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Abstract

Payment channels have emerged as a promising solution to
address the performance limitations of cryptocurrencies pay-
ments, enabling efficient off-chain transactions while main-
taining security guarantees. However, existing payment chan-
nel protocols, including the widely-deployed Lightning Net-
work and the state-of-the-art Sleepy Channels, suffer from a
fundamental vulnerability: non-atomic state transitions create
race conditions that can lead to unexpected financial losses.
We first formalize current protocols into a common paradigm
and prove that this vulnerability is fundamental—any protocol
following this paradigm cannot guarantee balance security
due to the inherent race conditions in their design. To ad-
dress this limitation, we propose a novel atomic paradigm
for payment channels that ensures atomic state transitions,
effectively eliminating race conditions while maintaining all
desired functionalities. Based on this paradigm, we intro-
duce ULTRAVIOLET, a secure and efficient payment channel
protocol that achieves both atomicity and high performance,
while avoiding the introduction of unimplemented Bitcoin
features. ULTRAVIOLET reduces the number of required mes-
sages per transaction by half compared to existing solutions,
while maintaining comparable throughput. We formally prove
the security of ULTRAVIOLET under the universal compos-
ability framework and demonstrate its practical efficiency
through extensive evaluations across multiple regions. This
results in a 37% and 52% reduction in latency compared to
the Lightning Network and Sleepy Channels, respectively.
Regarding throughput, ULTRAVIOLET achieves performance
comparable to the Lightning Network and delivers 2× the
TPS of Sleepy Channels.

1 Introduction

Decentralized cryptocurrencies have introduced a revolution-
ary payment system, gaining widespread popularity in recent
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years. By the end of 2024, the market cap of cryptocurren-
cies has surpassed $3 trillion [3]. However, limited by the
inherent trade-off between decentralization and scalability,
the underlying blockchains powering these digital assets re-
main inefficient and struggle to meet the growing demands
of users. For instance, while traditional payment systems like
Visa process transactions with near-instant confirmation and
support peak loads of up to 56,000 transactions per second
(TPS), Bitcoin [30]—the most prominent blockchain-based
cryptocurrency—requires 10 minutes or more to confirm a
transaction and supports a maximum throughput of only 7
TPS [14].

Payment Channels (PCs) are among the most promising
scalability solutions, significantly reducing payment delays
and increasing transaction throughput. PCs enable transac-
tions between two users to take place off-chain in a se-
cure manner while requiring minimal interaction with the
blockchain. Ideally, a payment channel involves only two on-
chain transactions: one for opening, which locks the funds
of the participants, and one for closing, which finalizes the
channel and distributes the funds back to the participants.
Early PC protocols [4] only supported unidirectional pay-
ments from one party to the other. Later on, bidirectional
PCs [15, 16] are introduced, enabling both parties to send
payments to each other off-chain for an unlimited number
of times. These payments dynamically update the state (i.e.
balance distribution) within the channel without placing bur-
den on the blockchain. The most well-known bidirectional
payment channel protocol is the Lightning Network (LN) [1],
deployed on Bitcoin, which hosts bitcoins more than $520
million [2] as of the time of writing. In the off-chain payment
process of the LN protocol, both participants must exchange
a signed transaction representing the new state and revoke
the outdated state they hold. In addition, the state-of-the-art
(SOTA) payment channel protocol, Sleepy Channel (SC) [9],
follows the Lightning-style design and introduces further im-
provements, removing reliance on watchtowers [10, 27].
Non-Atomicity Issue. Despite its widespread use, LN has
been found to suffer from a design flaw identified in a recent
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study [33] (CCS’24), leading to the so-called Payout Race At-
tack. The issue arises during off-chain update process, where
one party can hold two valid states simultaneously, placing
the channel in an ambiguous state. This ambiguity creates
the risk that the channel could be finalized in a state unex-
pected by the counterparty, potentially resulting in financial
losses. Both the authors of the study and the LN’s team have
acknowledged that this issue cannot be mitigated.

We further point out that this design flaw exposes the payer
to inevitable financial losses when an anticipated message is
not received during the off-chain state update process. Con-
sider a real-world scenario in which LN is used via a wallet
application for electronic payments. After the payer confirms
the payment in the application, a signed transaction repre-
senting the new state is sent to the payee, and then the payer
awaits a message in response. However, due to issues such
as network partitioning, delays, or malicious behavior by the
payee, the payer may fail to receive the expected response.
In such cases, the wallet application remains in a prolonged
"waiting" status until it eventually times out, indicating that
the payment has not been completed. At this point, the payer
regards the payment as failed but cannot ascertain whether
the new state is successfully sent to the payee or whether the
timeout is caused by normal network issues or unresponsive
payee. The safest course of action for the payer is to forcibly
close the channel by submitting the previously held valid
state. However, if the payee is malicious and has received the
new state, they can also submit it to the blockchain, resulting
in a race condition where both parties compete to finalize
the channel using different states. If the new state submit-
ted by the malicious payee is confirmed, the payment, which
should have failed from the perspective of the payer, will still
be forcibly completed, causing the payer to unwittingly lose
funds. Conversely, even if the previously valid state submitted
by the payer is confirmed, whether by prevailing in the race
condition or because the payee is honest, the payer is still
forced to bear the transaction fee for closing the channel.

These issues fundamentally arise from the lack of atomic-
ity in payment channel state transitions. Atomicity mandates
a direct transition between valid states. In contrast, existing
PC protocols employ a multi-step process for state updates,
where both parties exchange messages to advance the new
state. This results in a window where both the old and new
states are valid simultaneously, violating atomicity. This vi-
olation enables either party to arbitrarily choose which state
to finalize on-chain, thereby creating vulnerabilities. Intuitive
solutions, such as grace periods, timeout mechanisms, or ac-
knowledgment messages, fail to address the root cause. As
long as the protocol maintains the current multi-step update
process, the channel will remain in an ambiguous state dur-
ing updates. Therefore, ensuring true atomicity necessitates a
fundamental redesign of the payment channel protocol.
Efficiency Limitations. In addition, the current design of pay-
ment channel protocols faces efficiency challenges. Specifi-

cally, both LN and SC require a four-message exchange pro-
cess to complete a single payment: two messages to update
the channel state and two additional messages to revoke the
previous state. This design introduces heavy communication
overhead, substantially increasing transaction latency in net-
works with existing delays. The impact becomes particularly
severe in cross-regional transactions where network latency
is higher. Current protocols cannot reduce communication
complexity without compromising security or requiring un-
supported Bitcoin features, indicating inherent limitations in
existing designs. This suggests the need for a fundamentally
different approach to enhance both security and efficiency.

1.1 Our Contributions
The goal of this paper is to solve inherent issues in the SOTA
PC protocols and to propose a new protocol that achieves
higher security and efficiency.

For the first time, we formalize the SOTA PC protocols,
such as LN and SC, into a common paradigm. Moreover, we
formalize the balance security for each phase of a payment
channel: creation, update, and finalization.

We demonstrate that the common paradigm inherently
lacks atomicity, leading to issues caused by race conditions,
which prevent it from satisfying the balance security def-
inition. Furthermore, we prove that any payment channel
protocol adhering to the common paradigm is incapable of
mitigating this issue.

To address this limitation, we propose an atomic paradigm
for payment channels. We prove that the atomic paradigm en-
sures atomicity, thereby eliminating vulnerabilities introduced
by race conditions. Additionally, we argue that the proposed
paradigm satisfies the balance security definition.

We present ULTRAVIOLET, a novel payment channel pro-
tocol that follows the atomic paradigm. To the best of our
knowledge, this is the first payment channel protocol that
achieves atomicity, as shown in Table 1. Our protocol pro-
vides:

• Security. Following the atomic paradigm, ULTRAVI-
OLET inherently prevents race conditions in payment
channel operations. Furthermore, we formally prove its
security using the Universal Composability (UC) frame-
work [12], with the corresponding ideal functionality
and simulator provided in Appendix A.

• Efficiency. ULTRAVIOLET achieves its efficiency with-
out relying on any computationally expensive crypto-
graphic primitives. Notably, it requires only two mes-
sages per update, effectively halving the communication
overhead compared to the LN while maintaining the
same functionality. Our evaluation across four regions
demonstrates ULTRAVIOLET’s superior performance.
The results demonstrate that ULTRAVIOLET achieves
a latency reduction of 37% compared to LN and 52%
compared to SC, while maintaining a comparable TPS
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Table 1: Comparison of different payment channel protocols.
Flexibility indicates whether a protocol supports bidirectional
payments, unrestricted lifetime, and unbound transactions.
Compatibility refers to whether the protocol relies only on
features currently supported in Bitcoin. SC’s flexibility is lim-
ited due to its restricted channel lifetime constraint. Eltoo’s
compatibility is constrained by its dependency on the yet-to-
be-implemented SIGHASH_NOINPUT feature in Bitcoin, while
Generalized Channels (GC) requires a non-deterministic digi-
tal signature scheme that is currently not available in Bitcoin.
Our proposed solution achieves all three properties, offering
atomic operations, full flexibility in payment directions and
channel lifetime, while maintaining compatibility with Bit-
coin’s existing feature set.

PC Atomicity Flexibility Compatibility
LN [1] ✗ ✓ ✓
SC [9] ✗ ✗ ✓

Eltoo [15] ✗ ✓ ✗
GC [6] ✗ ✓ ✗

ULTRAVIOLET ✓ ✓ ✓

to LN and delivering a 2× higher TPS than SC.
• Flexibility. ULTRAVIOLET supports bidirectional pay-

ments with an unrestricted lifetime, meaning the pay-
ment channel can remain open indefinitely without a
fixed expiration, and unbounded transactions, allowing
users to perform an unlimited number of transactions
without the need to reset or reopen the channel.

• Compatibility. ULTRAVIOLET does not introduce any
features not yet implemented in Bitcoin, ensuring seam-
less integration with existing systems.

2 Preliminaries

2.1 Blockchain and Bitcoin

The blockchain B is an append-only ledger that ensures con-
sistency for all participants through consensus mechanism. It
has a bounded confirmation time [31], denoted as ∆, repre-
senting the maximum time required for a valid transaction
broadcast by an honest party to be included in the ledger.

In the Bitcoin network, assets are represented as Unspent
Transaction Outputs (UTXOs), which function as digital
checks with a specific amount v and spending conditions.
To spend a UTXO, a valid witness π must be provided that
satisfies its predetermined spending conditions φ within the
UTXO, denoted as π |= φ. These conditions are governed by
scripts, which are programmable predicates that evaluate to
either true or false. The most common script type is the single
public key verification, based on a secure digital signature
scheme Σ, where a UTXO can be spent by providing a valid
digital signature σ corresponding to a specified public key

pk, denoted as σ |= pk. Another prevalent script type is the
multi-signature scheme, requiring valid signatures from m
out of n designated public keys. More advanced conditions
include relative timelock constraints, denoted as RelTime(t),
where a UTXO becomes spendable only after a specified
time interval t has elapsed since its creation on the ledger:
tcurrent − tcreation ≥ t |= RelTime(t). Formally, a script can en-
compass one or multiple conditions {φ1,φ2, ...,φn}, combined
through logical operators such as AND (∧) and OR (∨).

The mechanism to spend UTXOs is through transactions.
A transaction tx consumes one or more UTXOs as inputs
{utxo1, ...,utxok} and generates one or more new UTXOs
as outputs {utxo′1, ...,utxo′m}, where the sum of input values
must equal or exceed the sum of output values: ∑

k
i=1 vi ≥

∑
m
j=1 v′j. Each transaction is uniquely identified by its transac-

tion identifier (txid), which is computed as the cryptographic
hash of its content: txid = H(tx), using a collision-resistant
hash scheme. A UTXO is typically referenced by the txid
of its creating transaction and its output index. To validate
a transaction, the txid must be submitted to the blockchain
along with a set of witnesses {π1, ...,πk} satisfying the spend-
ing conditions of each input UTXO: ∀i ∈ [1,k],πi |= φi. Once
submitted, a valid transaction is expected to be confirmed
within a bounded time ∆. However, due to potential race
conditions, a transaction may be invalidated if a conflicting
transaction, which spends the same UTXO, is confirmed ear-
lier on the blockchain.

2.2 Payment Channels

Payment channels enable parties to conduct multiple
paymemts off-chain while preserving the security guaran-
tees of the underlying blockchain. By locking funds in a
shared UTXO and maintaining valid but unbroadcast trans-
actions that reflect the latest balance state, payment channels
minimize on-chain interactions to channel creation and fi-
nal settlement. Payment channels support various operational
features: bidirectional payments allow both parties to freely
transfer funds within the channel, unrestricted lifetime enables
the channel to operate indefinitely without expiration, and un-
bound transactions permit an unlimited number of payments
without requiring channel resets.

The most widely used payment channel protocol, the Light-
ning Network, operates through a three-phase lifecycle: open-
ing, update, and closing. In the opening phase, participants
create a funding transaction that locks their shared funds in
a multi-signature UTXO. This can be implemented using
Bitcoin’s native OP_CHECKMULTISIG opcode or optimized
with Schnorr-based protocols like MuSig/MuSig2. During the
update phase, participants exchange new commitment trans-
actions to reflect the latest balance state Si, each representing
a balance distribution. To prevent outdated states from be-
ing broadcast, the Lightning Network employs a punishment
mechanism: transitioning from state Si−1 to Si involves ex-
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changing revocation keys. These keys allow the participant to
claim all channel funds if an outdated state is published by the
counterpart. A common implementation is based on preimage:
for each payment, a revocation secret and hash pair (rh,rs) are
generated. The punishment is enforced using the revocation
secret and the participant’s signature. In the closing phase,
participants can either cooperatively broadcast a settlement
transaction or forcibly close the channel by publishing the
latest commitment transaction they hold.

Recent advances in payment channel research have intro-
duced Sleepy Channel [9], a SOTA protocol that eliminates
the need for watchtowers through an incentive-based approach
while following the Lightning-style design. The key innova-
tion lies in its finite-lifetime design: each channel is created
with a predetermined expiration time and additional collateral
requirements that incentivise honest settlement behaviour. Un-
like traditional protocol that rely on continuous monitoring or
third-party watchtowers, Sleepy Channel leverages economic
incentives and time-bound constraints to ensure security.

2.3 Universal Composability Framework
The Universal Composability (UC) framework provides a for-
mal methodology for analysing protocol security. Within this
framework, the security of a protocol is evaluated by compar-
ing its execution to an ideal functionality, which abstractly
captures the desired security properties. A protocol is consid-
ered UC-secure if, for every potential adversary in the real
protocol execution, there exists a simulator in the ideal-world
execution such that no environment can distinguish between
the two. This guarantees that the protocol is as secure as its
idealized counterpart. In the context of payment channels,
UC-secure ensures that the protocol retains its defined secu-
rity properties even when executed concurrently with other
protocols or within complex, adversarial environments. This
framework has been extensively applied to analyze various
payment channel protocols [6, 20], including the SOTA proto-
col Sleepy Channels [9].

3 A Common Paradigm for PC Protocols

3.1 Overview
As illustrated in Figure 1, LN and SC both rely on the same
overarching structure for off-chain payments. In what follows,
we recall how each protocol transitions through three main
phases—creation, update, and finalization—and emphasize
the core principle that each state update is realized via two
local copies with explicit state revocation.
Core Principle: Dual-State Copies with Explicit Revoca-
tion. A defining characteristic of both LN and SC is that any
valid channel state is captured by two local copies, one for
each participant: SA

i and SB
i , held by B and A, respectively.

These two copies must remain consistent: SA
i = SB

i .

revo
catio

n

commitment

com
mitm

ent

revocation

commitment

commitment

revocation

revo
catio

n

Figure 1: Message flow during the update process in the
Lightning Network and Sleepy Channel, both maintaining
synchronized local channel states with explicit state revoca-
tion, despite differences in sequence and details.

In practice, when updating the channel state, each partici-
pant sends the counterparty a commitment—a signed trans-
action capable of spending the channel funds and reflecting
the current state. For clarity, we denote the i-th commitment
signed by participant A as SA

i . This state is intended to be sent
to the counterparty, participant B, and can only be broadcast
on-chain by B to finalize the channel. If a state is not set to
⊥, it means the state is valid. By “valid”, we mean that the
state can be submitted by B to the blockchain to finalize the
channel without incurring any financial loss to B. Whenever a
new state (SA

i+1,S
B
i+1) is introduced, the previous state (SA

i ,S
B
i )

must be explicitly revoked by both parties. This explicit revo-
cation step, typically enforced via a punishment mechanism,
ensures that outdated states cannot be used by either party to
close the channel, thereby completing the State Replacement.

Definition 3.1 (State Replacement). When the state is up-
dated from (SA

n , SB
n ) at time t0, after receiving the new state

SA
n+1 or SB

n+1 (⊢), each party must independently revoke (⊥)
the previous state. The previous state is considered fully re-
placed only after both parties have explicitly completed the
revocation process.

∃P,Q ∈ {A,B}, ∃t0 < t1 < t2 :

⊢ SP
n+1, t1 > t > t0, SP

n →⊥, t ≥ t1

⊢ SQ
n+1, t2 > t ≥ t1, SQ

n →⊥, t ≥ t2

Three-Phase Process: Creation, Update, and Finalization
Beyond the core principle, the common paradigm follow a
three-phase process over the lifespan of the payment channel:

• Creation. Participants A and B jointly establish a pay-
ment channel on-chain, locking the initial allocation of
funds. We denote their initial local copies as SA

0 and SB
0 .

• Update. After channel creation, A and B can perform off-
chain payments by updating their local states. Suppose
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A generates a new state SA
i+1 and sends it to B. Then B

constructs SB
i+1—consistent with SA

i+1—and returns it to
A. Importantly, each party revokes their old state (SA

i ,S
B
i )

after receiving and validating the new state, preventing a
situation where they have no valid state to finalize.

• Finalization. The channel can either be closed coop-
eratively by both parties or unilaterally by either party
submitting their latest held state, SA

i or SB
i , to forcefully

close the channel. Any attempt to submit a revoked state
on-chain typically incurs a significant penalty, allowing
the honest party to claim the entire channel balance.

While many PCs have distinct implementation details and
message sequences (see Figure 1), we formalize that they are
united by a common paradigm:

• A core principle dictating that each valid state is carried
by two synchronized local copies with explicit revoca-
tion requirement.

• A three-phase process: channel creation, off-chain up-
date that involves sending new states and explicitly
revoking old states, and finalization that uses a non-
revoked state without punishment.

3.2 Balance Security
Balance security is the most critical property of payment
channel protocols. Building on prior work [6,28], we formally
define it as follows:

Definition 3.2 (Balance Security). A payment channel proto-
col Π satisfies balance security if, for any honest participant
P with balance b in the latest consensus-approved state Si,
the channel cannot be finalized in any other state S with a
balance b′ < b for P.

We examine the requirements of balance security for the
three phases of payment channel:

• Creation. A payment channel is created only through the
mutual agreement of both participants, with the locked
funds placed under their joint control.

• Update. The channel state can only be updated when
both participants reach an agreement on the new pay-
ment. Once the update is completed, the new state is
considered as the latest consensus-approved state.

• Finalization. When the channel is ultimately closed, an
honest participant must receive at least the balance dis-
tributed to them in the latest consensus-approved state.

3.3 Non-Atomicity Issue: Race Condition
The common paradigm provides an elegant blueprint for PC
protocols. However, it fails to guarantee balance security due
to the presence of race condition vulnerabilities, as illustrated
in Figure 2. Below, we provide a detailed explanation.

Let A be the honest payer and B the malicious payee. Sup-
pose they are currently operating on the valid state (SA

i ,S
B
i ),

Figure 2: Race condition in the common paradigm: Without
atomic updates, either SA

i+1 or SB
i may be finalized, violating

balance security.

and A initiates a payment to B to transition the channel to
a new state (SA

i+1,S
B
i+1). Initially, A sends SA

i+1 to B. Upon
receiving the new state, B does not respond and instead sub-
mits SA

i+1 directly on-chain at time t, attempting to finalize the
channel using this state. Meanwhile, since A does not receive
the expected response, such as a revocation message in the
LN protocol or a commitment message representing the new
state (SB

i+1) in the SC protocol, A may submit the valid state
SB

i on-chain to forcibly close the channel to protect its funds.
At this point, the update process has not been completed,

so (SA
i ,S

B
i ) remains the latest consensus-approved state. How-

ever, due to the asynchronous nature of blockchain transaction
ordering and the influence of miners, a race condition win-
dow exists during the interval [t, t +∆], where ∆ represents
the upper bound time for transaction confirmation. There
is no guarantee as to which of the two states will be final-
ized first. If SA

i+1 is ultimately finalized, party A unwittingly
loses funds compared to the latest consensus-approved state
(SA

i ,S
B
i ), thereby violating the property of balance security.

We highlight that the root cause of this issue lies in the lack
of atomicity in the update phase of the common paradigm.

Definition 3.3 (Atomicity). A state transition Si → Si+1 is
atomic if and only if:

∀Q∈{A,B},∀t : (SQ
i ̸=⊥)∧(S

Q
i+1 ̸=⊥)∧(S

Q
i ̸= SQ

i+1)= false

where t represents any point in time during the transition
process.

By atomicity, we mean it is impossible for two different
valid states (e.g., SA

i and SA
i+1) to be simultaneously finalizable

on-chain. We formally prove the impossibility of atomicity in
the common paradigm using a proof by contradiction.
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Theorem 3.1 (Impossibility of Atomicity in the Common
Paradigm). No protocol strictly adhering to the common
paradigm can achieve atomic state update, leaving it vul-
nerable to race conditions and violating balance security.

Proof. Assume there exists a protocol Π conforming to the
common paradigm, and suppose it satisfy atomicity:

∀t : (SA
i ̸=⊥)∧ (SA

i+1 ̸=⊥)∧ (SA
i ̸= SA

i+1) = false

Here, SA
i+1 is the new state generated by A following SA

i , satis-
fying SA

i ̸= SA
i+1. According to the State Replacement princi-

ple, once B receives the new state (⊢ SA
i+1), it gains the ability

to finalize the channel using SA
i+1 without incurring any finan-

cial loss, meaning SA
i+1 ̸=⊥. However, before B revokes the

previous state (SA
i →⊥), it holds that SA

i ̸= ⊥. At any time
point t0 between the receipt of the new state and the revoca-
tion of the previous state, we have SA

i ̸= ⊥, SA
i+1 ̸= ⊥, and

SA
i ̸= SA

i+1. These time points t0 form a time window, which
contradicts the assumption. Therefore, the common paradigm
fails to satisfy atomicity.

Note that the processes of receiving new states and revok-
ing old states rely on communication between both parties.
Under normal conditions, the duration of this time window is
primarily determined by the network latency between the two
participants.

The lack of atomicity in the State Replacement mechanism
during the update phase of the common paradigm introduces
the risk of race conditions. Consequently, payment channel
protocols adhering to this design are fundamentally unable to
satisfy the essential property of balance security.

3.4 Remark on Sleepy Channels

The study on Sleepy Channels claims to have formally proven
the security of the protocol within the UC framework. How-
ever, we point out that since it fundamentally adheres to the
common paradigm, its update phase lacks atomicity, result-
ing in a race condition issue. Therefore, Sleepy Channels
fails to achieve the most critical property of payment channel
protocols: balance security.

Observation 3.2. In the update phase of Sleepy Channels’
ideal functionality, it is explicitly stated that under exceptional
circumstances requiring ForceClose, two states may coexist
and be used to close the channel without punishment. How-
ever, the security definition is insufficiently comprehensive, as
it fails to account for the race condition issue. Consequently,
the claimed security guarantees are fundamentally flawed.

4 Atomic Paradigm

4.1 Overview
To fundamentally address the race condition problem in the
common paradigm, we propose a novel atomic paradigm that
ensures the protocols adhering to this paradigm satisfy the
balance security property.
Core Principle: Single-Sided State with Transformation.
During each update, the new state is generated solely by a
single participant, who then sends it to the other party, while si-
multaneously all existing states are automatically transformed
into this new state.

Definition 4.1 (State Transition). When participant P sends
a new state SP

n to the other party at t0, all existing states
simultaneously transform into this new state:

∀Q ∈ {A,B},∃P ∈ {A,B},∀k,∃t0 : SQ
k → SP

n , t ≥ t0

where SQ
k → SP

n denotes the automatic transformation of state
SQ

k sent by participant Q into the new state SP
n .

The channel evolves through three main phases:
• Creation. Like common paradigm, both participants

jointly establish the channel with initial state (SA
0 ,S

B
0 ).

• Update. After creation, any participant can perform up-
dates through State Transition. To illustrate this process,
consider the following example. Suppose the current
states are:

– Several states generated by A, held by B: SA
0 , ...,S

A
i

– Several states generated by B, held by A: SB
0 , ...,S

B
j

When B initiates a payment by sending a new state SB
j+1

to A, all prior states are automatically transformed to the
new state: ∀k ≤ i : SA

k → SB
j+1 and ∀k ≤ j : SB

k → SB
j+1.

• Finalization. The channel can be closed cooperatively
by both parties. Alternatively, either party can finalize the
channel using any state they hold, which, due to the State
Transition during the update phase, will be equivalent to
the latest valid state.

We formalize the atomic paradigm:
• A core principle dictating that each latest valid state

is sent by a single participant, with all existing states
transforming accordingly.

• A three-phase process: channel creation, off-chain up-
dates involving atomic State Transition, and finalization
that can utilize any valid state.

4.2 Security Analysis of the Atomic Paradigm
We now prove that our atomic paradigm provides both atom-
icity and balance security through State Transition.

Theorem 4.1 (Atomicity Guarantee). The atomic paradigm
achieves atomic state transitions, preventing any race condi-
tions situation.
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Proof. Assume there exists a protocol Π conforming to the
atomic paradigm, and suppose it does not satisfy atomicity:

∃t0 : (SA
i ̸=⊥)∧ (SB

j ̸=⊥)∧ (SA
i ̸= SB

j ) = true

Here, SB
j is the new state following SA

i during an update. Ac-
cording to the State Transition principle, when B sends SB

j to
A, the state transition SA

i → SB
j occurs, ensuring that SA

i = SB
j .

Therefore, there cannot exist a time t0 such that SA
i ̸= SB

j ,
which directly contradicts the assumption. The paradigm is
proven to satisfy atomicity.

Theorem 4.2 (Balance Security Preservation). The atomic
paradigm maintains balance security across creation, update,
and finalization phases according to Definition 3.2.

Proof. We prove balance security holds for each phase:
Creation. Consistent with the common paradigm, the chan-
nel is created only through the mutual agreement of both
participants, with the locked funds under joint control. At
creation, both parties each hold a valid state reflecting the
initial distribution of funds.
Update. An update occurs only when both parties agree on the
new state. The update phase adheres to atomicity, satisfying:

(SQ
i ̸=⊥)∧ (S

Q
i+1 ̸=⊥) = false.

This ensures that during the update process, the previous state
SQ

i remains the only valid consensus-approved state. Once
the update is completed, the new state SQ

i+1 becomes the sole
consensus-approved state.
Finalization. In addition to cooperative closure through mu-
tual agreement, either party can finalize the channel using any
state they hold. Due to the State Transition during the update
phase, any such state is guaranteed to be equivalent to the
latest consensus-approved state SP

n , ensuring no loss of funds
for the participants.

Corollary 4.3 (Security Enhancement). The atomic paradigm
strictly enhances the security of payment channels by provid-
ing all security properties while eliminating race conditions
through automatic State Transition.

Therefore, we have shown that our atomic paradigm re-
solves the race condition vulnerability through its State Tran-
sition mechanism while maintaining all security properties.

5 ULTRAVIOLET Protocol

5.1 Protocol Overview
We introduce the ULTRAVIOLET protocol using an incremen-
tal construction approach. To develop a protocol that adheres
to our new paradigm, we begin with an intuitive toy protocol
as a starting point and iteratively refine its design.

(a) Toy protocol
1. B sends the revocation secret for SA

i−1, if not sent yet.
2. A sends the revocation secret for SB

j , if not sent yet.
3. A sends the new state SA

i to B.

(b) Remove Punishment Mechanism
1. A sends the new state SA

i to B.

(c) Introduce Resolve Mechanism
1. A sends the new state SA

i to B, along with the set of resolve

states {S↬SB
n

A,i | n ∈ [0, j]}.

(d) Final Protocol
1. B sends the revocation secret for SA

i−2, if such a state exists.
2. A sends the new state SA

i to B, along with the resolve state

S
↬SB

j
A,i and, if SB

j−1 exists, the resolve state S
↬SB

j−1
A,i .

Figure 3: Incremental Construction of the ULTRAVIOLET
Protocol, illustrating the evolution from (a) Toy Protocol to
(d) Final Protocol, with focus on the Update phase for Party
A’s i-th payment, assuming B has completed j payments.

For clarity, we focus on the design of Update phase, which
differentiates our protocol from the common paradigm fol-
lowed by traditional Lightning-style channels. We assume
that parties A and B have created a channel and possess an
initial publishable state, SB

0 and SA
0 , respectively.

Toy Protocol. Figure 3(a) illustrates the state update process
of a toy protocol. During each update, if the payee holds
a valid state, they first revoke it. We recall that a state is
’valid" means that this state can be submitted to the blockchain
and it cannot occur any finance loss (punishment). Then, if
the payer also holds a valid state, they revoke it as well and
proceed to send the new state to the payee, completing the
payment. This simple design ensures that no two valid states
exist simultaneously during the update phase, eliminating
the race conditions inherent in the common paradigm and
guaranteeing atomicity in the state update process.

However, this protocol also introduces significant issues. If
A (the payer) is malicious while B (the payee) is honest, A can
withhold any response after B revokes their valid state. In this
case, B cannot proceed with a cooperative finalization, nor can
they perform a forced finalization since they no longer hold
any valid state. Similarly, if A is honest and B is malicious, A
completes the state update by revoking their valid state and
sending the new state to B. At this point, B holds the only
valid state, and if B becomes unresponsive, A is left unable to
finalize the channel, either cooperatively or forcibly.

Thus, while this toy protocol addresses the race condition
issue, it introduces critical fairness and liveness issues. When
either party is malicious or unresponsive, the honest party is
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Figure 4: An illustrative example of the resolve mechanism.

vulnerable to a denial-of-service (DoS) attack, leaving them
unable to finalize the channel forcibly. This could result in
funds being indefinitely locked within the channel, rendering
the protocol practically unusable.
Remove Punishment Mechanism. To address the issues in
the toy protocol, one improvement is to remove the punish-
ment mechanism entirely. As shown in Figure 3(b), the first
two steps of the toy protocol related to punishment are re-
moved, simplifying the process. During each state update,
the payer directly sends the new state to the payee. In this
approach, if one party becomes unresponsive during coop-
erative finalization, the honest party can commit their latest
valid state to finalize the channel forcibly, allowing them to
withdraw funds from the channel.

However, this straightforward modification introduces a sig-
nificant drawback. It allows either party to hold multiple valid
states simultaneously, violating the atomicity emphasized in
our new paradigm and reintroducing the race condition prob-
lem. Consequently, this design fails to ensure that the finalized
state is the latest one. A malicious participant could exploit
this by competing to submit an outdated but more favorable
state for finalization, undermining the security of the protocol.
Introduce Resolve Mechanism. Previous protocol designs
exhibit significant shortcomings: either honest users are vul-
nerable to DoS attacks, leading to locking of funds, or state
updates lack atomicity, failing to ensure that the channel is
finalized with the latest state. To address these issues, we pro-
pose a novel Resolve Mechanism, as depicted in Figure 3(c).
In this design, during each state update, the payer sends the
new state to the payee along with a set of resolve states, each
corresponding to a previously held state by the payer.

To clarify the principle of the resolve mechanism, consider
the following example. Suppose B has just completed its j-
th payment to A. At this point, A holds a set of valid states,
denoted as SA

set = {SB
n | n ∈ [0, j]}, where the latest state is SB

j .
As shown in Figure 4, let SB

j represent a channel state where
A’s balance VA is 10 and B’s balance VB is also 10. Now, If A
initiates its i-th payment to B, transferring an amount of 5, the
new state SA

i , reflecting updated balances of VA = 5 and VB =
15, is sent to B together with a set of resolve states constructed

for every state in SA
set. These resolve states allow B, within

a predefined time window, to redistribute the funds belong-
ing to A from any of states held by A. Specifically, for SB

j ,

the corresponding resolve state S
↬SB

j
A,i allows B to redistribute

the 10 units of funds originally allocated to A, transferring 5
units to B itself as per the updated state SA

i . In this way, if A
commits outdated state SB

j for finalization, B can immediately
use the corresponding resolve state to effectively perform a
state transition, ensuring that the channel is finalized with
the latest state SA

i . Conceptually, this can be expressed as:

SB
n

S↬SB
n

A,i−−−→ SA
i , for n ∈ [0, j]. In this manner, the resolve mech-

anism ensures that outdated states can be transitioned to the
latest state during finalization.

It is worth noting that when the balance belonging to A
in an outdated state SB

n is less than A’s balance in the latest
state SA

i —for example, when VA = 0 and VB = 20 in SB
0 —the

corresponding resolve state cannot redistribute funds to align
with the latest state, as it can only reallocate funds originally
held by the payer A. In such cases, a rational A would never
attempt to finalize the channel with SB

0 , as doing so would lead
to a financial loss compared to the latest state. For simplic-
ity, our discussion excludes such state where only irrational
participants would commit.

The introduction of the resolve mechanism effectively ad-
dresses the security issues identified in the previous protocol
designs:

• DoS Attacks. If B is honest while A is malicious or unre-
sponsive, B can forcibly finalize the channel by commit-
ting the latest state SA

i . Conversely, if A is honest and B
is malicious or unresponsive, the rational A can commit
the latest state SB

j held. During the designated time win-
dow, if B commits the corresponding resolve state, the
channel will be finalized in the globally latest state SA

i .
Otherwise, the channel will be finalized in the state SB

j ,
resulting in a financial loss for the malicious B, while
the honest A receives more funds than they are entitled
to under the globally latest state SA

i .
• Atomicity. During the state update, the payer sends the

new state and the resolve states for all outdated states
held. This ensures that if a malicious party attempts to
finalize the channel with a more favorable outdated state,
the honest party can commit the corresponding resolve
state to transition the channel to the latest state. In other
words, for every outdated state that a rational user may
commit, the counterparty holds the corresponding re-
solve state, which could transition it to the latest state.
In this way, each outdated state can also be considered
as having been updated to the new state by sending re-
solve state, and the update can be seen as a one-time
completion, which conforms to atomicity.

This protocol design adheres to our new paradigm, ensuring
atomicity while maintaining balance security. However, this
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design also presents certain limitations:
• Storage Cost: Each party must store resolve states for all

historical states. For a channel with n states, this results
in O(n2) storage complexity, as each new state necessi-
tates resolve states for all prior states.

• Communication Overhead: The number of resolve states
transmitted increases linearly with the channel updates,
leading to significant communication overhead.

• State Management: Parties must carefully track and orga-
nize all historical states and their corresponding resolve
states, making the implementation more complex and
error-prone.

These concerns make this design impractical for long-lived
payment channels with frequent updates.
Final Protocol. To address the limitations of the previous de-
sign, we reintroduce the punishment mechanism as a means
of pruning, ultimately arriving at the final protocol. As de-
picted in Figure 3(d), during each state update, the payee first
revokes their second-to-last state. Subsequently, the payer
sends the resolve states for the latest two states held, along
with the new state, to the payee.

This design retains the security guarantees of the previous
protocol while significantly reducing storage and communi-
cation costs:

• Storage and Communication. By requiring the payee
to revoke their second-to-last state before receiving the
new state, the protocol ensures that no more than two
valid states exist at any given time for either party. Conse-
quently, the resolve states only need to be sent and stored
for the two latest states. This reduces communication
overhead to a constant level per update and decreases the
storage complexity of resolve states from O(n2) to O(1)
by merely introducing an O(n) storage requirement for
revocation secrets.

• Balance Security. Similar to the previous design, the
atomicity of state updates is maintained by requiring the
payer to send resolve states along with the new state to
the payee. Furthermore, when one party is malicious or
unresponsive for collaborative finalization, the honest
party can commit their latest valid state. If this state is not
the globally latest state, the malicious party is forced to
commit the corresponding resolve state to avoid financial
loss. This ensures that the channel is finalized in the
globally latest state. Specifically, even if A receives the
revocation secret during a state update but refuses to
send the new state to B, B still retains an valid state that
has not been revoked, which can be used for finalization.
This effectively prevents DoS attacks.

5.2 Details of ULTRAVIOLET

We provide a detailed exposition of the ULTRAVIOLET pro-
tocol, designed to enable secure, efficient, flexible, and com-
patible off-chain payments between two parties. The protocol

strictly adheres to the principles of the atomic paradigm, guar-
anteeing atomicity and balance security across all phases of
its execution. It is systematically divided into three phases:
creation, update, and finalization, incorporating novel resolve
and punishment mechanisms. The complete workflow is de-
picted in Figure 5. The formal protocol modelled in UC frame-
work can be found in Appendix A.3.

Suppose party A and B fund the payment channel C us-
ing vA from txAF and vB from txBF , creating a channel with
a total capacity of v = vA + vB. We assume that (pkA,skA)
and (pkB,skB) serve as the authentication key pairs for txAF

and txBF , respectively, and will also be used in subsequent
payments. Let Ai and B j denote the channel states, where Ai
corresponds to party A’s i-th payment B j corresponds to B’s
j-th payment, each reflecting the fund distribution following
that payment.
Creation. To establish the channel, we follow a process simi-
lar to Lightning-style channels: both parties lock their funds
into a shared funding transaction txF , funded from their re-
spective transactions txFA and txFB . This creates a channel
with a total capacity v = vA + vB, where vA and vB represent
the funds contributed by party A and party B, respectively.
Before broadcasting txF , they sign the refund transaction with
each other in advance, ensuring their funds can be reclaimed
if necessary after the channel is established. These refund
transactions, which distribute the channel funds according to
the initial balances vA and vB, are effectively equivalent to
zero-value payments executed between the parties prior to
channel creation, consistent with the structure of the payment
transaction during the update phase.

For better readability, we assume each party executes two
such refund transactions in advance, ensuring both parties
have two valid states during the update phase. Note that this is
for illustrative purposes only, a single such transaction suffices
in practice.
Update. The state update design is the core of our protocol,
enabling secure and efficient off-chain payments. The follow-
ing explanation is presented from the perspective of party A’s
i-th payment, assuming party B has completed j payments.

The update process begins with revoking the outdated state.
Party B, the payee, generates a new revocation secret and
hash pair (rhBi ,rsBi) and sends rhBi along with the revocation
secret rsBi−2 for revoking the outdated state Ai−2 to party A,
the payer.

Upon receiving rsBi−2 and rhBi , A generates the i-th pay-
ment transaction txAi := tx(txF , [⟨skA, vA

Ai
⟩, ⟨(rsBi ∧ skA) ∨

(skA ∧skB) ∨ (RelTime(T ) ∧ skB), vB
Ai
⟩]). This payment

transaction updates the channel state to reflect the balances
corresponding to state Ai, where vA

Ai
and vB

Ai
are the respective

balances of A and B after this payment. As illustrated in Fig-
ure 6, txAi contains two outputs: one representing vA

Ai
, which A

can claim immediately upon confirmation on the blockchain,
and the other representing vB

Ai
, which can be spent by different

conditional branches. Under normal circumstances, B must
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Creation. Before establishing the channel, both parties must first obtain the refund transaction along with respective
signature. The following describes the process from party A’s perspective, with party B following a symmetric procedure.
The steps are as follows:
1. Generate two revocation secret and hash pairs (rhA-1 ,rsA-1), (rhA0 ,rsA0), sends rhA-1 and rhA0 to party B.
2. Upon receiving the revocation hash rhA-1 and rhA0 from the B, generate funding transaction txF := tx([txAF , txBF ],⟨skA∧

skB,v⟩), along with txA-1 := tx(txF , [⟨skA, vA⟩, ⟨(rsB-1 ∧ skA) ∨ (skA ∧skB) ∨ (RelTime(T ) ∧ skB), vB ⟩]) and txA0 :=
tx(txF , [⟨skA, vA⟩, ⟨(rsB0 ∧ skA) ∨ (skA ∧skB) ∨ (RelTime(T ) ∧ skB), vB ⟩]).

3. Generate signatures σA
F , σA

A-1
and σA

A0
for transactions txF , txA-1 and txA0 , respectively, using skA.

4. Send txA-1 , txA0 and corresponding signatures σA
A-1

and σA
A0

to B.
5. Upon receiving txB-1 , txB0 and corresponding signatures σB

B-1
and σB

B0
from B, send σA

F to B.
6. Upon receiving σB

F from B, post (txF , {σA
F ,σ

B
F }) on B. Once txF is confirmed on B, the channel is successfully created.

i-th Payment. For party A’s i-th payment, assuming party B has completed j payments, once both parties have agreed on
this payment, the process unfolds as follows:
First, party B, the payee:
1. generate a new revocation secret and hash pair (rhBi ,rsBi ), then send rhBi to party A for the current payment, along with

rsBi−2 to revoke the outdated payment transaction txAi−2 .
Then, party A, the payer:
1. Upon receiving rhBi and rsBi−2 , generate i-th payment transaction txAi := tx(txF , [⟨skA, vA

Ai
⟩, ⟨(rsBi ∧ skA) ∨ (skA ∧skB)

∨ (RelTime(T ) ∧ skB), vB
Ai
⟩]), reflecting the updated balance state.

2. Generate resolve transaction tx
↬txB j
Ai

:= tx(txB j , [⟨skA, vA
Ai
⟩, ⟨skB, vA

B j
− vA

Ai
⟩]) corresponding to j-th payment txB j from

party B.

3. If vA
Ai
≤ vA

B j−1
, generate resolve transaction tx

↬txB j−1
Ai

:= tx(txB j−1 , [⟨skA, vA
Ai
⟩, ⟨skB, vA

B j−1
− vA

Ai
⟩]). Otherwise, generate

resolve transaction tx
↬txB j−1
Ai

:= tx(txB j−1 , [⟨skA, vA
B j−1
⟩, ⟨skB, 0⟩]) corresponding to ( j-1)-th payment txB j−1 from party B

4. Generate signatures σA
Ai

, σA
Ai(B j)

and σA
Ai(B j−1)

for txAi , tx
↬txB j
Ai

and tx
↬txB j−1
Ai

, respectively, using skA.

5. Send the payment transaction txAi , along with the resolve transactions tx
↬txB j
Ai

and tx
↬txB j−1
Ai

to party B.
Finalization. The channel can be finalized either collaboratively or forcibly by any party. Assuming that party A has
completed i payments and party B has completed j payments, with txAi as the latest payment transaction and Ai as the
globally latest state. Collaborative finalization proceeds as follows:
1. Party A generates txC := tx(txF , [⟨skA, vA

An
⟩, ⟨ skB, vB

An
⟩]), sign it with skA to produce the signature σA

C, and sends (txC,σ
A
C)

to B.
2. Party B signs txC to produce σB

C, and post (txC, {σA
C, σB

C}) on B, finalizing the channel in the globally latest state Ai.
For party A, the forced finalization proceeds as follows:
1. Party A uses skA to generate signature σA

B j
for transaction txB j and post (txB j , {(σA

B j
,σB

B j
)}) on B.

2. Upon txB j is confirmed on B, party B uses skB to generate the signature σB
Ai(B j)

for the transaction tx
↬txB j
Ai

, then posts

(tx
↬txB j
Ai

, {σA
Ai(B j)

, σB
Ai(B j)

}) on B. If tx
↬txB j
Ai

is confirmed on B before the relative time T , the channel finalizes in the
globally latest state Ai.

For party B, the forced finalization proceeds as follows:
1. Party B uses skB to generate σB

Ai
for txAi and post (txAi , {(σA

Ai
,σB

Ai
)}) on B, finalizing the channel in the latest state Ai.

Punishment. If party A observes that a revoked payment txAk , corresponding to the k-th payment, has been posted by B and
confirmed on the ledger B, it proceeds with the following steps to execute the punishment:
1. Generate the punishment transaction txAk

pnsh := tx(txAk , ⟨skA, vB
Ak
⟩) corresponding to txAk .

2. Generate signature σ
Ak
pnsh for punishment transaction txAk

pnsh using skA and rsBk .

3. Post (txAk
pnsh, σ

Ak
pnsh) on B and to get all funds within the channel.

Figure 5: ULTRAVIOLET Protocol

10



A

B
B

A

A

Figure 6: Flow for payment and resolve transaction.

wait for a relative time T to claim vB
Ai

. During this period,
either due to the punish mechanism, A can punish and take
away the funds vB

Ai
that originally belonged to B, or due to the

resolve mechanism, this portion of funds can be redistributed
to A and B by a subsequent resolve transaction.

In addition to the payment transaction txAi , party A gener-
ates resolve transactions for the two valid payments it holds,
txB j and txB j−1 corresponding to state Ai. the resolve transac-

tion tx
↬txB j
Ai

for txB j is structured as tx(txB j , [⟨skA, vA
Ai
⟩, ⟨skB,

vA
B j
− vA

Ai
⟩]). Figure 6 illustrates the flow of the resolve trans-

action tx
↬txAi
B j+1

generated by B for txAi in a potential future
scenario where B initiates the ( j+1)-th payment to A. In our

current scenario, the structure of tx
↬txB j
Ai

and tx
↬txB j−1
Ai

are

symmetric to tx
↬txAi
B j+1

, redistributing the portion of funds in
outdated payment txB j and txB j+1 that originally belong to A
to transition their state to the globally latest state Ai.

It should be noted that for the latest valid payment txB j

held by A, the funds originally belonging to A can always
be redistributed to match the globally latest state Ai. This
is because the payment between txB j and txAi can only be
a payment from A to B; otherwise, j would not represent
the latest payment from B to A. Hence, it is guaranteed that
vA

Ai
≤ vA

B j
. However, due to the existence of the payment txB j−1

from B to A between payments txB j−1 and txAi , it follows that
vA

B j−1
< vA

B j
. Consequently, there may be cases where vA

Ai
>

vA
B j−1

, preventing txB j−1 from being redistributed to match the
state Ai. In this case, the corresponding resolve transaction

tx
↬txB j−1
Ai

is structured as tx(txB j−1 , [⟨skA, vA
B j−1
⟩, ⟨skB, 0⟩]).

After signing the newly generated payment transaction
and the two resolve transactions, A sends them together to
B. These innovative payment and resolve transactions in the
update phase will play a crucial role in the finalization phase.
Finalization. Similar to Lightning-style channels, the estab-
lished channel can be efficiently finalized collaboratively with
a single transaction, txC, when both parties agree on the fund

distribution. Here, we focus on scenarios where one party
is unresponsive or malicious, and the other party attempts
to finalize the channel forcibly. Assuming that party A has
completed i payments and party B has completed j payments,
with txAi representing the latest payment transaction between
them.

For party B, to finalize channel forcibly, B can directly post
txAi , which represents the globally latest state Ai. Once the
transaction is confirmed on the blockchain, A will immedi-
ately receive their share of the funds, V A

Ai
, while B will receive

their share, V B
Ai

, after waiting for the relative time T , ensuring
the channel finalizes in the latest state Ai.

For a rational party A, to finalize channel forcibly, A will
post the latest valid transaction txB j they possess. Once the
transaction is confirmed on the blockchain, B will immedi-
ately receive their share of the funds, V B

B j
. Based on the earlier

proof that vA
Ai
≤ vA

B j
, it follows that vB

Ai
≥ vB

B j
. Consequently, a

rational B will post the resolve transaction tx
↬txB j
Ai

correspond-
ing to txB j within the relative time T , redistributing the funds
originally belonging to A in txB j to prevent any financial loss.
This ensures the channel ultimately finalizes in the globally
latest state Ai.
Punishment. According to our protocol design, each party
holds at most two valid states during the existence of the
channel. If a party attempts to post a revoked transaction,
the counterparty can utilize the corresponding revocation
secret obtained during the update phase to post a punishment
transaction, thereb claiming the entire funds of the channel.

5.3 Analysis

Security. We informally discussed protocol security in Sec-
tion 5.1. To formally model and prove the security of
our protocol, we employ the synchronous Global Univer-
sal Composability (GUC) framework [13], following prior
work [6–8, 18, 19, 21]. This framework enables us to model
our protocol within a global setup that incorporates a global
ledger B(∆,Σ,V ), a global clock Fclock, and FGDC. Due to
space constraints, we provide a high-level overview of our
security model here, with the complete formal description
presented in Appendix A.

Firstly, we define the ideal functionality F that abstracts the
expected operations within our protocol and ensures balance
security during different phase. F stipulates the input/output
behavior from our protocol, along with its impact on the global
setup and potential adversarial actions. In the ideal world, all
parties interact solely with F , which acts as a trusted third
party. We then formally define the real-world protocol Π in
the UC framework. To prove that our protocol realizes F , we
construct a simulator S that translates any potential attack on
the protocol Π into an equivalent attack on the ideal function-
ality F . In essence, this means that Π is as secure as F , as
any actions that an adversary could take in the real protocol
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can also be simulated in the ideal setting. Our proof hinges
on showing that no probabilistic polynomial-time (PPT) en-
vironment E can distinguish between interactions with the
real-world protocol Π and interactions with the ideal func-
tionality F with non-negligible probability. To achieve this
indistinguishability, we ensure that the simulator S replicates
the behavior of Π by producing identical outputs and ledger
transactions in matching rounds for both real and ideal execu-
tions. This guarantees that messages, transactions, and their
timing align in both worlds. Consequently, the environment
E observes the same information in both scenarios, prevent-
ing it from distinguishing between real and ideal protocol
executions.
Efficiency. ULTRAVIOLET achieves high efficiency by avoid-
ing the use of any computationally expensive cryptographic
primitives. Structurally, each state update requires only two
communication messages: a revocation message from the
payee to the payer and a state update message from the payer
to the payee. This design reduces the communication over-
head by half compared to the traditional PCs, e.g., LN and
SC, which requires four communication messages per update.
Flexibility. ULTRAVIOLET demonstrates remarkable flexi-
bility by supporting general bidirectional payment channels,
allowing either party to initiate payments to the other. Addi-
tionally, it avoids the use of absolute time locks in transaction
construction, enabling an unrestricted channel lifetime—so
long as both parties agree to keep the channel open, it remains
valid without requiring any additional operations. Further-
more, the absence of counters or similar mechanisms ensures
the protocol supports unbounded transactions, accommodat-
ing an indefinite number of updates.
Compatibility. Our protocol is designed with strong com-
patibility, relying solely on existing Bitcoin features, such as
multi-signature and relative time locks, to achieve its func-
tionality. By avoiding the introduction of any extra complex
cryptographic primitives or unimplemented Bitcoin features,
ULTRAVIOLET ensures seamless integration with existing
blockchain systems, maintaining compatibility with the cur-
rent ecosystem.

6 Evaluation

6.1 Implementation

We implement the complete ULTRAVIOLET protocol de-
scribed in Section 5 using approximately 8 000 lines of Go
code. The implementation leverages gRPC for network com-
munication, employs 2 048-bit ECDSA for digital signatures,
and uses 256-bit SHA256 as the hash function. Addition-
ally, it utilizes the OP_CHECKMULTISIG opcode to construct
multisignature addresses as payment channels and adopts a
revocation and punishment mechanism based on providing
the preimage (revocation secret) and signatures.

To ensure a fair comparison, we also implement the Light-
ning Network and Sleepy Channels using the same technol-
ogy stack (Golang, gRPC, 2 048-bit ECDSA, and 256-bit
SHA256) and similar mechanisms (OP_CHECKMULTISIG for
constructing multisignature addresses and the preimage and
signatures for revocation).

6.2 Performance Evaluation
Experimental Setup. To evaluate the performance of UL-
TRAVIOLET, we conduct experiments and compare it against
two SOTA protocols: Lightning Network and Sleepy Chan-
nels. The experiment involves performing 10 000 sequential
payments for each protocol, repeated five times. Sequential
payments mean that each payment is initiated only after the
previous one is fully completed.

During the experiments, we measure the latency of each
payment, defined as the time from initiating a transaction to
completing it. From these measurements, we compute the
average latency and the 95th-percentile latency for each pro-
tocol. Additionally, we calculate the transactions per second
(TPS) achieved by each protocol.

The experiments were conducted on Azure D8s_v4 vir-
tual machines, distributed across four distinct regions: West
US (Virginia), East US (Phoenix), South UK (London), and
Southeast Asia (Singapore). Each node is equipped with eight
virtual CPUs (vCPUs) powered by Intel(R) Xeon(R) Platinum
8272CL CPU @ 2.60GHz processors, 32 GB of memory,
and a network bandwidth of 12 500 Mbps. All nodes run on
Ubuntu 24.04 LTS system.

In our experiments, we designate the node in Virginia as
the payer, initiating transactions to nodes in other regions
(Phoenix, London, and Singapore) which serve as payees.

Latency Analysis. Figure 7 shows the average transaction
latency across different regions. ULTRAVIOLET achieves sig-
nificantly lower latency compared to existing solutions, with
average transaction completion times of 54.38ms, 132.11ms,
and 180.84ms in Phoenix, London, and Singapore respec-
tively. This represents a 1.59× improvement over LN and a
2.10× improvement over SC. The 95th percentile error bars
demonstrate ULTRAVIOLET’s stability, with maximum varia-
tions of 0.6ms, 1.96ms, and 1.69ms across regions, compared
to higher variations in LN (up to 4.18ms) and SC (up to
8.37ms). The increasing latency from Phoenix to Singapore
reflects the dominant impact of network latency on transaction
times. ULTRAVIOLET’s superior performance stems from its
optimized commitment scheme that reduces round-trip com-
munications, requiring fewer message exchanges for each
transaction.

Throughput Analysis. Figure 8 presents the throughput
achieved by each system. ULTRAVIOLET achieves 18.39 TPS
in Phoenix, 7.57 TPS in London, and 5.53 TPS in Singapore,
showing comparable performance to LN (18.23 TPS, 7.66
TPS, 5.46 TPS). Both systems significantly outperform SC
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Figure 7: Average transaction latency across different regions
with 95th percentile error bars.

(8.79 TPS, 3.87 TPS, 2.75 TPS) by approximately 2×.
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Figure 8: Average throughput across different regions.

6.3 On-chain Cost Analysis
In the context of unilateral channel closure without coop-
eration, where both parties withdraw their funds from the
channel (i.e., no punishment is triggered), ULTRAVIOLET and
LN require a single on-chain transaction, while SC require
two on-chain transactions.

For unilateral closure transactions, when aligning the im-
plementations of the three protocols to a unified approach (i.e.,
using op_multisig to create a multisig address and utilizing
revocation secrets and signatures for revocation and punish-
ment mechanisms), the transaction size in ULTRAVIOLET is
slightly larger than that of the LN. This is due to an additional
conditional branch needed to support resolving transactions.
On the other hand, the transaction size in SC is even larger,
as it introduces not only an additional conditional branch but
also an additional output to accommodate the specific design
of its protocol.

7 Related Works

There are several research directions in off-chain payments
as a scalability solution for first-generation blockchains. In

this section, we provide a brief overview of related work and
position ULTRAVIOLETwithin this context.

Payment Channel Protocols. Numerous protocols have
been proposed to enable efficient and secure off-chain trans-
actions. Early efforts focused on unidirectional channels,
supporting transfers in a single direction, while later bi-
directional designs allowed participants to act as both sender
and receiver [16]. Subsequent research addressed challenges
such as privacy [24], multi-party support [23], and reliance
on watchtowers [9, 34]. Recently, [5] tackled security issues
involving rational miners, differing from our focus. Beyond
traditional payment channels, state channels [20] introduced
support for state transitions but depend heavily on blockchain
scripting capabilities. Generalized channels [6] further ex-
panded functionality by lifting blockchain-supported opera-
tions to the off-chain setting, enabling broader applications.

Payment Channel Networks (PCNs) and Hubs (PCHs).
The concept of payment channels can be extend to payment
channel networks where two users without a direct channel
can connect with each other through a path of other people’s
payment channels via a routing mechanism. One of the most
popular implementation is the Basis of Lightning Technol-
ogy (BOLTs) powering the Lightning Network. Moreover,
Payment Channel Hubs deploy a star topology of users en-
abling them to pay each other via payment channels estab-
lished with an intermediary called the tumbler. PCNs and
PCHs have been widely studied in the past, and multiple
constructions have been created to challenges such as privacy-
protection [17, 25, 32], channel re-balancing [22], better pay-
ment routing [29], etc.

8 Conclusion

In this paper, we formalize existing payment channel proto-
cols, including the Lightning Network and Sleepy Channels,
into a common paradigm and prove that non-atomic state tran-
sitions create a fundamental vulnerability with race conditions
that can lead to financial losses. To address this fundamental
limitation, we propose a novel atomic paradigm that ensures
atomic state transitions while preserving essential functionali-
ties. Based on this paradigm, we develop ULTRAVIOLET, a
secure and efficient payment channel protocol that achieves
both atomicity and high performance while avoiding the in-
troduction of unimplemented Bitcoin features. Due to reduc-
ing the number of required messages per transaction by half,
ULTRAVIOLET achieves significant latency improvements
of 37% and 52% compared to the Lightning Network and
Sleepy Channels, respectively, while achieving throughput
comparable to the Lightning Network and twice that of Sleepy
Channels. Our formal security analysis under the Universal
Composability framework and extensive practical evaluations
demonstrate that ULTRAVIOLET provides a secure and effi-
cient solution for scaling blockchain systems.
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A UC Modeling

In this section, we formalize the security of our protocol using
the Universal Composability (UC) framework [12], specif-
ically employing the Global UC (GUC) extension [13], an
extension of the standard UC framework that enables a global
setup.

A.1 Preliminaries
Since our model closely aligns with model established by
previous off-chain payment protocols [6–8, 18, 19, 21], we
begin by introducing key concepts that have been widely
adopted in these earlier works.

Protocols and Adversarial Model. In the real world, a
protocol Π is executed by a set of parties P = {P1, . . . ,Pn}
in the presence of an adversary A , who receives a security
parameter λ ∈ N and an auxiliary input z ∈ {0,1}∗. We con-
sider a static corruption model, where A can corrupt any party
Pi ∈ P at the beginning of the protocol execution. Corruption
allows A to take full control over Pi, learning all its internal
state. Both the parties and the adversary A receive their in-
puts from a special entity, the environment E , which models
everything that happens external to the protocol execution.
The environment not only provides inputs but also observes
all outputs generated by the parties throughout the execution.
We consider that our model operates within a hybrid setting
where the protocol may access additional ideal functionalities,
denoted by H1, . . . ,Hm. In this case, we say that the protocol
Π works in the (H1, . . . ,Hm)-hybrid model.

Modeling Time and Communication. In our model, we
assume a synchronous communication network where pro-
tocol execution unfolds in discrete rounds. This abstraction
of rounds allows for clear reasoning about time during the
protocol execution. The notion of rounds is formalized by the
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global ideal functionality Fclock [26], which acts as a global
clock that advances to the next round only when all honest
parties are prepared to proceed, ensuring that every party is
aware of the current round. We assume that communication
between parties in P occurs over authenticated channels with
a strict delivery guarantee of one round, formalized via an
ideal functionality FGDC [18]. This means that if a party P
sends a message to party Q in round τ, Q receives it at the
beginning of round τ+1, with certainty that P is the sender.
While the adversary A can observe message content and re-
order messages sent within the same round, it cannot modify,
delay, or drop messages, nor can it introduce new messages
into the protocol. All other communications, such as those
involving the adversary A , the environment E , are assumed
to take zero rounds.

Modeling Global Ledger. We model the mechanics of
UTXO-based cryptocurrencies, like Bitcoin, using a global
ideal functionality B(∆,Σ,V ) under the Global UC frame-
work. This functionality is parameterized by a bounded delay
∆, indicating the maximum number of rounds required to con-
firm a valid transaction, a digital signature scheme Σ, and a set
V that defines the valid spending conditions, such as signa-
ture verification with respect to Σ. We assume that the ledger
interacts with a fixed set of parties P . Initially, the ledger func-
tionality B, initiated per the instructions of environment E ,
generates key pairs (pkP,skP) for every party P ∈ P , registers
each public key pkP to the ledger and establishes the initial
state as a publicly accessible set of all posted transactions.
Any party P∈ P can post a transaction to B, which, if deemed
valid after verification, will be appended to the ledger after
up to ∆ rounds. Our ledger model is simplified for clarity. For
a more detailed description and comprehensive formalization
of the ledger model, we refer the reader to prior works [6, 11].
This simplified model suffices for our work and improves the
readability of our channel protocol.

The GUC-security definition. We define a hybrid protocol
Π that operates with access to ideal functionality Fprelim con-
sisting of the global ledger B(∆,Σ,V ), the global clock Fclock,
and FGDC. The output of an environment E interacting with
Π and an adversary A , given λ as the security parameter and
z as the auxiliary input to A , is denoted as EXECF prelim

Π,A ,E (λ,z).
Let φF be the ideal protocol for an ideal functionality F with
access to the Fprelim. This means that the parties in P simply
forward their inputs to the ideal functionality F . The output
of an environment E interacting with a protocol φF and a
simulator S , given λ as the security parameter and z as the
auxiliary input to S , is denoted as EXECF prelim

φF ,S ,E (λ,z). We say
that if a protocol Π GUC-realizes an ideal functionality F ,
then any attack that can be carried out against the real-world
protocol Π can also be carried out against the ideal protocol
φF and vice versa. In other words, Π is at least as secure as
F .

Definition A.1. A protocol Π GUC-realizes an ideal func-

tionality F , w.r.t. Fprelim, if for every adversary A there exists
a simulator S such that for any environment E , we have

EXECF prelim

Π,A ,E (λ,z)
c
≈ EXECF prelim

ϕF ,S ,E (λ,z)

(where “
c
≈” denotes computational indistinguishability).

A.2 Ideal functionality
In this section, we will describe the ideal functionality F in
detail. Following [6], we also represent payment channels
through an ideal functionality F (Tp,k), which operates on
top of the ledger functionality B(∆,Σ,V ). This functional-
ity, parameterized by two values Tp and k, models channel
operations such as creation, update, and closure. Here, Tp
represents an upper bound on the number of consecutive off-
chain communication rounds between channel participants,
while k defines the number of ways a channel state can be
published. Note that we consider only protocols that realize
F without producing an ERROR output, as any occurrence of
ERROR implies a loss of security guarantees.

To simplify our notation and improve readability, we omit
explicit calls to Fclock and FGDC. We use shorthand notation to
represent message passing: m

τ
↪−→ P denotes sending message

m to party P in round τ, and m
τ←−↩ P denotes receiving it from

P in round τ. A message m generally consists of (MESSAGE-ID,
parameters). We also omit several natural checks that one
would expect F to make. These checks could be formally
handled by combining a functionality wrapper. For a formal
definition of such wrappers, we refer the reader to [6].

We structure F into four parts: (i) Create, (ii) Pay, (iii)
Close, and (iv) Punish. The formal description of F is shown
in Figure 9.
Create. In the Create phase, both participants A and B must
first send a (CREATE,γ, tidp) message to F . An attribute tuple
γ represents the channel, defined by its unique identifier γ.id,
participants γ.users, total funds γ.cash, and the latest state of
channel γ.st (latest funds distribution between participants).
tidp refers the party P’s input for the funding transaction of
the channel. Upon receiving these messages from both partic-
ipants, F checks B for the presence of a funding transaction
txF , which spend both input tidA and tidB with output amounts
equal to γ.cash. If txF is confirmed within ∆ rounds, F initial-
izes ω, a structure that stores two latest valid states for each
participant, denoted as θA, θ′A for A and θB, θ′B for B, as well
as an additional state θ∗, representing the older of the two
states held by the payee in the latest payment. The tuple ω

ensures that sufficient history is available to resolve disputes
if needed. Finally, F sends a CREATED message to both users,
indicating successful channel creation, and updates the map Γ

to link γ.id with (γ, txF ,ω). Since the channel is created only
after receiving CREATED message from both parties and the
spending condition φ of txF is mutually agreed upon, balance
security in creation holds.
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Pay. In the Pay phase, where A is the payer and B is the

payee, A initiates a payment by sending (PAY, id,
−→
θ , tstp) to

F , where
−→
θ represents the new balance state and tstp is the

number of rounds needed by the parties to set up off-chain
applications. F then sends (REVOKE-REQ, id,

−→
θ , tstp) to B,

requesting B to revoke previous state. If F receives a (REVOKE,
id) message from B, this indicates that B has agreed to the new
state corresponding to A’s payment. Otherwise, B rejects this
payment, and the Pay process is aborted. Once both parties
have agreed on the payment, S informs F with a vector of
transaction identifiers

−→
tid. F then sends a (PAY-REQ, id,

−→
tid)

message to A, requesting the finalization of the payment. If
F receives a (PAY-OK, id) message from A, it updates the
corresponding γ and ω in the map Γ, and sends a (PAID, id,

−→
θ )

message to both users. Otherwise, if no PAY-OK is received,
F executes the subprocedure ForceClose, which expects the
funding transaction of the channel to be spent within ∆ rounds.
The new state

−→
θ is considered valid and updated only after

F receives both the REVOKE message from the payee and the
PAY-OK message from the payer. Until this point, the previous
state remains the sole valid state, thereby upholding balance
security in update.
Close. Either participant can initiate the channel closure by
sending a (CLOSE, id) message to F . If the counterparty also
sends the same message within Tp rounds, F expects a clos-
ing transaction txC, reflecting the latest channel state, to ap-
pear on B within ∆ rounds. Upon observing txC, F updates
Γ(id) :=⊥ and notifies both users with (CLOSED, id). Other-
wise, if one party is unresponsive or dishonest, F triggers the
ForceClose subprocedure.
Punish. This phase, triggered at the end of each round τ0, is
designed to enforce accountability and resolve disputes using
the stored states in ω. For each active channel, F checks if
tx′ appears on the ledger B that spends the corresponding
funding transaction txF . If tx′ represents the latest valid state
γ.st that aligns with the expected balances for both partici-
pants, F finalizes the channel by updating Γ(id) to ⊥ and
sends both participants with a (CLOSED, id) message if not
sent yet. This indicates either a peaceful cooperative channel
closure by both parties or a forced closure by the payee in
the latest payment. If tx′ does not match the latest valid state
but aligns with a permitted previous state in ω, F expects a
follow-up transaction txres to appear on the ledger, making the
participants’ balances with what the latest state γ.st dictates.
Upon seeing this resolving transaction, F updates Γ(id) to
⊥, then sends (RESOLVED, id) and (CLOSED, id) to both users.
This case indicates a forced closure of the channel by the
payer in the latest payment. However, if tx′ reflects a revoked
state, F expects a punish transaction txpnsh to appear on the
ledger, allowing the honest party to claim the entire channel
funds. In every scenario, for an honest and rational participant,
the channel will never finalize in a state that allocates less
than the balance specified in the latest globally valid state γ.st.

Thus, balance security in finalization satisfies.

A.3 Protocol
In this section, we formally present the protocol Π as out-
lined in Section 5.2. The protocol builds on the high-level
concepts discussed earlier, now incorporating detailed UC
formalism, allowing for clear interactions within a global en-
vironment E and time-bound communication rounds. To en-
hance readability and distinguish between the communication
between parties and input/outputs from/to the environment
E , we denote messages involved E in uppercase, e.g., “CRE-
ATE,” while messages between parties use lowercase, e.g.,
“createInfo.” Similar to the ideal functionality, the pseudocode
presented excludes several checks that an honest user would
naturally perform, which can instead be handled through a pro-
tocol wrapper. The protocol is structured into four parts, each
carefully designed to handle the various stages of payment
channel. Additionally, we incorporate two subprocedures to
streamline the protocol: one for the force closure mechanism,
and another for generating necessary transactions at each pay-
ment.

ULTRAVIOLET protocol Π

Create

Party A upon (CREATE, γ, tidA)
τ0←−↩ E :

1. Set id = γ.id. Generate (pkA,skA), (rhA-1 ,rsA-1),

(rhA0 ,rsA0). Construct authA
set := {pkA,rhA-1 ,rhA0},

a set containing the public keys and revocation secret

hash owned by A, and rsA
set := {rsA-1 ,rsA0}, comprising

revocation secrets generated by A.

2. Extract initial balances vA and vB from γ.st and set v :=

vA + vB, vA
A-1

:= vA,vB
A-1

:= vB,vA
A0

:= vA,vB
A0

:= vB.

3. Send (createInfo, id, tidA,authA
set)

τ0
↪−→ B.

4. If (createInfo, id, tidB,authB
set)

τ0+1
←−−−↩ B, authA

set :=

authA
set∪authB

set, continue. Else, go idle.

5. Generate the funding transaction txF :=

tx([tidA, tidB],⟨skA∧ skB,v⟩).
6. Generate txA-1 := tx(txF , [⟨skA, vA

A-1
⟩, ⟨(rsB-1 ∧skA)∨(skA∧

skB)∨ (RelTime(T )∧ skB),vB
A-1
⟩]).

7. Generate txA0 := tx(txF , [⟨skA, vA
A0
⟩, ⟨(rsB0 ∧ skA)∨ (skA∧

skB)∨ (RelTime(T )∧ skB),vB
A0
⟩]).

8. Construct txA
set := {txA-1 , txA0}, a set containing the trans-

actions owned by A.

9. A uses skA to generate signatures σtidA , σA
A-1

and σA
A0

for

transactions txF , txA-1 and txA0 respectively. Construct

sigA
set := {σA

A-1
, σA

A0
}.

10. Send (prepareInfo, id, txA
set,sigA

set)
τ0+1+τpre
↪−−−−−−→ B.
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11. If (prepareInfo, id, txB
set, sigB

set)
τ0+2+τpre
←−−−−−−↩ B, set txA

set:= txA
set

∪ txB
set, sigA

set := sigA
set∪ sigB

set. Else, go idle.

12. Send (createFund, id, σtidA)
τ0+2+τpre
↪−−−−−−→ B.

13. If (createFund, id,σtidB)
τ0+3+τpre
←−−−−−−↩ B, post

(txF ,{σtidA ,σtidB}) on B.

14. If txF is confirmed on B in round τ1 ≤ τ0 + 3+ τpre +∆,

set ΓA(id) := (txF ,authA
set,rsA

set, tx
A
set,sigA

set), (CREATED, id)
τ1
↪−→ E .

Pay

Party A’s i-th payment, assuming party B has completed j

payments.

Party A upon (PAY, id,
−→
θ , tstp)

τ0←−↩ E :

1. Extract (txF ,authA
set,rsA

set, tx
A
set,sigA

set) = ΓA(id).

2. Send (revokeReq, id,
−→
θ , tstp)

τ0
↪−→ B.

Party B upon (revokeReq, id,
−→
θ , tstp)

t0←−↩ A:

1. Send (REVOKE-REQ, id,
−→
θ , tstp)

t0
↪−→ E

2. If not (REVOKE, id)
t0←−↩ E , go idle.

3. Extract (txF ,authB
set,rsB

set, tx
B
set,sigB

set) = ΓB(id).

4. Generate (rhBi , rsBi ), let authB
set := authB

set ∪ {rhBi}, rsB
set

:= rsB
set∪ {rsBi}.

5. Retrieve rsBi-2 from rsB
set, (revokeInfo, id, rhBi , rsBi-2 )

t0+tg
↪−−−→

A.

Party A upon (revokeInfo, id, rhBi ,rsBi−2 )
τ0+2+tg
←−−−−−↩ B:

1. Let authA
set := authA

set ∪{rhBi}. Retrieve txAi−2 from txA
set

and extract vA
Ai−2

and vB
Ai−2

from it.

2. Generate the punishment transaction txAi−2
pnsh := tx(txAi−2 ,

⟨skA, vB
Ai−2
⟩) corresponding to txAi−2 .

3. A uses skA and rsBi−2 to generate signature σ
Ai−2
pnsh for pun-

ishment transaction txAi−2
pnsh.

4. Let T A
revoke := T A

revoke∪{txAi−2}, T A
pnsh := T A

pnsh∪{tx
Ai−2
pnsh},

ΣA
pnsh := ΣA

pnsh∪{σ
Ai−2
pnsh}.

5. Let ΘA(id) := (T A
revoke,T

A
pnsh,Σ

A
pnsh).

6. Extract vA
Ai

and vB
Ai

, representing the balance states of A and

B after this payment, from
−→
θ .

7. Let txAi
pay← GenerateTxs(txF , txA

set, authA
set, vA

Ai
, vB

Ai
), txA

set

:= txA
set∪ txAi

pay.

8. A uses skA to sign each transaction in txAi
pay, generating a

set of signatures σ
Ai
pay.

9. Let
−→
tid be the tuple of ids corresponding to each transaction

in txAi
pay, (PAY-REQ, id,

−→
tid)

τ1≤τ0+2+tg+tstp
↪−−−−−−−−−−→ E .

10. Send (payInfo, id, txAi
pay,σ

Ai
pay)

τ1≤τ0+2+tg+tstp
↪−−−−−−−−−−→ B.

Party B in round t1 ≤ t0 + tg +2+ tstp:

1. If (payInfo, id, txAi
pay, σ

Ai
pay)

t1←−↩ A, go to next step. Else,

execute ForceClose(id).

2. Let txB
set := txB

set∪ txAi
pay,sigB

set := sigB
set∪σ

Ai
pay.

3. Let ΓB(id) := (txF ,authB
set,rsB

set, tx
B
set,sigB

set).

4. Send (payCom, id)
t1
↪−→ A and (PAID, id,

−→
θ )

t1
↪−→ E .

Party A in round τ1 +2:

1. If (payCom, id)
τ1+2
←−−−↩ B, continue. Else, execute

ForceClose(id).

2. If not (PAY-OK, id)
τ1+2
←−−−↩ E , go idle.

3. Let ΓA(id) := (txF ,authA
set,rsA

set, tx
A
set,sigA

set).

4. (PAID, id,
−→
θ )

τ1+2
↪−−−→ E .

Close

Let A’s n-th payment be the latest payment between A and

B.

Party A upon (CLOSE, id)
τ0←−↩ E :

1. Extract (txF ,authA
set,rsA

set, tx
A
set,sigA

set) = ΓA(id).

2. Retrieve txAn from txA
set and extract vA

An
and vB

An
from txAn .

3. Generate transaction txC := tx(txF , [⟨skA, vA
An
⟩, ⟨ skB,

vB
An
⟩]).

4. A uses skA to generate signature σA
C for transaction txC.

5. Send (closeInfo, id, txC, σA
C)

τ0+τg
↪−−−→ B.

6. If (closeInfo, id, txC, σB
C)

τ0+τg+1
←−−−−−↩ B, post (txC, {σA

C, σB
C})

on B. Else, go idle.

7. If txC is confirmed on B in round τ1 ≤ τ0 + τg +1+∆, set

ΘA(id) := ⊥, ΓA(id) := ⊥ and (CLOSED, id)
τ1
↪−→ E . Else,

execute ForceClose(id).

Punish

Party A upon PUNISH
τ0←−↩ E :

For each id ∈ {0,1}∗ s.t. ΘA(id) ̸=⊥:

1. Extract (T A
revoke,T

A
pnsh,Σ

A
pnsh) = ΘA(id).

2. If any revoked payment txAn ∈ T A
revoke appears on B, re-

trieve txAn
pnsh, σ

An
pnsh from T A

pnsh and ΣA
pnsh respectively. Post

(txAn
pnsh, σ

An
pnsh) on B.

3. After txAn
pnsh is confirmed on B in round τ1 ≤ τ0 +∆, set

ΘA(id) :=⊥, ΓA(id) :=⊥ and (PUNISHED, id)
τ1
↪−→ E .

Subprotocols
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ForceClose(id):

Let τ0 be the current round, assuming that party P has com-

pleted i payments and party Q has completed j payments.

Party P do the following:

1. Extract (txF ,authP
set,rsP

set, tx
P
set,sigP

set) = ΓP(id).

2. Retrieve txQ j , σ
Q
Q j

from txP
set and sigP

set respectively.

3. P uses skP to generate signature σP
Q j

for transaction txQ j .

Post (txQ j , {(σP
Q j
,σQ

Q j
)}) on B.

4. After txQ j is confirmed on B in round τ1 ≤ τ0 + ∆, set

ΘP(id) := ⊥, ΓP(id) := ⊥. (forceClose, id, txQ j )
τ1
↪−→ Q

and (CLOSED, id)
τ1
↪−→ E .

Party Q upon (forceClose, id, txQ j )
t0←−↩ P:

1. After txQ j appears on B, extract (txF , authQ
set, rsQ

set, txQ
set,

sigQ
set) = ΓQ(id).

2. If there exists tx
↬txQ j
Pi

∈ txQ
set, continue. Else, (CLOSED, id)

t0
↪−→ E and stop.

3. Retrieve tx
↬txQ j
Pi

, σP
Pi(Q j)

from txQ
set and sigQ

set respectively.

4. Q uses skQ to generate signature σ
Q
Pi(Q j)

for transaction

tx
↬txQ j
Pi

. Post (tx
↬txQ j
Pi

,{σP
Pi(Q j)

,σQ
Pi(Q j)

}) on B.

5. After tx
↬txQ j
Pi

is confirmed on B in round t0 + ∆, set

ΘQ(id) :=⊥, ΓQ(id) :=⊥.

6. (RESOLVED, id)
t0+∆
↪−−→ E and (CLOSED, id)

t0+∆
↪−−→ E .

GenerateTxs(txF , txP
set,authP

set,v
P
Pi
,vQ

Pi
):

Party P’s i-th payment, assuming the other party Q has

completed j payments.

1. Retrieve {pkP, pkQ,rhQi} from authP
set.

2. Generate the payer P’s i-th payment transaction txPi

:= tx(txF , [⟨skP, vP
Pi
⟩, ⟨(rsQi ∧ skP) ∨ (skP ∧skQ) ∨

(RelTime(T ) ∧ skQ), vQ
Pi
⟩]).

3. Retrieve {txQ j , txQ j−1} from txP
set, extract vP

Q j
and vP

Q j−1
re-

spectively.

4. Let vP
res1

:= vP
Pi

, vQ
res1 := vP

Q j
− vP

Pi
.

5. Generate resolve transaction tx
↬txQ j
Pi

:= tx(txQ j , [⟨skP,

vP
res1
⟩, ⟨skQ, vQ

res1⟩]).
6. If vP

Pi
≤ vP

Q j−1
, set vP

res2
:= vP

Pi
, vQ

res2 := vP
Q j−1
−vP

Pi
. Else, set

vP
res2

:= vP
Q j−1

, vQ
res2 := 0.

7. Generate resolve transaction tx
↬txQ j−1
Pi

:= tx(txQ j−1 , [⟨skP,

vP
res2
⟩, ⟨skQ, vQ

res2⟩]).
8. Return txAi

pay := {txPi , tx
↬txQ j
Pi

, tx
↬txQ j−1
Pi

}.

A.4 Proof
In this section, we present the simulator and the formal
proof that the ULTRAVIOLET protocol Π, described in Ap-
pendix A.3, GUC-realizes the ideal functionality F , defined
in Appendix A.2.

Simulator for Create

Case A is honest and B is corrupted

Upon A sending (CREATE, γ, tidA)
τ0
↪−→ F , if B does not send

(CREATE, id, γ, tidB)
τ
↪−→F where |τ0−τ| ≤ TP, then distinguish

the following case:

(1) If B sends(createInfo, id, tidB,authB
set)

τ0
↪−→ A, then send

(CREATE, γ, tidA)
τ0
↪−→ F on behalf of B.

(2) Otherwise stop.

Do the following:

1. Set id = γ.id. Generate (pkA,skA), (rhA-1 ,rsA-1),

(rhA0 ,rsA0). Construct authA
set := {pkA,rhA-1 ,rhA0},

a set containing the public keys and revocation secret

hash owned by A, and rsA
set := {rsA-1 ,rsA0}, comprising

revocation secrets generated by A.

2. Extract initial balances vA and vB from γ.st and set v :=

vA + vB, vA
A-1

:= vA,vB
A-1

:= vB,vA
A0

:= vA,vB
A0

:= vB.

3. Send (createInfo, id, tidA,authA
set)

τ0
↪−→ B.

4. If (createInfo, id, tidB,authB
set)

τ0+1
←−−−↩ B, authA

set :=

authA
set∪authB

set, do the following. Else, go idle.

5. Generate the funding transaction txF :=

tx([tidA, tidB],⟨skA∧ skB,v⟩).
6. Generate txA-1 := tx(txF , [⟨skA, vA

A-1
⟩, ⟨(rsB-1 ∧skA)∨(skA∧

skB)∨ (RelTime(T )∧ skB),vB
A-1
⟩]).

7. Generate txA0 := tx(txF , [⟨skA, vA
A0
⟩, ⟨(rsB0 ∧ skA)∨ (skA∧

skB)∨ (RelTime(T )∧ skB),vB
A0
⟩]).

8. Construct txA
set := {txA-1 , txA0}, a set containing the trans-

actions owned by A.

9. Generate signatures σtidA , σA
A-1

and σA
A0

on behalf of A,

for transactions txF , txA-1 and txA0 respectively. Construct

sigA
set := {σA

A-1
,σA

A0
}.

10. Send (prepareInfo, id, txA
set,sigA

set)
τ0+1+τpre
↪−−−−−−→ B.

11. If (prepareInfo, id, txB
set,sigB

set)
τ0+2+τpre
←−−−−−−↩ B, txA

set:= txA
set ∪

txB
set, sigA

set := sigA
set∪ sigB

set. Else, go idle.

12. Send (createFund, id, σtidA)
τ0+2+τpre
↪−−−−−−→ B.

13. If (createFund, id,σtidB)
τ0+3+τpre
←−−−−−−↩ B, post

(txF ,{σtidA ,σtidB}) on B.
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14. If txF is confirmed on B in round τ1 ≤ τ0 + 3+ τpre +∆,

set ΓA(id) := (txF ,authA
set,rsA

set, tx
A
set,sigA

set). S instruct F
to (CREATED, id)

τ1
↪−→ E .

Simulator for Pay

Party A’s i-th payment, assuming party B has completed j

payments.

Case A is honest and B is corrupted

Upon A sending (PAY, id,
−→
θ , tstp)

τ0
↪−→F , proceed as follows:

1. Extract (txF ,authA
set,rsA

set, tx
A
set,sigA

set) = ΓA(id).

2. Send (revokeReq, id,
−→
θ , tstp)

τ0
↪−→ B.

3. Upon (revokeInfo, id, pkBi ,skBi−2 )
τ0+2+tg
←−−−−−↩ B, do the fol-

lowing. Else, go idle.

4. Let authA
set := authA

set ∪{pkBi}. Retrieve txAi−2 from txA
set

and extract vA
Ai−2

and vB
Ai−2

from it.

5. Generate the punishment transaction txAi−2
pnsh := tx(txAi−2 ,

⟨skA, vB
Ai−2
⟩) corresponding to txAi−2 .

6. Generate signature σ
Ai−2
pnsh for punishment transaction txAi−2

pnsh

on behalf of A.

7. Let T A
revoke := T A

revoke∪{txAi−2}, T A
pnsh := T A

pnsh∪{tx
Ai−2
pnsh},

ΣA
pnsh := ΣA

pnsh∪{σ
Ai−2
pnsh}.

8. Let ΘA(id) := (T A
revoke,T

A
pnsh,Σ

A
pnsh).

9. Extract vA
Ai

and vB
Ai

, representing the balance states of A and

B after this payment, from
−→
θ .

10. Let txAi
pay← GenerateTxs(txF , txA

set, authA
set, vA

Ai
, vB

Ai
), txA

set

:= txA
set∪ txAi

pay.

11. Sign each transaction in txAi
pay on behalf of A, generating a

set of signatures σ
Ai
pay.

12. Let
−→
tid be the tuple of ids corresponding to each trans-

action in txAi
pay. Instruct F of

−→
tid and (PAY-REQ, id,

−→
tid)

τ1≤τ0+2+tg+tstp
↪−−−−−−−−−−→ E via A.

13. Send (payInfo, id, txAi
pay,σ

Ai
pay)

τ1≤τ0+2+tg+tstp
↪−−−−−−−−−−→ B.

14. If (payCom, id)
τ1+2
←−−−↩ B, continue. Else, execute

ForceClose(id).

15. If A does not send (PAY-OK, id)
τ1+2
↪−−−→ F , go idle.

16. Let ΓA(id) := (txF ,authA
set,rsA

set, tx
A
set,sigA

set).

17. Instruct F to (PAID, id,
−→
θ )

τ2+2
↪−−−→ E .

Case B is honest and A is corrupted

Upon A sending (revokeReq, id,
−→
θ , tstp)

τ0
↪−→ B, send (PAY,

id,
−→
θ , tstp)

τ0
↪−→ F on behalf of A, if A has not sent this message.

Proceed as follows:

1. Upon (revokeReq, id,
−→
θ , tstp)

t0←−↩ A, instruct F to

(REVOKE-REQ, id,
−→
θ , tstp)

t0
↪−→ E .

2. If B does not send (REVOKE, id)
t0
↪−→ F , go idle.

3. Extract (txF ,authB
set,rsB

set, tx
B
set,sigB

set) = ΓB(id).

4. Generate (rhBi , rsBi ), let authB
set := authB

set ∪ {pkBi}, rsB
set

:= rsB
set∪ {skBi}.

5. Retrieve rsBi-2 from rsB
set, send (revokeInfo, id, rhBi , rsBi-2 )

t0+tg
↪−−−→ A.

6. If (payInfo, id, txAi
pay,σ

Ai
pay)

t1←−↩ A in round t1 ≤ t0 + tg +2+

tstp, continue. Else, execute ForceClose(id).

7. Let txB
set := txB

set∪ txAi
pay,sigB

set := sigB
set∪σ

Ai
pay.

8. Let ΓB(id) := (txF ,authB
set,rsB

set, tx
B
set,sigB

set).

9. Send (payCom, id)
t1
↪−→ A and instruct F to (PAID, id,

−→
θ )

t1
↪−→ E .

Simulator for Close

Case A is honest and B is corrupted

Let A’s n-th payment be the latest payment between A and

B.

Upon A sending (CLOSE, id)
τ0
↪−→ F , do the following:

1. Extract (txF ,authA
set,rsA

set, tx
A
set,sigA

set) = ΓA(id).

2. Retrieve txAn from txA
set and extract vA

An
and vB

An
from txAn .

3. Generate transaction txC := tx(txF , [⟨skA, vA
An
⟩, ⟨ skB,

vB
An
⟩]).

4. Generate signature σA
C for transaction txC on behalf of A.

5. Send (closeInfo, id, txC, σA
C)

τ0+τg
↪−−−→ B.

6. If (closeInfo, id, txC, σB
C)

τ0+τg+1
←−−−−−↩ B, post (txC, {σA

C, σB
C})

on B. Else, go idle.

7. If txC is confirmed on B in round τ1 ≤ τ0 + τg +1+∆, set

ΘA(id) :=⊥, ΓA(id) :=⊥ and instruct F to (CLOSED, id)
τ1
↪−→ E Else, execute ForceClose(id).

Simulator for Punish

Case A is honest and B is corrupted

Upon A sending PUNISH
τ0
↪−→ F , for each id ∈ {0,1}∗ s.t.

ΘA(id) ̸=⊥, do the following:

1. Extract (T A
revoke,T

A
pnsh,Σ

A
pnsh) = ΘA(id).

2. If any revoked payment txAn ∈ T A
revoke is on B, retrieve

txAn
pnsh, σ

An
pnsh from T A

pnsh and ΣA
pnsh respectively. Post

(txAn
pnsh, σ

An
pnsh) on B.
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3. After txAn
pnsh is confirmed on B in round τ1 ≤ τ0 +∆, set

ΘA(id) := ⊥, ΓA(id) := ⊥ and instruct F to (PUNISHED,

id)
τ1
↪−→ E .

Simulator for ForceClose(id)

Let τ0 be the current round, assuming that party P has com-

pleted i payments and party Q has completed j payments.

Case P is honest and Q is corrupted

1. Extract (txF ,authP
set,rsP

set, tx
P
set,sigP

set) = ΓP(id).

2. Retrieve txQ j , σ
Q
Q j

from txP
set and sigP

set respectively.

3. Generate signature σP
Q j

for transaction txQ j on behalf of P.

Post (txQ j , {(σP
Q j
,σQ

Q j
)}) on B.

4. After txQ j is confirmed on B in round τ1 ≤ τ0 + ∆, set

ΘP(id) :=⊥, ΓP(id) :=⊥. Send (forceClose, id, txQ j )
τ1
↪−→

Q and instruct F to (CLOSED, id)
τ1
↪−→ E .

Case Q is honest and P is corrupted

Upon P sending (forceClose, id, txQ j )
τ0
↪−→ Q, proceed as

follows:

1. Upon (forceClose, id, txQ j )
t0←−↩ P, if txQ j appears on B,

extract (txF , authQ
set, rsQ

set, txQ
set, sigQ

set) = ΓQ(id).

2. If there exists tx
↬txQ j
Pi

∈ txQ
set, continue. Else, instruct F to

(CLOSED, id)
t0
↪−→ E and stop.

3. Retrieve tx
↬txQ j
Pi

, σP
Pi(Q j)

from txQ
set and sigQ

set respectively.

4. Generate signature σ
Q
Pi(Q j)

for transaction tx
↬txQ j
Pi

on behalf

of Q. Post (tx
↬txQ j
Pi

,{σP
Pi(Q j)

,σQ
Pi(Q j)

}) on B.

5. After tx
↬txQ j
Pi

is confirmed on B in round t0 + ∆, set

ΘQ(id) :=⊥, ΓQ(id) :=⊥.

6. (RESOLVED, id)
t0+∆
↪−−→ E and (CLOSED, id)

t0+∆
↪−−→ E .

To proof that the protocol Π GUC-realizes the ideal func-
tionality F , we demonstrate that, from the perspective of the
environment E , the transcript arising from interactions be-
tween the simulator S and the ideal functionality F is indistin-
guishable from the transcript produced during the execution
of the protocol Π in the presence of an adversary A . Formally,
we aim to prove that the execution ensembles EXECΠ,A ,E
and EXECF ,S ,E are indistinguishable for any environment
E . We demonstrate this indistinguishability across the vari-
ous phases of the protocol, including Create, Pay, Close, and
Punish, along with the subprotocol ForceClose. Note that we
require an EUF-CMA secure signature scheme Σ to prevent
forgery and a collision-resistant hash scheme to ensure the
security of the revocation mechanism.

In our description, we use m[τ] to indicate that a message m
is observed by the environment E in round τ. Each message is

uniquely identified by its message identifier (e.g., CREATE or
createInfo), while specific parameters are omitted for clarity.
Furthermore, the protocol interacts with other ideal function-
alities, which may in turn interact with the environment E or
other parties, including those under adversarial control. These
interactions may also affect publicly observable variables
such as the ledger B. To formalize this, we define obsSet(an,
τ) as the set of all observable side effects resulting from action
an executed in round τ.

In the following analysis, we consider different corruption
cases, examining the view of environment E in the real world
protocol Π and the view of E in the ideal world as simulated
by S . Notably, in the real world, the environment E controls
the adversary A , and thus equivalently controls all corrupted
parties. Therefore, we do not analyze cases where both parties
are corrupted, as such scenarios reduce to the environment
communicating with itself, which is trivially identical in the
ideal and the real world. Similarly, messages from corrupted
parties to E are not considered for the same reason. Moreover,
we omit the case where both parties are honest, as the simula-
tor merely needs to follow the protocol execution faithfully,
guaranteeing indistinguishability between the real and ideal
world.

Lemma 1. The Create phase of protocol Π GUC-realizes the
Create phase of functionality F .

Proof. We consider the case where A is honest and B is cor-
rupted. Note that the reverse case is symmetric.

Real World: After receiving CREATE in round τ0, A sends
createInfo to B. If A receives createInfo from B in round
τ0 +1, A will perform action a0 := "generate and sign transac-
tions" for channel creation in round τ0 +1. If this is success-
ful, A will send prepareInfo to B in round τ0 +1+ τpre. If A
receives prepareInfo in round τ0 + 2+ τpre, A will send the
signature for the funding transaction txF via createFund to B.
If A receives createFund from B in round τ0 +3+ τpre, it will
perform action a1 := "post txF on B". If txF is confirmed on B
in round τ1 ≤ τ0 +3+ τpre +∆, finally A will send CREATED
in round τ1. Thus, the execution ensemble is EXECcreate

Π,A ,E
:= {createInfo[τ0], obsSet(a0,τ0 + 1), prepareInfo[τ0 + 1+
τpre], createFund[τ0 + 2 + τpre], obsSet(a1,τ0 + 3 + τpre),
CREATED[τ1]}.

Ideal World: After sending CREATE in round τ0 to F , the
simulator S sends createInfo to B. If A receives createInfo
from B in round τ0 + 1, S informs F and performs a0 on
behalf of A in round τ0 + 1. If this is successful, S sends
prepareInfo to B in round τ0 + 1+ τpre. If B sends prepare-
Info to A, S sends createFund to B in round τ0 +2+ τpre. If
B sends createFund to A, received in τ0 + 3 + τpre, S per-
forms a1 on behalf of A. If the funding transaction txF
is confirmed on B in round τ1 ≤ τ0 + 3 + τpre + ∆, fi-
nally S informs F to send CREATED in round τ1. Thus,
the execution ensemble is EXECcreate

F ,S ,E := {createInfo[τ0],
obsSet(a0,τ0+1), prepareInfo[τ0+1+τpre], createFund[τ0+
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2+ τpre], obsSet(a1,τ0 +3+ τpre), CREATED[τ1]}.

Lemma 2. The ForceClose subprotocol of Π GUC-realizes
the ForceClose subprocedure of F .

Proof. We start by considering the case where P is honest
and Q is corrupted.

Real World: Taking the latest valid payment transaction
txQ j which has been signed by Q, party P performs action
a0 := "sign txQ j and post it on B" in round τ0. If txQ j is con-
firmed on B in round τ1 ≤ τ0 +∆, P will send forceClose
to Q and CLOSED to E in round τ1. Thus, the execution en-
semble is EXECforceclose

Π,A ,E := {obsSet(a0,τ0), forceClose[τ1],
CLOSED[τ1]}.

Ideal World: Taking the latest valid payment transaction
txQ j owned by P, the simulator S performs action a0 in round
τ0. If txQ j is confirmed on B in round τ1 ≤ τ0 +∆, it will
send forceClose and CLOSED in round τ1. Thus, the execution
ensemble is EXECforceclose

F ,S ,E := {obsSet(a0,τ0), forceClose[τ1],
CLOSED[τ1]}.

Now we consider the case where Q is honest and P is
corrupted.

Real World: Upon receiving forceClose from P in round
t0 and observing that txQ j has appeared on B, party Q checks

if there exists tx
↬txQ j
Pi

, which is the latest resolve transaction
for txQ j and signed by P. If no such transaction exists, Q im-
mediately sends CLOSED in round t0. Otherwise, Q performs

action a0 := "sign tx
↬txQ j
Pi

and post it on B" in round t0. If

tx
↬txQ j
Pi

is confirmed on B in round t1 ≤ t0 +∆, Q will send
RESOLVED and CLOSED in round t1. Thus, the execution ensem-
ble is either EXECforceclose

Π,A ,E := {CLOSED[t0]} or EXECforceclose
Π,A ,E

:= {obsSet(a0, t0), RESOLVED[t1], CLOSED[t1]}.
Ideal World: Upon receiving forceClose from P in round

t0 and observing that txQ j has appeared on B, the simulator

S checks whether a valid tx
↬txQ j
Pi

exists. If no such transac-
tion is found, S instructs F to output CLOSED in round t0.

Otherwise, S performs action a0 in round t0. If tx
↬txQ j
Pi

is
confirmed on B in round t1 ≤ t0 +∆, S instructs F to output
RESOLVED and CLOSED in round t1. Thus, the execution ensem-
ble is either EXECforceclose

F ,S ,E := {CLOSED[t0]} or EXECforceclose
F ,S ,E

:= {obsSet(a0, t0), RESOLVED[t1], CLOSED[t1]}.

Lemma 3. The Pay phase of protocol Π GUC-realizes the
Pay phase of functionality F .

Proof. We start by considering the case where A is honest
and B is corrupted.

Real World: Upon receiving PAY in round τ0, A performs
the following steps: informs B of the new payment, generates
and signs punishment transactions for the revoked payment,
generates and signs payment and resolve transactions for the
new payment, and sends these transactions to B to complete
the payment. For better readability, the execution ensemble

EXECPay
Π,A ,E , which captures the steps visible to E , along with

their dependencies, is presented as a list below.
• revokeReq to B in round τ0

• generate and sign the punishment transaction in round
τ0 +2 (if received revokeInfo from B)

• generate and sign the payment transactions in round
τ0 +2+ τg

• PAY-REQ to E in round τ1 ≤ τ0 +2+ tg + tstp

• payInfo to B in round τ1

• PAID to E in round τ1 +2 (if received payCom from B)
Ideal World: Similarly, to enhance readability, the execu-

tion ensemble EXECPay
F ,S ,E , which captures the steps visible

to E , along with their dependencies and whether they are
executed by S or F , is presented as a list below.

• revokeReq to B in round τ0 (S )
• generate and sign the punishment transaction in round

τ0 +2 (if received revokeInfo from B) (S )
• generate and sign the payment transactions in round

τ0 +2+ τg (S )
• PAY-REQ to E in round τ1 ≤ τ0 +2+ tg + tstp (F )
• payInfo to B in round τ1 (S )
• PAID to E in round τ1 +2 (if received payCom from B)

(F )
Now we consider the case where B is honest and A is cor-
rupted.

Real World: Upon A receiving PAY in round τ0, if B re-
cieves revokeReq in round t0, B proceeds as follows: generates
the new revocation secret and corresponding hash, revokes the
previous payment transaction, and informs A to finalize the
payment. Analogous to previous case, the execution ensemble
EXECPay

Π,A ,E , which captures the steps visible to E , along with
their dependencies, is presented as a list below to improve
readability.

• REVOKE-REQ to E in round t0 (if received revokeReq
from A)

• generate revocation secret and hash in round t0
• revokeInfo to A in round t0 + tg
• payCom to A in round t1 ≤ t0 + tg +2+ tstp (after receiv-

ing payInfo in that round)
• PAID to E in round t1
Ideal World: Similarly, to enhance readability, the execu-

tion ensemble EXECPay
F ,S ,E , which captures the steps visible

to E , along with their dependencies and whether they are
executed by S or F , is presented as a list below.

• REVOKE-REQ to E in round t0 (if received revokeReq
from A) (F )

• generate revocation secret and hash in round t0 (S )
• revokeInfo to A in round t0 + tg (S )
• payCom to A in round t1 ≤ t0 + tg +2+ tstp (after receiv-

ing payInfo from A in that round) (S )
• PAID to E in round t1 (F )
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Lemma 4. The Close phase of protocol Π GUC-realizes the
Close phase of functionality F .

Proof. We consider the case where A is honest and B is cor-
rupted. Note that the reverse case is symmetric.

Real World: After receiving CLOSE in round τ0, A per-
forms action a0 := "generate and sign closing transaction txC".
In case of success, A will send closeInfo to B in round τ0 +τg.
Upon receiving closeInfo from B in round τ0 + τg +1, A pro-
ceeds with action a1 := "post txC on B". If txC is confirmed on
B in round τ1 ≤ τ0 + τg +1+∆, A sends CLOSED. Otherwise,
A executes action a2 := ForceClose. Thus, the execution en-
semble is either EXECclose

Π,A ,E := {obsSet(a0,τ0), closeInfo[τ0+

τg], obsSet(a1,τ0 + τg + 1), CLOSED[τ1]} or EXECclose
Π,A ,E :=

{obsSet(a0,τ0), closeInfo[τ0 + τg], obsSet(a1,τ0 + τg + 1),
obsSet(a2,τ1)}.

Ideal World: After sending CLOSE in round τ0, S performs
a0 in round τ0 and sends closeInfo to B in round τ0+τg. Upon
receiving closeInfo in round τ0 + τg + 1, S performs a1 on
behalf of A. If the closing transaction txC is confirmed on B in
round τ1 ≤ τ0 + τg +1+∆, S instructs F to send CLOSED in
round τ1. Otherwise, S executes action a2 and instruct F to do
the same. Thus, the execution ensemble is either EXECclose

F ,S ,E
:= {obsSet(a0,τ0), closeInfo[τ0 + τg], obsSet(a1,τ0 + τg +1),
CLOSED[τ1]} or EXECclose

Π,A ,E := {obsSet(a0,τ0), closeInfo[τ0+
τg], obsSet(a1,τ0 + τg +1), obsSet(a2,τ1)}.

Lemma 5. The Punish phase of protocol Π GUC-realizes
the Punish phase of functionality F .

Proof. We consider the case where A is honest and B is cor-
rupted. Note that the reverse case is symmetric.

Real World: Upon receiving PUNISH from E in round τ0, A
checks whether a transaction appears on B that belongs to any
revoked payment of one of its channels. If such a transaction
exists, A performs action a0 := "post punishment transaction
txpnsh on B" in round τ0 for the revoked transaction. If txpnsh
is confirmed on B in round τ1 ≤ τ0 +∆, A sends PUNISHED
in round τ1. Thus, the execution ensemble is EXECpunish

Π,A ,E :=
{obsSet(a0,τ0), PUNISHED[τ1]}.

Ideal World: At the end of every round τ0, the ideal func-
tionality F checks if there exists a transaction on B corre-
sponding to any revoked payment associated with an active
channel. If such a transaction exists, S performs action a0
on behalf of the honest party A. Once txpnsh is confirmed on
B in round τ1 ≤ τ0 +∆, send PUNISHED in round τ1. Thus,
the execution ensemble is EXECpunish

F ,S ,E := {obsSet(a0,τ0),
PUNISHED[τ1]}.

Theorem A.1. The protocol Π GUC-realizes the the ideal
functionality F .

Proof. This theorem follows directly from Lemmas 1 to 5 via
a standard hybrid argument.
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Ideal Functionality F B(∆,Σ,V )(Tp,k)

Create: Upon (CREATE, γ, tidA)
τ0←−↩ A, distinguish:

Both agreed: If already received (CREATE, γ, tidB)
τ←−↩ B, where τ0− τ≤ Tp: If txF := tx([tidA, tidB],⟨φ,γ.cash⟩) for some φ, appears on

B in round τ1 ≤ τ+∆+Tp, set ω := (θA,θ
′
A,θB,θ

′
B,θ
∗) with each element as a copy of γ.st, Γ(γ.id) := (γ, txF ,ω) and (CREATED, γ.id)

τ1
↪−→

γ.users. Else stop.

Wait for B: Else wait if (CREATE, γ, tidB)
τ≤τ0+Tp
←−−−−−↩ B (then, “Both agreed” option is executed). If such message is not received, stop.

Pay: Upon (PAY, id,
−→
θ , tstp)

τ0←−↩ A, (REVOKE-REQ, id,
−→
θ , tstp)

τ1≤τ0+Tp
↪−−−−−−→ B, parse (γ, txF ,ω) := Γ(id), set γ′ := γ,γ′.st :=

−→
θ ,ω′ := ω,ω′.θB :=

ω.θ′B,ω
′.θ′B :=

−→
θ ,ω′.θ∗ = ω.θ′B:

(1) If (REVOKE, id)
τ2≤τ1+Tp
←−−−−−−↩ B, then let S define

−→
tid and (PAY-REQ, id,

−→
tid)

τ3≤τ2+Tp
↪−−−−−−→ A. Else stop (reject).

(2) If (PAY-OK, id)
τ4≤τ3+tstp
←−−−−−−↩ A, update Γ(id) := (γ′, txF ,ω

′), send (PAID, id,
−→
θ )

τ5≤τ4+Tp
↪−−−−−−→ γ.users and stop (accept). Else run

ForceClose(id) and stop.

Close: Upon (CLOSE, id)
τ0←−↩ A, distinguish:

Both agreed: If already received (CLOSE, id)
τ←−↩ B, where τ0− τ≤ Tp, let (γ, txF ,ω) := Γ(id) and distinguish:

• If txC := tx(txF ,⟨φA,γ.st.bal(A)⟩,⟨φB,γ.st.bal(B)⟩) appears on B in round τ1 ≤ τ0 +∆, set Γ(id) := ⊥, send (CLOSED, id)
τ1
↪−→ γ.users

and stop.

• Else, if at least one of the parties is not honest, run ForceClose(id). Else, output (ERROR)
τ0+∆
↪−−−→ γ.users and stop.

Wait for B: Else wait if (CLOSE, id)
τ≤τ0+Tp
←−−−−−↩ B (in that case “Both agreed” option is executed). If such message is not received, run

ForceClose(id) in round τ0 +Tp.

Punish: (executed at the end of every round τ0) For each id ∈ {0,1}∗ s.t. Γ(id) ̸= ⊥, parse (γ, txF ,ω) := Γ(id), check if B contains

tx′ := tx(txF ,⟨φ′A,vA⟩,⟨φ′B,vB⟩) with vA + vB = γ.cash. If yes, let
−→
θ be the current state,

−→
θ .bal(A) := vA,

−→
θ .bal(B) := vB, τ = τ0 +∆,

distinguish:

Close: If
−→
θ ∈ ω, distinguish:

• If
−→
θ = γ.st, set Γ(id) :=⊥, (CLOSED, id)

τ1≤τ
↪−−−→ γ.users if not sent yet.

• Else, if
−→
θ ̸= ω.θ∗ and txres(tx′,⟨φA,v′A⟩,⟨φB,v′B⟩) appears on the B within round τ, then set Γ(id) := ⊥, (RESOLVED, id)

τ
↪−→ γ.users,

(CLOSED, id)
τ
↪−→ γ.users and stop.

• Otherwise, output (ERROR)
τ
↪−→ γ.users and stop.

Punish: Else, if txpnsh(tx′,⟨φX ,γ.cash−
−→
θ .bal(X)⟩) appears on B within round τ, then set Γ(id) :=⊥, and for the honest party X , (PUNISHED,

id)
τ
↪−→ X and stop.

Subprocedure ForceClose(id): Let τ0 be the current round and (γ, txF ,ω) := Γ(id). If within ∆ rounds txF is still an unspent transaction on

B, (ERROR)
τ0+∆
↪−−−→ γ.users and stop. Else, latest in round τ0 +2 ·∆, message m ∈ {CLOSED,PUNISHED,ERROR} is output via Punish.

Figure 9: The Ideal Functionality.
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