
Practical Electromagnetic Fault Injection on Intel
Neural Compute Stick 2

Shivam Bhasin, Dirmanto Jap, Prasanna Ravi
National Integrated Centre for Evaluation (NiCE)

Nanyang Technological University, Singapore
{sbhasin,djap,prasanna.ravi}@ntu.edu.sg

Marina Krček, Stjepan Picek
Radboud University

Nijmegen, The Netherlands
{marina.krcek,stjepan.picek}@ru.nl

Abstract—Machine learning (ML) has been widely deployed
in various applications, with many applications being in critical
infrastructures. One recent paradigm is edge ML, an implemen-
tation of ML on embedded devices for Internet-of-Things (IoT)
applications. In this work, we have conducted a practical experi-
ment on Intel Neural Compute Stick (NCS) 2, an edge ML device,
with regard to fault injection (FI) attacks. More precisely, we have
employed electromagnetic fault injection (EMFI) on NCS 2 to
evaluate the practicality of the attack on a real target device. We
have investigated multiple fault parameters with a low-cost pulse
generator, aiming to achieve misclassification at the output of the
inference. Our experimental results demonstrated the possibility
of achieving practical and repeatable misclassifications.

Index Terms—EMFI, Edge ML, Model Evasion

I. INTRODUCTION

With the growth of IoT, there is also a growing demand to
perform efficient ML computation on edge devices, focusing
on smaller devices, like Apple neural engine and Qualcomm
Hexagon DSP. However, edge deployment introduces novel
threat vectors. Breier et al. [1] demonstrated the first practical
fault attacks targeting the activation function of a deep neural
network. These experiments were performed on a simple 8-bit
microcontroller and restricted to very small neural networks.
A recent work [2] used methods like Rowhammer to inject
faults in neural network inference running on cloud servers.
The authors exploited bit flips introduced by Rowhammer
to degrade the accuracy of neural networks. Even Edge Ml
devices like NCS2 have been subjected to side-channel [3] and
cold boot attacks [4]. To our knowledge, none of the works
explore the fault vulnerability of commercial edge ML devices.
This work presents a practical EMFI study on NCS 2, as well
as empirical evidence of misclassification during inference,
as a proof-of-concept to show that these attacks can also be
applied practically on commercial devices.

A. Target Device

NCS 2 is a compact, plug-and-play development kit de-
signed to accelerate neural network inference. It is based on
the Intel Movidius Myriad X architecture that provides high
performance and low power consumption for ML applications.
OpenVINO is a Python toolkit to optimize deep learning
models on powerful systems like the cloud for deployment

PC

EM pulse 
generator

DUT 
(ARM Cortex-M4F)

Injection Probe

X-Y Table

DUT (NCS2)

Fig. 1: ChipShouter setup: (top) Intel NCS 2, (left) Scheme
for EMFI, (right) EM probe on NCS 2

on edge devices1. The trained model will be converted to
OpenVINO format and loaded to the device.

B. EM Fault Injection (EMFI)

EMFI injects a very high and short voltage pulse directly
onto the surface of the chip using a near-field EM probe.
Since the EM probe can be placed to target different spatial
locations on the chip, EMFI could be used to precisely target
different sub-blocks within the target. EMFI does not require
chip decapsulation, only removing a plastic case from the NCS
2, for closer proximity to the probe.

For some applications, it is desirable to inject multiple
consecutive EM pulses in a burst. For instance, it was shown
in [2] that to achieve successful misclassification in ResNet20
when trained on CIFAR-10, 21 bit flips are required. Thus, we
also consider burst mode in our experiments, where multiple
EM pulses are injected sequentially on the target device.

II. EXPERIMENTAL SETUP AND OBSERVATIONS

We aim to induce misclassification by making the model
predict an incorrect class (untargeted). EMFI is performed
in a black-box setup with no injection optimizations based
on the model implementation. We have trained a custom
Convolutional Neural Network (CNN) model on the MNIST
dataset, based on the example from OpenVINO, which covers
the standard layers used in CNN and is small enough to fit into
the device. For this experiment, MNIST is chosen due to its
simplicity for analysis purposes. The dataset and the network

1https://software.intel.com/content/www/us/en/develop/tools/openvino-
toolkit.html



Fault Type Value at Output Layer

Fault I Correct 0.00 0.00 0.00 0.01 0.00 0.98 0.00 0.00 0.00 0.00
Faulty 0 0 1 0 0 0 0 0 0 0

Fault II Correct 0.00 0.00 0.00 0.01 0.00 0.98 0.00 0.00 0.00 0.00
Faulty 0.09 0.02 0.06 0.34 0.00 0.24 0.01 0.04 0.03 0.15

TABLE I: The changes observed at the SoftMax output

are chosen as a proof-of-concept to explore how practical
EMFI is in the context of a practical real target.

We use Raspberry Pi (RPi) 3B+ as the main controller to
load the CNN model and communicate with NCS 2. We set up
UART communication to synchronize the fault parameters and
errors. We set the GPIO pin in RPi as the trigger to indicate
the start of inference. Due to noise from surrounding opera-
tions and operating system that causes desynchronization, the
inference processes are not in constant time.

We use ChipShouter pulse generator, a low-cost EMFI tool.
To control the pulses, we connect it to a ChipWhisperer (CW)
to generate the pulse pattern. The pulse width can be expressed
as a fraction of the CW clock cycle (around 2-3 µs), and for
pulse delay, it can be expressed up to 232 clock. Even with
non-constant timing, up to 25, 000 cycles are sufficient to cover
the whole inference. From preliminary profiling of the device,
we found no error obtained beyond this parameter.

Based on the size of the chip and the EM probe, we scan the
whole chip with a 7× 7 grid to find vulnerable positions. Our
ideal target operation is at the last layer of inference, mainly
before or during the SoftMax function. Since our trigger points
come from the host RPi, we do not have precise control over
the fault timing. The black box nature of NCS 2 also makes
it difficult to pinpoint the exact timing of SoftMax. Thus, we
scan the whole inference phase with a burst of 50× as a way
to cover the execution of this operation.

We performed prior profiling to identify parameters that
result in faults. The minimum required pulse voltage is 500V ,
with a fixed pulse width of 45 clocks and delay between 5, 000
and 25, 000 clocks, with a step size of 1, 000 clocks. A total of
10 million injections were performed. Most faults are failure
errors, such as segmentation fault, failure to load model to
device, etc. We have observed errors at SoftMax outputs, which
only result in minor changes in decimal points. However, we
also received some successful misclassifications. We record
the fault parameters and test the repeatability of these faults.
We performed statistical analysis done over 100 repetitions.
Overall, 47% of the injections do not lead to a successful
fault, 32% lead to a system error, and 21% of faults result in
a successful misclassification.

A. Fault Analysis

We observed that the successful faults fall under two distinct
categories, Fault I and Fault II. Fault I results in integer
outputs, and Fault II leads to random values, both resulting in
misclassification. We verified that the fault is repeatable for a
fixed position of the probe. Examples are shown in Table I.

• For Fault I, all the changes are in the first fully connected
layer, for example some values are changed from -1.5, -
2.1, and -2.9 into 2046, 2044, and 2047, respectively.

These changes propagate to subsequent layers and even-
tually change the SoftMax input, giving a very high
value for one of the classes, resulting in (untargeted)
misclassification.

• For Fault II, most changes are in the output of ReLU
from the second convolution layer. The average change
of these faults is 1.06, and the maximum is 6.09, meaning
significant numbers of the values are changed, propagat-
ing them to the SoftMax layer.

• There are also faults that cause minor changes to the
mantissa, with no misclassification. The changes occur at
the very first convolution layer, with around 300 entries
affected. However, the changes are small, and the neural
network is able to correct them during the propagation.

III. DISCUSSION AND CONCLUSION

One of the main challenge is that the architecture imple-
mented in NCS 2 is done in black box manner, where the
attacker might have the knowledge regarding the model, but
not on how the model is implemented on the device itself.
The presence of desynchronization also makes it harder for
the attacker to precisely inject the fault in the desired timing,
achieving lower repeatability. Nevertheless, we have shown
that we can achieve misclassification for the prediction if the
fault(s) can be injected at the desired location with precise
timing, posing a real-world risk. Thus, we have demonstrated
the practicality of a fault injection attack targeting a commer-
cial target as a proof-of-concept, which helps bridge the gap
between practical and theoretical fault injection attacks. For
future work, we would like to investigate the scalability of
EMFI on different target models on more complex platforms.

ACKNOWLEDGMENTS

This work was (in part) supported by Dutch Research
Council (NWO) through the Challenges in Cyber Security
(CiCS) project of the research programme Gravitation under
the grant 024.006.037.

REFERENCES

[1] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Practical fault
attack on deep neural networks,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 2204–
2206.

[2] F. Yao, A. S. Rakin, and D. Fan, “{DeepHammer}: Depleting the
intelligence of deep neural networks through targeted chain of bit flips,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
1463–1480.

[3] Y.-S. Won, S. Chatterjee, D. Jap, S. Bhasin, and A. Basu, “Time to leak:
Cross-device timing attack on edge deep learning accelerator,” in 2021 In-
ternational Conference on Electronics, Information, and Communication
(ICEIC). IEEE, pp. 1–4.

[4] Y.-S. Won, S. Chatterjee, D. Jap, A. Basu, and S. Bhasin, “Deepfreeze:
Cold boot attacks and high fidelity model recovery on commercial edgeml
device,” in 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 2021, pp. 1–9.


