
detection more delicate in restricted environments (for example, verifying signa-
tures before outputting them will not be sufficient).

Acknowledgments

This research was funded in part by the France 2030 program under grant
agreement No. ANR-22-PETQ-0008 PQ-TLS and by the ANRT (Association
nationale de la recherche et de la technologie).

References

AOCVCG24. Paco Azevedo Oliveira, Andersson Calle Viera, Benoît Cogliati, and
Louis Goubin. Uncompressing dilithium’s public key. Cryptology ePrint
Archive, Paper 2024/1373, 2024.

BAE+24. Olivier Bronchain, Melissa Azouaoui, Mohamed ElGhamrawy, Joost
Renes, and Tobias Schneider. Exploiting small-norm polynomial mul-
tiplication with physical attacks: Application to crystals-dilithium.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2024(2):359–383, Mar. 2024.

BBK16. Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based
signature schemes and their sensitivity to fault attacks. In 2016 Work-
shop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016,
Santa Barbara, CA, USA, August 16, 2016, pages 63–77. IEEE Com-
puter Society, 2016.

BDK+21. Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
Algorithm specifications and supporting documentation (ver-
sion 3.1), 2021. https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf.

BP18. Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on
deterministic lattice signatures. IACR TCHES, 2018(3):21–43, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7267.

BVC+23. Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, Steven
Madec, Damien Vergnaud, and David Vigilant. Exploiting intermediate

23

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://tches.iacr.org/index.php/TCHES/article/view/7267

value leakage in dilithium: A template-based approach. IACR TCHES,
2023(4):188–210, 2023.

CKA+21. Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing.
An efficient non-profiled side-channel attack on the crystals-dilithium
post-quantum signature. In 2021 IEEE 39th International Conference
on Computer Design (ICCD), pages 583–590, 2021.

CPHR21. Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, and Erven
Rohou. Traitor: A low-cost evaluation platform for multifault injection.
In Proceedings of the 2021 International Symposium on Advanced Secu-
rity on Software and Systems, ASSS ’21, page 51–56, New York, NY,
USA, 2021. Association for Computing Machinery.

DKL+. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Gre-
gor Seiler, Peter Schwabe, and Damien Stehlé. Official reference im-
plementation of the dilithium signature scheme. https://github.com/
pq-crystals/dilithium/.

DKL+22. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Gregor
Seiler, Peter Schwabe, and Damien Stehlé. PQ-CRYSTALS, Dilithium.
https://github.com/pq-crystals/dilithium, 2022. GitHub reposi-
tory. Accessed: 2022-12-15.

DRPR19. Jean-Max Dutertre, Timothé Riom, Olivier Potin, and Jean-Baptiste
Rigaud. Experimental analysis of the laser-induced instruction skip fault
model. In Aslan Askarov, René Rydhof Hansen, and Willard Rafnsson,
editors, Secure IT Systems, pages 221–237, Cham, 2019. Springer Inter-
national Publishing.

EAB+23. Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost
Renes, Tobias Schneider, Markus Schönauer, Okan Seker, and Christine
van Vredendaal. From mlwe to rlwe: A differential fault attack on ran-
domized & deterministic dilithium. Cryptology ePrint Archive, Paper
2023/1074, 2023. https://eprint.iacr.org/2023/1074.

KLH+20. Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Bo-Yeon Sim, and Dong-Guk
Han. Novel single-trace ML profiling attacks on NIST 3 round candidate
dilithium. Cryptology ePrint Archive, Report 2020/1383, 2020. https:
//eprint.iacr.org/2020/1383.

KPLG24. Elisabeth Krahmer, Peter Pessl, Georg Land, and Tim Güneysu. Correc-
tion fault attacks on randomized crystals-dilithium. Cryptology ePrint
Archive, Paper 2024/138, 2024. https://eprint.iacr.org/2024/138.

LDK+22. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

MB04. Peter Notebaert Michel Berkelaar, Kjell Eikland. lp solve. https:
//lpsolve.sourceforge.net/5.5, 2004. Open source (Mixed-Integer)
Linear Programming system.

MDP+20. Alexandre Menu, Jean-Max Dutertre, Olivier Potin, Jean-Baptiste
Rigaud, and Jean-Luc Danger. Experimental analysis of the electromag-
netic instruction skip fault model. In 2020 15th Design & Technology of
Integrated Systems in Nanoscale Era (DTIS), pages 1–7, 2020.

MUTS22. Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre
Seifert. Profiling side-channel attacks on Dilithium: A small bit-fiddling

24

https://github.com/pq-crystals/dilithium/
https://github.com/pq-crystals/dilithium/
https://github.com/pq-crystals/dilithium
https://eprint.iacr.org/2023/1074
https://eprint.iacr.org/2020/1383
https://eprint.iacr.org/2020/1383
https://eprint.iacr.org/2024/138
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://lpsolve.sourceforge.net/5.5
https://lpsolve.sourceforge.net/5.5

leak breaks it all. Cryptology ePrint Archive, Report 2022/106, 2022.
https://eprint.iacr.org/2022/106.

NIS23. NIST. Fips 204 (draft): Module-lattice-based digital signature standard.
Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards
and Technology, Gaithersburg, MD, 2023. https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.204.ipd.pdf.

NSA22. NSA. Announcing the commercial national security algorithm
suite 2.0. National Security Agency, U.S Department of Defense,
2022. https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/
0/CSA_CNSA_2.0_ALGORITHMS_.PDF.

NW88. George L. Nemhauser and Laurence A. Wolsey. Integer and combinato-
rial optimization. In Wiley interscience series in discrete mathematics
and optimization, 1988.

RCDB22. Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and
Anubhab Baksi. Side-channel and fault-injection attacks over lattice-
based post-quantum schemes (kyber, dilithium): Survey and new re-
sults. Cryptology ePrint Archive, Paper 2022/737, 2022. https:
//eprint.iacr.org/2022/737.

RJH+18. Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chat-
topadhyay, and Shivam Bhasin. Side-channel assisted existential forgery
attack on Dilithium - A NIST PQC candidate. Cryptology ePrint
Archive, Report 2018/821, 2018. https://eprint.iacr.org/2018/821.

Sch19. Peter Schwabe. Twitter, 2019. https://twitter.com/cryptojedi/
status/1192375176438128641.

UMB+23. Vincent Quentin Ulitzsch, Soundes Marzougui, Alexis Bagia, Mehdi Ti-
bouchi, and Jean-Pierre Seifert. Loop aborts strike back: Defeating
fault countermeasures in lattice signatures with ILP. IACR TCHES,
2023(4):367–392, 2023.

WNGD23. Ruize Wang, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Single-trace
side-channel attacks on crystals-dilithium: Myth or reality? Cryptol-
ogy ePrint Archive, Paper 2023/1931, 2023. https://eprint.iacr.org/
2023/1931.

25

https://eprint.iacr.org/2022/106
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf
https://media.defense.gov/ 2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/ 2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://eprint.iacr.org/2022/737
https://eprint.iacr.org/2022/737
https://eprint.iacr.org/2018/821
https://twitter.com/cryptojedi/status/1192375176438128641
https://twitter.com/cryptojedi/status/1192375176438128641
https://eprint.iacr.org/2023/1931
https://eprint.iacr.org/2023/1931

	Finding a polytope: A practical fault attack against Dilithium

