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Improved Differential and Linear Cryptanalysis
on Round-Reduced SIMON

Chao Niu, Muzhou Li, Jifu Zhang, and Meiqin Wang(B)

Abstract—SIMON is a lightweight block cipher proposed by the National Security Agency. According to previous cryptanalytic results
on SIMON, differential and linear cryptanalysis are the two most effective attacks on it. Usually, there are many trails sharing the same
input and output differences (resp. masks). These trails comprise the differential (resp. linear hull) and can be used together when
mounting attacks. In ASIACRYPT 2021, Leurent et al. proposed a matrix-based method on SIMON-like ciphers, where only trails whose
active bits stay in a w-bit window are considered. The static window in each round is chosen to be w least significant bits. They applied
this efficient framework on SIMON and SIMECK, and have obtained many better differentials and linear hulls than before. For SIMON,
they also found that there seems to be some potential for improvement, which should be further investigated.
In this paper, we dynamically choose window for each round to achieve better distinguishers. Benefiting from these dynamic windows,
we can obtain stronger differentials and linear hulls than previously proposed for almost all versions of SIMON. Finally, we provided the
best differential/linear attacks on SIMON48, SIMON64, and SIMON96 in terms of round number, complexity, or success rate.

Index Terms—SIMON, Dynamic Window, Differential Attack, Linear Attack.

✦

1 INTRODUCTION

THE SIMON [1] cipher is a suite of lightweight block
ciphers proposed by the National Security Agency in

2013. Due to its simple round function and good perfor-
mance in hardware and software, SIMON has gained a lot
of attention since its proposal. It follows a Feistel structure
with a very simple round function:

f(x) = (S8(x) ∧ S1(x))⊕ S2(x),

where Sa(x) denotes the a-bit left cyclic rotation of x.
Previous cryptanalytic results show that the best attacks

on it use differential cryptanalysis or linear cryptanalysis [2],
[3], [4], [5], [6], [7], [8]. Meanwhile, there can be many trails
in a differential or a linear hull that could be used to mount
attacks together. However, the expected probability of the
differential (EDP) and the expected linear potential (ELP) of
the linear hull are both hard to evaluate due to the massive
amount of trails comprising them.

In ASIACRYPT 2021, Leurent et al. [9] proposed a novel
framework to deal with this for SIMON-like ciphers, where
only trails whose input differences stay in the least w sig-
nificant bits in each round are considered. In this paper, we
refer to it as the w-bit static window (SW). Unlike previous
methods to enumerate the good trails contributing to the
differential or the linear hull, they efficiently compute the
probability distribution by multiplication of the differen-
tial transition matrix or linear correlation matrix round by
round, which can consider all trails with active bits staying
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in the w-bit SW. Using this method, they found longer dis-
tinguishers that are more conducive to key recovery attacks
and improved the previous best attack for several rounds
for both SIMON and SIMECK [10].

1.1 Motivations and Contributions.

To include as many good trails as possible, Leurent et al. [9]
adopted the same w-bit SW for all rounds. In other words,
the diffusion of the included input and output differences
(resp. masks) for each round are restricted. The SW is chosen
to contain the least significant bits. With the increase of the
window size w, the results obtained with SW will gradually
approach the lower bounds of EDP and ELP. Eventually,
they will become stable. Of course, the bigger w leads to a
tighter lower bound of EDP and ELP. However, the size of
window w is restricted by the memory size of the computer
resources one can exploit. In [9], the maximum of w is 19
and the matrix size will be 219×2 as the memory size for
their used computer is 1TB. They claimed that the ELP for
SIMON could not get stable when the window size w is even
set to be 19, while both EDP and ELP for SIMECK could.
By confining the active bits to the w least significant bits
window, the static window strategy constructs a differential
transition or linear correlation matrix that contains all trails
only with active bits in the fixed window for each round.
In other words, the static window strategy discards all trails
with active bits out of the w least significant bits window.
Compared with SIMECK, SIMON has a stronger diffusion
property due to the bigger rotation constant. It means that
the static window strategy may lose some good trails even
in the first few rounds for SIMON. Therefore, choosing a
flexible window for each round can avoid losing too many
trails and lead to better distinguishers. However, how to
choose these windows for SIMON is an interesting problem.
In this paper, we focus on this problem and propose the
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dynamic window strategy. Our contributions are listed as
follows.

TABLE 1
Summary of distinguishers on SIMON.

Block Type R EDP/ELP ∆in/Γ†
in ∆out/Γ†

out Ref.

48
Diff.

17 -46.32 {7}, {1, 5, 9} {1, 5, 9}, {7} [5]
17 -46.38 {0}, {2, 18, 22} {2, 18, 22}, {0} [7]
17 -45.49 ∅, {0} {0}, ∅ Sect. 4

Linear 16 -44.92 {1, 5, 21}, {23} {1, 5}, {23} [11]
17 -45.19 {23}, ∅ ∅, {23} Sect. 4

64
Diff.

22 -61.32 {6, 10}, {7, 11, 12} {6, 10}, {8} [5]
23 -61.93 {0}, {2, 30} {2, 6, 30}, {4} [7]
23 -61.50 {0, 4}, {6} {6}, {0, 4} Sect. 4

Linear 21 -62.53 {20, 24}, {22} {22}, {20, 24} [12]
23 -60.24 {25}, {27, 31} {27, 31}, {25} Sect. 4

96

Diff. 30 -92.2 {20}, {6, 14, 18, 22} {8, 16}, {6, 10, 14} [2]
33 -94.10 ∅, {0} {0}, ∅ Sect. 4

Linear
33 -92.60 {47}, ∅ ∅, {47} [9]
33 -91.74 {47}, ∅ ∅, {47} Sect. 4
34 -93.74 {47}, ∅ {47}, {45} Sect. 4

128

Diff.
41 -123.74 {12}, {6, 10, 14} {6, 10, 14}, {12} [7]
41 -112.99 ({6}, {0, 4, 8}) ({0, 4, 8}, {6}) Sect. 4
41 -122.98 (∅, {0}) ({0, 6}, ∅) Sect. 4

Linear 41 -123.07 {63}, ∅ ∅, {63} [9]
43 -124.59 {63, 59}, {61} ∅, {63, 57} Sect. 4

†
The input and output differences (resp. masks) are denoted by
{a0, a1, ..., ai}, {b0, b1, ..., bj} with ai being the active position in the
left branch while bj denotes the active bits in the right branch. Note
that ∅ means there is no active bit in this branch.

Dynamic Window (DW) with Minimal Loss. In Sect. 3, we
show how to dynamically choose the window for each
round based on two strategies: the MLW (Minimal Loss Win-
dow) strategy and the LWIM (Link Window in the Middle)
strategy. The aim of MLW is to lose as few trails as possible,
especially when the number of possibly activated bits is no
bigger than the window size w. If the window size is run
out, we will start to exclude some possibly active bits out
of the window and restrict them as zero differences/masks.
To maintain a lower loss of trails, those excluded bits are
chosen using a reasonable probability test. With MLW, we
can determine the windows in each round according to
the propagation property from input difference/mask. Next,
LWIM strategy will be used. For an r(= 2i+1)-round cipher,
windows in the first i rounds can be obtained with MLW
using the input difference/mask. For the last i rounds, their
windows are deduced by the output difference/mask from
the decryption direction using MLW. Then, we heuristically
link the windows in the middle round deduced from two
directions to lose fewer trails. By using these approaches, we
can get a DW that takes advantage of the diffusion property
of the cipher. With SW, we perform several experiments on
SIMON32 and find 9-bit DW can get a better result than the
13-bit SW shown in the upper part of Fig. 1, which means
DW can get a tighter bound with less window size. We also
use MLW and LWIM for SIMECK32 and show our result in the
lower part of Fig. 1. DW for SIMECK32 is barely the same as
the SW due to its slower diffusion. Hence, DW has the same
effect compared to the SW for SIMECK32. To better compare
DW with SW, we also apply these two methods to SIMON-
like ciphers with different rotation constants. Eventually, we
observe that DW can not only approach the lower bound of
EDP or ELP faster than SW but is also suitable for variants

with some special rotation constants (c > a, b), where SW
cannot deal with.
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Fig. 1. Probability of a 13-round differential (∅, {0}) → ({0}, ∅) evalu-
ated under different windows for SIMON32 (up) and SIMECK32 (down).

Improved Differential and Linear Hull. Our goal is to find
the differential or linear hull suitable for key recovery attack.
Thus, the lower hamming weight for the input and output
differences/masks and the higher EDP/ELP for the distin-
guisher are our optimized objects. Using DW, we obtain a
17-round distinguisher for SIMON48 with a single active bit
in the input and output for the first time, which can be used
to mount more rounds of key-recovery attack. Moreover, the
previous longest distinguisher for SIMON64 has 23 rounds
and we improved the Hamming weight and probability for
it. In addition, our identified 33-round distinguishers for
SIMON96 have higher EDP/ELP compared to those from
the static window strategy, which enables us to extend to
34-round distinguisher at the first time. Finally, we get the
improved Hamming weight and the EDP for the previous
best differential distinguisher for SIMON128. We compare
our new distinguishers with the best previous ones in
Table 1. Detailed results are illustrated in Sect. 4.

Improved Key Recovery Attacks on Round-Reduced SIMON.
Based on our identified distinguishers, we perform differen-
tial key recovery attacks in Sect. 5 and linear key recovery
attacks in Sect. 6 for SIMON, respectively. As exploited by
Leurent et al. in [9], we adopt the dynamic-key guessing
technique [13], [14] for differential cryptanalysis, and Fast
Walsh Transform approach [15] for linear cryptanalysis. As
a result, we provided the best differential/linear attacks on
SIMON48, SIMON64, and SIMON96 in terms of the number
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TABLE 2
Summary of attacks against SIMON.

Variant Round Attacked Type Data Time Succ. rate Ref.

48/72 36

23 Diff. 247 263.25 0.48 [13]
25 247 267.89 0.42 Sect. 5
24 Linear 2

47.92 269.92 0.91 [4]
26 247 265.06 0.66 Sect. 6

48/96 36

24 Diff. 248 278.99 0.48 [14]
26 247 292.51 0.42 Sect. 5
25 Linear 2

47.92 291.92 0.91 [4]
27 247 289.05 0.66 Sect. 6

64/96 42

29 Diff. 263 286.94 0.48 [14]
31 263 291.43 0.41 Sect. 5
30 Linear 2

63.52 289.53 0.48 [4]
32 263 288.10 0.68 Sect. 6

64/128 44

30 Diff. 263 2110.99 0.48 [14]
32 263 2123.89 0.41 Sect. 5
31 Linear 2

63.53 2120 0.48 [4]
33 263 2120.09 0.68 Sect. 6

96/96 52 43 Linear 294 289.6 0.63 [9]
44 295 290.09 0.65 Sect. 6

96/144 54

37 Diff. 295 2132.25 0.46 [13]
42 296 2140.53 0.56 Sect. 5
45 Linear 295 2136.67 0.63 [9]
45 295 2135.77 0.70 Sect. 6

128/128 68

49 Diff. 2127 2127 0.73 [13]
50 2127 2127.07 0.60 Sect. 5
53 Linear 2127 2121 0.67 [9]†
53 2127 2120.72 0.67 Sect. 6

128/192 69 49 Diff. 2127 2183.25 0.48 [13]
51 2127 2186.76 0.60 Sect. 5

128/256 72 50 Diff. 2127 2247.25 0.48 [13]
52 2127 2250.76 0.60 Sect. 5

†
We recomputed the attack parameters using the distinguishers
in [9] for better comparison.

of rounds, complexity, or success rate. We compare our key
recovery attacks with the best previous ones in Table 2.

To allow our results to be reproduced, all source code
utilized in this paper is available in an anonymous reposi-
tory at https://github.com/Improved-Simon.

2 SOME KNOWN PROPERTIES AND ANALYSES OF
SIMON

SIMONn/k [1] are Feistel ciphers with block size n ∈
{32, 48, 64, 96, 128} and key size k. For each variant, their
key size k and the number of rounds r are listed in Table 3.

TABLE 3
All variants of SIMON

n 32 48 64 96 128

k 64 72 96 96 128 96 144 128 192 256

r 32 36 36 42 44 52 54 68 69 72

For the i-th round (0 ≤ i ≤ r − 1), we respectively
denote x(i+1) and x(i) as the left n/2-bit and right n/2-
bit of the n-bit input state. Due to its Feistel structure,
the right part of its output state is also x(i+1). The left
output part is then denoted as x(i+2) and obtained with

x(i+1)

δL

x(i)

δR

x(i+2)

δ′L

x(i+1)

δ′R

k(i)

f

(a) Diff. (δL, δR)
f→ (δ′L, δ

′
R).

x(i+1)

ΓL

x(i)

ΓR

x(i+2)

Γ′L

x(i+1)

Γ′R

k(i)

f

(b) Mask (ΓL,ΓR)
f→ (Γ′

L,Γ
′
R).

Fig. 2. Difference (left) and mask (right) propagation of one-round
SIMON-like cipher.

x(i+2) = x(i)⊕f
(
x(i+1)

)
⊕k(i). The function f is a quadratic

function designed to be f(x) = (S8(x) ∧ S1(x)) ⊕ S2(x),
where Sa(x) denotes the a-bit left cyclic rotation of x, ∧ as
the bitwise AND, and ⊕ as the bit-wise exclusive or (XOR),
respectively.

The key schedule of SIMON is linear. Let c = 2n/2 −
4 = 0xff · · · fc and zj the constant sequence1, the subkey
of SIMON, with m key words k(i+m) are generated by:

c⊕ (zj)i ⊕ k(i) ⊕
(
I ⊕ S−1

)
S−3k(i+1), if m = 2

c⊕ (zj)i ⊕ k(i) ⊕
(
I ⊕ S−1

)
S−3k(i+2), if m = 3

c⊕ (zj)i ⊕ k(i) ⊕
(
I ⊕ S−1

) (
S−3k(i+3) ⊕ k(i+1)

)
, if m = 4

for 0 ≤ i < r − m, where S−a(x) represents the a-bit
right cyclic rotation of x. For more details of the constant
sequence zj , one can refer to [16].

Although SIMON uses a very simple quadratic round
function, its differential and linear properties are hard to
investigate due to the dependency between multiple active
AND gates. In CRYPTO’15, Kölbl et al. constructed a sys-
tematic approach to deal with this dependency for SIMON-
like round functions [5]. More precisely, they studied the
differential and linear properties of functions of the form
f(x) = (Sa(x)∧ Sb(x))⊕ Sc(x), where a, b and c are integer
values. Here, we briefly recall their results.

Differential Cryptanalytic Property. As shown in Fig. 2a,
we denote δL (resp. δ′L) and δR (resp. δ′R) as the in-
put (resp. output) differences of the left and right parts,
respectively. The propagation probability of one round
Pr [(δL, δR)→ (δ′L, δ

′
R)] is{

2− dim(UδL), if δL = δ′R and δR ⊕ δ′L ∈ UδL

0, otherwise

where UδL is the coset of the image of a linear function
g(x) related to δL, i.e. UδL = Img(x 7→ g(x) = f(x) ⊕
f(x ⊕ δL) ⊕ f(δL) ⊕ f(0)), and dim(UδL) represents its
dimension. The probability of an r-round differential trail
can then be evaluated by multiplying these probabilities of
each round together. Thus, the probability of a differential
can be obtained after summing the probabilities of all trails
contained in this differential. However, there can be many
trails and it’s infeasible to consider all of them.

Linear Cryptanalytic Property. Input (resp. output) mask
of the left and right parts are denoted as ΓL (resp.
Γ′L) and ΓR (resp. Γ′R), as illustrated in Fig. 2b. The

1. The constant sequence zj uses as the round constants.

https://github.com/Improved-Simon
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squared correlation of this one-round mask propagation
Cor2 ((ΓL,ΓR)→ (Γ′L,Γ

′
R)) is{

2− dim(VΓR), if ΓR = Γ′L and ΓL ⊕ Γ′R ∈ VΓR

0, otherwise

where VΓR
= Img(x 7→ ((ΓR ∧ Sb−a(x)) ⊕ (S−(b−a)(ΓR ∧

x))) ≫ a), and x ≫ a denotes the a-bit right cyclic rotate
of x. Squared correlation of the r-round linear trail can be
obtained by multiplying these one-round squared correla-
tions together. Summing all the squared correlations of trails
comprising the linear hull, one can obtain its expected linear
potential (ELP), as shown in [17]. However, this may also be
infeasible.

Equivalence between Differential and Linear Trail. This is
another important property of SIMON-like ciphers which has
been observed by several works [18], [19], [20]. Specifically,
given a differential trail with probability p, which is

(δ0L, δ
0
R)→ (δ1L, δ

1
R)→ · · · → (δrL, δ

r
R),

a linear trail covering the same number of rounds written as

(
←−
δ0R,
←−
δ0L)→ (

←−
δ1R,
←−
δ1L)→ · · · → (

←−
δrR,
←−
δrL)

with ←−x being the bit-reversed x. However, the squared
correlation of this linear trail may not equal to p [9] and
shall be re-evaluated using the aforementioned method [5].

3 DYNAMIC WINDOW FOR TRANSITION MATRIX

Given a differential or linear hull, it’s hard to efficiently
approximate its probability or ELP due to the massive
number of trails contained in it. To deal with this, Leurent
et al. [9] constructed an efficient framework for SIMON-like
ciphers based on the difference transition matrix or linear
correlation matrix M , which contains transition probability.

We recall their framework for evaluating the probability
of a differential here. For each round, they built a square
matrix M whose element in the i-th row and j-th column
represents the propagation probability of the input differ-
ence δi and output difference δj . Those input and output
differences are chosen heuristically. For matrices built for
these middle rounds, the input differences are in the same
set A and in the same order as the output differences. While
for the first (resp. last) round, the output (resp. input) differ-
ence also belongs to this set A, but the input (resp. output)
difference can be chosen heuristically. By multiplying all
these matrices, they can obtain the total probability of the
differential. In their approach, only trails whose active bits
are located in a fixed w-bit window are considered in the
matrix. The window is chosen to be those w least significant
bits in each round. With this approach, they can gain longer
differentials and linear hulls than before for both SIMON and
SIMECK. For SIMON, they also found that there still exists a
chance of potential improvement and encouraged further
work on this cipher.

In this section, we follow the similar framework as
Leurent et al. [9], however, a dynamic way to choose the
w-bit window for each round is used. Firstly, we propose
the MLW (short for minimal loss window) strategy and LWIM
(short for link window in the middle) strategy to help us
determine which bits shall be included in the window for

each round in Sect. 3.1. Based on these dynamic windows,
a modified algorithm for computing EDP or ELP is given
at Sect. 3.2. We applied this modified framework on SIMON
and SIMECK. Compared with the static windows adopted
in [9], we can achieve better differentials and linear hulls for
SIMON. Detailed application results are shown in Sect. 4.

3.1 New Strategies for Window Choosing
To make it clear, we introduce our strategies of choosing
the window from the aspect of constructing the differential
transition matrix for the differential.

For the linear hull, the equivalence between differential
and linear trails described in Sect. 2 can be used to determine
the window. Specifically, assuming we’re dealing with the
variant of block size n, we have to identify thew-bit window
for the linear hull with input mask (δ0L, δ

0
R) and output mask

(δrL, δ
r
R). Note that for each trail in this linear hull, there is

only one corresponding trail in the differential with input
difference (

←−
δ0R,
←−
δ0L) and output difference (

←−
δrR,
←−
δrL), where←−x

denotes the bit-reversed x. Hence, we can use our strategies
to obtain the w-bit window chosen for this differential in
each round. Assume that tji with 0 ≤ i ≤ w − 1 comprises
the window for the j-th round. Thus for the linear hull,
the window chosen for the same round is composed of bits((

n
2 − 1

)
− tji

)
where 0 ≤ i ≤ w − 1.

3.1.1 MLW: A Window with Minimal Loss.
By restricting the difference to the w-bit window, Leurent et
al. construct a differential transition matrix that contains all
trails only active at this window. In other words, they try
to control the diffusion of the input difference by discarding
all trails that diffuse out of the window. Windows in every
involved rounds are chosen to be the w least significant bits.
Due to the strong diffusion of non-linear part w + 5 (for
SIMECK) or w + 8 (for SIMON) cyclic rotation, this strategy
may lose many valuable trails even before the number of
diffused bits exceed the window size, especially for SIMON.
We show in Table 4 as an illustration where the input
difference for SIMON48 is set to be (∅, {0}) and the window
size is 17. Note that the static window chosen by Leurent et
al. is in the range between 0 and 16. Hence, the 17-th and
18-th bits in the fourth round are discarded. However, we
run out of the window only after the fifth round. Thus, it
will be better if we only discard trails after running out of
the window size.

In our MLW strategy, we keep all trails before the window
size is running out. When the number of diffused bits
exceeds the window size, we discard some bits with the
aim of losing less trails according to the Minimal Active
Probability Test.

Minimal Active Probability Test (Considering Dependency).
Assume that the input difference of the differential is △in.
We respectively denote B(j) and D(j) as the number of
diffused bits and discarded bits in the j-th round. Therefore,
we have

(B(j)

D(j)

)
cases of the possible discarded bits. In the

following, we focus on how to determine the window in
the j-th round. Whatsmore, we only need to determine the
window of the left part of the j-round output state because
the right window is the same as the window of the left part
of the input state.
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TABLE 4
Comparison of the bit loss on SIMON48 with different 17-bit window, where bits bolded are discarded by our dynamic window. Note that the static

window is composed of bits 0, 1, · · · , 16.

Round Diffusion bit position with input difference (∅, {0}) Dynamic Static [9]

0 [] 0 0
1 [0] 0 0
2 [1,2,8] 0 0
3 [0,2,3,4,9,10,16] 0 0
4 [0,1,3,4,5,6,8,10,11,12,17,18] 0 2
5 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,18,19,20] 2 3
6 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] 6 6
7(full) [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] 7 7
8 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] 7 7

To get a window with minimal loss of trails, we consider
the probability Prc of the number of kept trails among
all possible trails in the differential covering the previous
j rounds. Note that Prc is equal to the probability of a
truncated differential with a fixed input difference △in,
while the output difference is a truncated difference △⋆

out.
This truncated difference△⋆

out has zero differences on these
D(i) bits while other bits can be active or not. Note that
△⋆

out takes all zero differences on bits that will never be
diffused. The probability Prc can be reasonably estimated as
follows. We randomly construct N plaintext pairs satisfying
the input difference△in, and then calculate how many pairs
fulfilling the truncated difference △⋆

out. Then, we formally
define the estimate of Prc as

Pr
c
≈ 1

N
#{x ∈ {0, 1}n : E(x)⊕ E(x⊕△in) = △⋆

out}.

For each case of those D(i) possible discarded bits, we can
obtain its corresponding Prc, and then choose the case that
with the maximal Prc to discard these D(i) bits.

Take SIMON48 for an example. When the input differ-
ence is (∅, {0}), the diffused bits in each round is shown in
Table 4. As one can see, we run out the window size 17 at
the fifth round. Hence, we need to determine which bits to
be discarded from the 19 bits, which leads to

(19
2

)
= 171

cases. Similarly, there are
(23
6

)
≈ 216.62,

(24
7

)
≈ 218.4 and(24

7

)
≈ 218.4 cases for the 6-th, 7-th and 8-th round, respec-

tively. For each case, we obtain its Prc utilizing N = 224

plaintext pairs. To gain an accurate estimation, N is chosen
to be 224 here since it can ensure that the estimated value
of Prc is stable. As a result, those bits bolded in Table 4 are
discarded. Compared with the static window, our dynamic
window have the less chance of losing trails.

However, for the variant with larger state, the above
test cannot be proceeded since the number of cases for
discarded bits are unpractical for us to compute. More
precisely, for SIMON64, the cases of discarded bits reach(20
3

)
≈ 210.15,

(26
9

)
≈ 221.58,

(30
13

)
≈ 226.84 and

(32
15

)
≈ 229.08

at 5-th, 6-th, 7-th, and 8-th round, respectively. Even if
N = 224, we need to test 224 ×

(20
3

)
≈ 234.15, 224 ×

(26
9

)
≈

245.58, 224 ×
(30
13

)
≈ 250.15, 224 ×

(32
15

)
≈ 253.08 for 5-th, 6-th,

7-th, and 8-th round, respectively.
Minimal Active Probability Test (Independent). Due to the

unsolvable cases of discarded bits, we can not obtain the
window for variants with a large state. To deal with this,
we assume that each bit in the same round is independent
with the others and then test the probability of single bit

being active using lots of plaintext pairs fulfilling the fixed
input difference △in. In this case, we will discard D(i) bits
that have the lowest probability. We implemented this test
on SIMON48 with the same input difference (∅, {0}), and
observed that the 17-bit window deduced from this test is
the same as that illustrated in Table 4. This implies that the
assumed independence can be satisfied here. However, as
the number of test rounds grows, the probability of each bit
being active will be close to 1/2, which means the test can
only work around the full diffusion round.

3.1.2 LWIM: A Combined Window Location Strategy.
As one can see from the above MLW strategy, we only care
about the diffusion from the input difference △in, while
the output difference △out of the differential is not consid-
ered. However, the above one-way strategy cannot ensure
all trails satisfy △out. Hence, we propose the LWIM (link
window in the middle) strategy here locating the MLW in
forward and backward directions to contain as many trails
as we can.

x(1)

wd[0]

x(0)

wd[−1]

x(2)
wd[1]

x(1)
wd[0]

f

x(i+1)

wd[i]

x(i)

wd[i− 1]

x(i)′
wd′[i− 1]

x(i+1)′
wd′[i]

f

x(1)′

wd′[0]

x(2)′

wd′[1]

x(0)′
wd′[−1]

x(1)′
wd′[0]

f

x(1)

∆(0)

x(0)

∆(−1)

x(2)
∆(1)

x(1)
∆(0)

f
∆

(0)
o

LWIM

Max(∆(i) ∩∆(i)′)

Max(∆(i−1)′ ∩ (∆(i−1) ∪∆
(i)
o )

x(i+1)

∆(i)

x(i)

∆(i−1)

x(i)′
∆(i−1)′

x(i+1)′
∆(i)′

f
∆

(i)
o

x(1)′

∆(0)′

x(2)′

∆(1)′

x(0)′
∆(−1)′

x(1)′
∆(0)′

f
∆

(0)′
o

Fig. 3. LWIM strategy. ∆(j) (resp. ∆(j)′ ) is the set containing all dif-
ferences where only bits in the window wd[j] (resp. wd′[j]) can take
non-zero differences.

As shown in Fig. 3, assuming that we are targeting at
an r-round cipher with r = 2i + 1, we need to determine
the dynamic windows for the differential (δ

(0)
L , δ

(0)
R ) →

(δ
(0)′

L , δ
(0)′

R ). With the MLW strategy, one can obtain the
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windows wd[j] for the first i rounds according to the diffu-
sion of its input difference. Meanwhile, dynamic windows
wd′[j] in the last i rounds can also be deduced from its
output difference using the MLW strategy.

However, for the middle round, we have to check
whether the windows wd[i + 1], wd[i], wd′[i + 1] and
wd′[i] which are respectively chosen for the states x(i+1),
x(i), x(i)

′
and x(i+1)′ can be used together. We denote ∆(j)

(resp. ∆(j)′ ) as the set containing all possible differences
that only takes non-zero differences on bits in the window
wd[j] (resp. wd′[j]). Meanwhile, we use ∆

(i)
0 to represent

the set composed of all output differences of f in the middle
round.

In order not to lose too much trails in the middle
round, we have to maximize the size of ∆(i) ∩ ∆(i)′ and
∆(i−1)′ ∩ (∆(i−1) ∪ ∆

(i)
0 ), where the symbol ∩ and ∪ re-

spectively denote the intersection and union between two
sets. The sizes of these two sets are actually determined by
the input and output differences of the target differential. A
trivial way to maximize their size is to restrict the differen-
tial as δ(0)L = δ

(0)′

R and δ(0)R = δ
(0)′

L . In this case, the dynamic
windows wd[j] will be the same as wd′[j], as well as the
difference sets ∆(j) and ∆(j)′ . Hence, we can obtain that
∆(i) ∩∆(i)′ = ∆(i) and ∆(i−1)′ ∩ (∆(i−1) ∪∆i

0) = ∆(i−1),
which can save as many trails as we can to a certain extent.

3.2 Modified Algorithm for Computing Transition Prob-
ability
Recall that when using the static windows, the difference
sets ∆(j) and ∆(j)′ are equal for all rounds j. In other words,
with the notation used in Fig. 3,

∆(−1) = ∆(0) = · · · = ∆(i) = · · · = ∆(0)′ = ∆(−1)′ .

Therefore, the differential propagation matrix (resp. linear
transition matrix) in each round are indexed with the same
difference (resp. mask) values. However, when dynamically
choosing the window for each round, the matrices will have
different indexes since the difference sets in each round are
different. Note that in our dynamic window strategy, we
only restrict that ∆(j) = ∆(j)′ while no restrictions on these
∆(j) or ∆(j)′ in each round are applied. To deal with these
different indexes, we established a hash table to store the
index of each matrix.

Next, we will detail our modified algorithm that evalu-
ates EDP for a differential as follows and focus on the one-
round propagation. We denote δ(i)L (δ(i)R ) and ∆

(i)
L (∆(i)

R ) as
the input differences and its set of the left (right) branch
of the i-th round, respectively. At first, we generate all
possible δ(i)L and δ

(i)
R according to the corresponding w-bit

dynamic windows. Specifically, they can only have non-zero
differences on bits contained in the window. Secondly, we
compute the output difference γ of the f function and check
whether γ ∈ U

δ
(i)
L

. If so, we can obtain δ(i+1)
L and then check

whether keep it according to its window. Similar as [9,
Algorithm 1], the complexity of the algorithm is bounded
by r × 22w ×max

δ
(i)
L ∈∆

(i)
L

|U
δ
(i)
L

| elementary operations. We
assume that the time complexity of the hash lookup table
is negligible compared to floating-point arithmetic. With the
help of hash tables, we can efficiently update the differential

propagation matrix indexed by (δ
(i)
R ⊕γ, δ

(i)
L ) and finally ob-

tain EDP of the differential. Details of the above procedure
have been described in Algorithm 1.

Algorithm 1 Computation of Probability Using Transition
Matrix

1: Input: An r-round differential (δ(0)L , δ
(0)
R ) → (δ

(r)
L , δ

(r)
R )

with its dynamic windows.
2: Output: EDP of the differential.

3: X ← [0 for i ∈ ∆
(0)
L , j ∈ ∆

(0)
R ]

4: X[δ
(0)
L , δ

(0)
R ]← 1

5: for 1 ≤ i < r do
6: set ∆(i)

L ← δ
(i)
L restricted by window;

7: set ∆(i)
R ← δ

(i)
R restricted by window;

8: for each δ(i)L ∈ ∆
(i)
L do

9: for each δ(i)R ∈ ∆
(i)
R do

10: for each γ ∈ U
δ
(i)
L

do

11: if (δ(i)R ⊕ γ) fulfills its window then
12: Y [δ

(i)
R ⊕ γ, δ

(i)
L ]←

Y [δ
(i)
R ⊕ γ, δ

(i)
L ] + 2

-dim(U
δ
(i)
L

)

X[δ
(i)
L , δ

(i)
R ]

13: end if
14: end for
15: end for
16: end for
17: X ← Y
18: end for
19: return X[δ

(r)
L , δ

(r)
R ]

4 APPLICATION OF THE DYNAMIC WINDOW
STRATEGY

We applied the dynamic window strategy on evaluating
EDP and ELP for almost all variants of SIMON and ob-
tained better distinguishers. The largest window size we can
choose is 17-bit, which consumes 256GB of memory size. All
of our distinguishers were evaluated using a 17-bit dynamic
window. We also note that all the tests in this section are
implemented on a server with AMD EPYC 7302 16-Core
Processor, and the RAM size is 256GB.

A Heuristic Setting Method for DW to Reach a Local Optimal.
As explained in Sect. 3, DW tracks all diffused bits for the
given difference. Besides, DW will not discard trails when
the number of diffused bits is less than the window size.
However, SW starts discarding tails even though there is still
room for them. Thus, DW can keep less loss of trails and take
more advantage of the diffusion property of the cipher. To
determine the MLW, we use a minimal active probability test,
which can detect the bits with a low probability of being
active in the first few rounds. However, as the number of
rounds grows, the probability of each bit being active will
be close to 1/2. Meanwhile, the minimal active probability
test cannot suggest clearly which bits should be excluded
in this case. Thus, to promise accuracy, MLW can only be
used to determine windows until we are around the full
diffusion round. Let’s take SIMON as an example. Since
the full diffusion of SIMON occurs near eight rounds, we
can obtain the exact 8-round DW using MLW. Next, we use
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two 8-round DW using MLW (generated from forward and
backward directions) and link them using LWIM in the mid-
dle (one additional linking round is needed). In this case,
we can obtain a local optimal 17-round DW for differential
(∅, {0})→ ({0}, ∅).

Application on SIMON48. With the MLW and LWIM strate-
gies, we divided the cipher into two parts, and obtained the
local optimal 17-bit DW for a 17-round differential (∅, {0})→
({0}, ∅). We show the DW in Appendix. The input and output
differences are denoted by ({a0, a1, · · · }, {b0, b1, · · · }) with
ai being the active position in the left branch while bj
denotes the active bits in the right branch. Note that ∅means
there is no active bit in this branch. The 17-round differential
has the probability of 2−45.49. Meanwhile, we obtained the
ELP of the 17-round linear hull ({23}, ∅)→ (∅, {23}) whose
DW can be determined due to the duality between differential
and linear trails, as explained in Sect. 3.1. The ELP of this
linear hull is 2−45.19. We also compare DW with the SW in
Fig. 4.
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Fig. 4. EDP (left) and ELP (right) of the 17-round differential and linear
hull for SIMON48.

Construct the DW for longer differentials from the Local Op-
timal 17-Round One. As aforementioned, the 17-round DW
for the differential (∅, {0}) → ({0}, ∅) is a local optimal
one with single active bit of input-output difference for
SIMON. To obtain DW for differentials covering more rounds
(> 17) and fully utilize this local optimal differential, we
adopt two approaches. Firstly, one can append an optimal
trail covering a short number of rounds before and after
the 17-round one. In this case, a differential with multi-
active bits of input-output difference can be obtained. Note
that DW in these added top and bottom rounds can also be

determined with MLW. Given this DW, EDP of this multi-
active bits differential can be evaluated using Algorithm 1.
Hence, DW discovers an effective multi-active bits differential
covering more than 17 rounds. This is also one of the
advantages of DW. The second approach utilizes the 17-
round local optimal differential (∅, {0}) → ({0}, ∅), as well
as the differential (∅, {0}) → (∅, {0}) covering its top 16
rounds and the differential ({0}, ∅) → ({0}, ∅) covering its
bottom 16 rounds. EDPs of these two 16-round differentials
are the same as that of the 17-round one. Thus, one can con-
struct a longer differential by cascading these two or three
differentials. EDP of this longer differential can be computed
with Algorithm 1, where its DW can be constructed with DW
for these three differentials.

Application on SIMON64. Based on the 17-round differ-
ential, we follow the first approach where three rounds are
respectively added before and after it to construct 23-round
multi-active bits differential ({0, 4}, {6})→ ({6}, {0, 4}) for
SIMON64. The DW for this 23-round differential is shown
in Appendix. With Algorithm 1, its EDP is 2−61.50. Simi-
larly, using the DW for the differential and the duality of
linear trails, we obtained the 23-round ({25}, {27, 31}) 23r−→
({27, 31}, {25}) linear hull with ELP 2−60.24. For compari-
son, we also use a 17-bit SW to re-evaluate the EDP and ELP
of these newly discovered distinguishers. As a result, EDP
of the 23-round differential is 2−62.88, while the ELP for the
linear hull is 2−61.36. Both are worse than those evaluated
under 17-bit DW.

Application on SIMON96. We constructed a 33-round
differential (∅, {0}) 33r−→ ({0}, ∅) following the second ap-
proach, which is the same differential proposed by [9].
However, with our Algorithm 1, this differential can have
a higher EDP than theirs due to the local optimal DW. More
precisely, its EDP is 2−94.10. The distinguisher is constructed
as (∅, {0}) 16r−→ (∅, {0}) 1r−→ ({0}, ∅) 16r−→ ({0}, ∅). We show
the DW in Appendix. Meanwhile, we can obtain a linear hull
({47}, ∅) 33r−→ (∅, {47}) with ELP 2−91.74. Similar to [9], we
can append one round after the distinguisher with the loss
of ELP 2−2. Hence, a 34-round linear hull ({47}, ∅) 34r−→
({47}, {45}) can be achieved with ELP 2−93.74.

Application on SIMON128. For SIMON128, we utilized a
33-round local optimal DW and appended eight rounds of SW
after the 33-round DW to construct a 41-round one. Finally,
we obtained a 41-round differential (∅, {0}) 41r−→ ({0, 6}, ∅)
with EDP of 2−122.98. Then, with the 41-round DW, we
obtained a linear hull ({63}, ∅) 41r−→ (∅, {57, 63}) with ELP
2−120.59. Similarly, we append two rounds on the top of the
linear hull with the loss of ELP 2−4 to get a 43-round one
whose input mask is ({63, 59}, {61}).

5 KEY-RECOVERY ATTACKS USING DIFFEREN-
TIAL CRYPTANALYSIS

In this section, we detail differential key-recovery attacks
against SIMON using dynamic key-guessing technique [13],
[14]. We denote the involved key as kp, kf on the plaintext
side, and kb, kc on the ciphertext side (shown in Fig. 5),
and the number of the key bits as κp, κf (κb, κc). The total
number of the involved key bits is denoted as κg = κp+κf+
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κb+κc. Then, we briefly recall this technique and introduce
our attacks in Sect. 5.2.

Key schedulek

kp kf kb kc

P CEf Eb

D
is
ti
n
gu

is
h
er

Fig. 5. General description of a cipher.

5.1 Dynamic Key-Guessing Technique [8], [14]
The main idea of dynamic key-guessing is to remove the
redundancy of the guessed subkey according to the imme-
diate values of a given differential path, and the process of
the attack is as follows.

Sufficient Conditions. Based on the R-round distinguisher
∆i → ∆o, we append rf rounds before and rb rounds after
and build the extended differential for our key recovery
attacks. Then we can identify the sufficient bit conditions
as shown in Table 5.

Data Collection. First, we build structures of plaintexts
where the bits with a fixed difference in round one are
identical for all the plaintexts in S1 and S2, where S1 and S2

denote two structures with fixed differences. Each structure
is composed of 2n−l1 plaintexts, where l1 denote the number
of the fixed bits at round one. For each structure, we encrypt
the plaintexts and obtain the corresponding ciphertexts,
totally D × 2n−l1 encryption, where D denotes the data
complexity. Then, we can pair these ciphertexts and filter
them at the output according to the fixed difference in C ,
and 22(n−l1)−lr−1 pairs remain in each pair of structure.

Key Recovery. Then, we need to associate partial key
guesses to each of these pairs and make sure they can
validate the difference of distinguisher. From the outer to
the inner, for each sufficient bit condition, we associate to
each pair the possible combinations of key bits that lead
to the desired input-output difference of the distinguisher.
For each pair, we increment the corresponding counters of
the combination of key bits that lead to ∆i and ∆o. In
total, we have incremented λW × 2κg counters on average,
with λW the average value of a counter for a wrong key
guess. After processing all pairs, we set a threshold s, and
for each counter greater than s, we store them as the key
candidate. Finally, we exhaustively search the remaining key
bits not guessed under these key candidates and construct
the master key.

Complexity and Success Probability. We denote the average
value of counters for the right key λR for the wrong key λW ,
and then we estimate them for computing the complexity
and the success probability. For each plaintext P1 in S1 and
for each key guess, we compute P2 = E−1f (Ef (P1 ⊕ ∆i))
such that Ef (P1) ⊕ Ef (P2) = ∆i. So, for each key guess,
two plaintexts form a pair, and we have D/2 pairs with
the desired difference at the input of our distinguisher. For
the right key guess, if the distinguisher probability is p, we
have λR = p × D/2 pairs that satisfy ∆o. By construction,

all these pairs belong to the structures and pass the filters.
For the wrong key guesses, the probability that they have a
fixed difference ∆o at the output is 1/2n, and the counter is
expected to be λW = D/2n+1 on average.

Similar to [9], [13], [14], we apply the Poisson distribu-
tion as the statistical model and denote the corresponding
cumulative distribution function as FW and FR. The prob-
ability that a counter associated with the wrong key guess
is greater than threshold s is 1 − FW (s), and the expected
number of counters greater than s is 2κg (1 − FW (s)). Due
to the linear key schedule of SIMON, we can reconstruct
the master key candidates from any subkey bits using
linear algebra. The cost of reconstructing the master keys
is 2κg · (1− FW (s)) × 2κ−κg = 2κ · (1− FW (s)). The time
complexity and success probability are:

C1 = D + 2κg · λW + 2κ · (1− FW (s))

PS = 1− FR(s)

5.2 25-Round Key-Recovery on SIMON48/72

We apply the method with the differential
(∅, {0}) to ({0}, ∅) covering 17 rounds with probability
p = 2−45.49, and append three rounds before and five
rounds after it. We show the detail of the bits to guess
round by round in Table 6. From the outer to the inner, we
use the sufficient bit conditions from Table 5 to guess the
key bits that lead to the desired differences. When possible,
we use the guessed key bits to deduce other key bits using
the key schedule. In the rightmost column, we detail the
time complexity of each step starting from 2t pairs. In total,
the complexity of guessing the key bits leading to ∆i and
∆o, and incrementing the corresponding counters is 2t+32.
During this step, κg = 69 bits, from the first subkeys to the
last subkeys are guessed.

Attack Parameters. If the data D = 247 is taken, knowing
that l1 = 41 and l24 = 18, we split the data into 240

structures of 27 plaintexts and after constructing our pairs
of structures and filtering the ciphertexts C , there remain
240−1 × 27×2/218 = 235 pairs. So t = 35 and the time
complexity for the counter incrementing part is 2t+32 = 267.
The average value for the counter of the right key guess is
λR = p ×D/2 = 20.51. For a bad key guess, we expect the
counter to be close to λW = D/248+1 = 2−2. We choose the
subkeys whose counts are greater than 1, the complexity is
267 + 266.76 ≈ 267.89 with a success probability of 42%.

We show parameters for different variants of SIMON in
Table 7.

6 KEY-RECOVERY ATTACKS USING LINEAR
CRYPTANALYSIS

In this section, we detail our key recovery attack using
linear cryptanalysis. We follow the description of a last-
round key recovery given by Matsui’s Algorithm 2 [21]
and consider a linear approximation P ′ · α ⊕ C ′ · β where
P ′ and C ′ the intermediate values after a few rounds of
encryption/decryption. Given a set of D known plain-
text/ciphertext pairs (P,C), we can compute the interme-
diate values P ′ and C ′ for each partial key guess κg =
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TABLE 5
Extended path for 25 rounds of SIMON48/72, where bold bits represent the sufficient bit conditions.

r Differential path li
0 0000000*00000**00001**01 00000**0000***0*01***0** 32
1 000000000000000*000001*0 0000000*00000**00001**01 41
2 000000000000000000000001 000000000000000*000001*0 46
3 000000000000000000000000 000000000000000000000001 48

17-round differential (3 → 20)
20 000000000000000000000001 000000000000000000000000 48
21 000000000000000*000001*0 000000000000000000000001 46
22 0000000*00000**00001**01 000000000000000*000001*0 41
23 00000**0000***0*01***0** 0000000*00000**00001**01 32
24 000***0*0*************** 00000**0000***0*01***0** 18
25 0*********************** 000***0*0*************** 6

TABLE 6
Details of the bits to guess round by round and the corresponding complexity when starting from 2t pairs.

R Bits to guess total #cond. Complexity

23 k
(24)
0,3,4,5,6,7,10,11,12,13,16,17,18,19,20,21,22,23. 18 14 2t · 218−14 = 2t+4

22 k
(23)
2,3,4,9,10,11,16,17,19,20,21,23, k(24)1,2,8,9,15 17 9 2t+4 · 217−9 = 2t+12

21 k
(24)
14 , k

(23)
0,1,6,7,8,13,14,18, k

(22)
1,8,9,15,18,19 15 5 2t+12 · 215−5 = 2t+22

20 k
(23)
5,15,22, k

(22)
5,6,16,23,deduced k

(21)
7,17 7 2 2t+22 · 27−2 = 2t+27

2 k
(0)
1,8,9,15,18,19 6 5 2t+27 · 26−5 = 2t+28

3 k
(0)
5,6,16,23, k

(1)
7,17 6 2 2t+28 · 26−2 = 2t+32

TABLE 7
Attack parameters for differential attacks on SIMON. We denote the

success probability as PS , and all the attacks used the distinguishers
in Table 1. We set the threshold s = 1.

Variant Rounds κg D λR λW PS Time

48/72 25=3+17+5 69 247.5 21.01 2−1.5 0.60 268.58

48/72 25=3+17+5 69 247 20.51 2−2 0.42 267.89

48/96 26=4+17+5 94 247.5 21.01 2−1.5 0.60 293.14

48/96 26=4+17+5 94 247 20.51 2−2 0.42 292.51

64/96 31=4+23+4 92 263.5 21 2−1.5 0.59 292.20

64/96 31=4+23+4 92 263 20.5 2−2 0.41 291.43

64/128 32=4+23+5 124 263.5 21 2−1.5 0.59 2124.58

64/128 32=4+23+5 124 263 20.5 2−2 0.41 2123.89

96/144 42=4+33+5 124 296 20.9 2−1 0.56 2140.53

128/128 50=4+42+4 105 2127 21.02 2−2 0.60 2127.07

128/192 51=5+42+4 159 2127.5 21.52 2−1.5 0.78 2187.67

128/192 51=5+42+4 159 2127 21.02 2−2 0.60 2186.76

128/256 52=5+42+5 208 2127 21.02 2−2 0.60 2250.76

(κp, κf , κb, κc) for the first and/or last rounds, and compute
the experimental correlation of the linear approximation

q (kp, kf , kb, kc) =
1

D
(# {P,C : P ′ · α⊕ C ′ · β = 0}

−# {P,C : P ′ · α⊕ C ′ · β = 1})

=
1

D

∑
P,C

(−1)P ′·α⊕C′·β

The value of P ′ ·α and C ′ ·β is computed as a function of the
partial key guess and some bits in plaintext and ciphertext,
and we denote the masked bits as χp(P ) and χc(C). Then,
we have:

P ′ · α = f (kf , kp ⊕ χp(P ))

C ′ · β = g (kb, kc ⊕ χc(C))

6.1 FWT Approach [22], [23]
Since the value of P ′ · α and C ′ · β do not depend on the
full plaintext/ciphertext, we can compress the dataset using
a distillation phase [21] where we only count the number of
plaintext/ciphertext pairs that reach each value of P ′ and
C ′, then we correlate q (kp, kf , kb, kc)

=
1

D

∑
P,C

(−1)f(kf ,kp⊕χp(P ))⊕g(kb,kc⊕χc(C))

=
1

D

∑
i∈Fκp

2

∑
j∈Fκc

2

# {P,C : χp(P ) = i, χc(C) = j}

× (−1)f(kf ,kp⊕i)⊕g(kb,kc⊕j)

where i and j denote the masked value of plaintext and
ciphertext. Then, we can find that the expression above is a
convolution:

1

D

∑
i,j

ϕ(i, j)× ψkf ,kb
(kp ⊕ i, kc ⊕ j)

=
1

D

(
ϕ ∗ ψkf ,kb

)
(kp, kc)

where
ϕ(x, y) = # {P,C : χp(P ) = x, χc(C) = y}

ψkf ,kb
(x, y) = (−1)f(kf ,x)⊕g(kb,y)

Therefore, for a given kf , kb, we can evaluate
q(kp, kf , kb, kc) for all kp, kc with complexity Õ(2κp+κc)
using a Fast Walsh Transform, which is first observed in
[22], and then generalized in [23]. The time complexity of
the analysis phase is reduced to Õ(D + 2κg ).

6.2 Statistical Models to Estimate Success Probability
We follow the work of Blondeau and Nyberg [24], [25] to
estimate the success probability of the attack. Similarly, the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

sampling model with a factor B depends on the type of
attack: B = 1 if the plaintexts are randomly chosen with
repetition, and B = (2n − D)/(2n − 1) if they are distinct
(we assume distinct plaintext in the rest of this attack).

When using a single linear hull with empirical ELP, the
correlations for the right and wrong keys follow normal
distributions with parameters:

µR = 0, σ2
R = B/D + ELP,

µW = 0, σ2
W = B/D + 2−n.

The distributions are both centered on zero, and the
variance for the right key is greater. Then, we can sort
the keys according to the absolute value of the measured
correlation, and expect a larger value for the right key
than for the wrong key. More precisely, using a threshold
s = σWΦ−1

(
1− 2−a−1

)
on the absolute value of the cor-

relation, the success probability is given by [24, Theorem
2]:

PS = 2− 2Φ

(
σW
σR

Φ−1
(
1− 2−a−1

))
,

where a denotes the advantage of the attack, and Φ is the
cumulative distribution function of the standard normal
distribution, respectively.

6.3 Attack Parameters

We compute the attack parameters against different variants
of SIMON and summarize in Table 8. Then, we explain one
attack in detail. Due to the rotation invariant of SIMON, we
can repeat the attack by using the rotated distinguisher to
improve the success probability, according to [9]. We expect
the attack to succeed after 1

PS
attempts with average time

complexity C1 × 1
PS

, where C1 is the time complexity to
run a single time. To estimate the success probability with a
binomial distribution, we have the success probability after
1
PS

attempts is 1− (1− PS)
1

PS .
Key recovery attack on 26-round SIMON48/72. We apply

the FWT approach to SIMON48/72, with the 17-round
linear approximation ({23}, ∅) → (∅, {23}) with capacity
2−45.19, and add five rounds before the distinguisher and
four rounds after. Following [9, Algorithm 3], x(6)23 can be
computed from κp = 29 bits of P , κp = 29 bits of the
whitening key k(0)||k(1), and κf = 7 additional key bits.
Similarly, x(r−4)23 can be computed from κc = 16 bits of C ,
κc = 16 bits of the whitening key k(r−1)||k(r−2), and κb = 2
additional key bits:

kp = k
(0)
[22,21,20,19,...,9,7,5,4,3], k

(1)
[23,22,20,19,18,15,13,12,11,6,5]

kf = k
(2)
[21,20,14,13,7], k

(3)
[22,15]

kb = k
(r−3)
[22,15]

kc = k
(r−2)
[21,20,14,13,7], k

(r−1)
[23,22,20,19,18,15,13,12,11,6,5]

We ignore bits that have a linear effect because they only
flip the sign of the imbalance. The attack is decomposed in
three phases:

Distillation Phase. Compute ϕ(x, y) =
# {P,C : χp(P ) = x, χc(C) = y} for 0 ≤ x < 2κp , 0 ≤ y <
2κc .

This step only requires setting up 2κp+κc counters and
to iterate over the D available plaintext/ciphertext pairs.

Analysis Phase. For each kf , kb, compute ψκf ,κb
(x, y) =

(−1)f(κf ,x)⊕g(κb,y) for 0 ≤ x < 2κp , 0 ≤ y < 2κc , then
evaluate the convolution

(
ϕ ∗ ψκf ,κb

)
using the Fast Walsh

Transform.
For each κf , κb, this requires 2κp+κc evaluations of f

and g to generate ψκf ,κb
, and 3(kp + kc) · 2κp+κc additions

and 2κp+κc multiplications to evaluate the convolution,
according to [23]. Assuming that the cost of κp+κc additions
and the cost of multiplication are comparable to the cost of
one encryption, the total complexity of the analysis phase is
O(2κg ) using a memory of size 2κp+κc .

Search Phase. For all keys with q(kp, kf , kb, kc) ≥ s, ex-
haustively try all master keys corresponding to the subkey
candidates. Due to the linear key schedule of SIMON, we
can reconstruct the master key from the 2κg−a candidates
using linear algebra. With a threshold s = F−1W (1 − 2−a),
we expect a fraction 2−a of the keys to remain. Then, we ex-
haustively search the remaining key bits, with a complexity
of 2κg−a × 2κ−κg = 2κ−a ≈ 272−a.

Using the Walsh transform pruning technique of [23]
(and partially precomputing the Walsh transform of ψ), the
complexity of the analysis phase is reduced to2:

ρA (κp + κc) 2
κp+κc + 2ρM2κp+κf+κb+κc−l12

+ ρA2
κf+κb+κc−l12

(
2κp + (κp − l0 − 1) 2κp−l0

)
+ ρA2

κp−l0+κf+κb−l12
(
2κc + (κc − l3 − 1) 2κc−l3

)
= 45ρA2

45 + 2ρM254 + ρA2
25(229 + 27× 228)

+ ρA2
38(216 + 15× 216) ≈ 2ρM254,

with ρA the cost of an addition, and ρM the cost of a
multiplication. Assuming that two multiplications corre-
spond to roughly one evaluation of the cipher, we end up
with a complexity of 2κg . This variant uses a memory of
2κp+κc +2κp+κf +2κc+κb = 245+236+218 ≈ 245 elements.

Following the above attack parameter, we obtain the
complexity of the analysis phase is 254. With an advantage
of a = 10, the complexity of the search phase is 262, and
the success probability PS = 0.12. After 1

PS
= 8.3 attempts,

the success probability is 1 − (1 − PS)
1

PS ≈ 66%, and the
average time complexity of this attack is 265.06.

7 DISCUSSION AND PERSPECTIVE

As shown in Fig.1, we observe that the DW of the SIMECK32
is almost the same as the SW. For better compare DW to SW,
we also evaluated other SIMON-like ciphers with different
rotate constant.

SIMON-like ciphers with different rotate constant. In Crypto
2015, Kölbl et al. explored SIMON-like ciphers with different
rotation constants. After the analysis of the diffusion, differ-
ential, and linear properties of these ciphers, they screened
three candidate rotation constants: (12, 5, 3), (1, 0, 2), and
(7, 0, 2). Next, we will call the cipher with rotation constants

2. With the notation adopted by [23], we have k0 = 29, k1 = 7, k2 =
2, k3 = 16, l12 = 0, l0 = 1, l3 = 0.
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TABLE 8
Attack parameters for linear attacks on SIMON with advantage a = 10, D = 2n−1. All the attacks used the distinguishers in

Table 1.

Variant Rounds Source Search Time κp, κf , κb, κc Capacity C1 PS Time P

48/72 26=5+17+4 17-bit DW 138.4h 29,7,2,16 2−45.19 254 + 262 0.12 265.06 66%
48/96 27=5+17+5 17-bit DW 29,7,7,29 2−45.19 272 + 286 0.12 289.05 66%

64/96 32=5+23+4 17-bit DW 140.4h 43,10,2,24 2−60.24 279 + 286 0.24 288.10 68%
64/128 33=5+23+5 17-bit DW 43,10,10,43 2−60.24 2106 + 2118 0.24 2120.09 68%

96/96 44=5+34+5 17-bit DW 278.6h 30,7,9,38 2−93.74 284 + 286 0.07 290.09 65%
96/144 45=6+33+6 17-bit DW 47,18,18,47 2−91.74 2130 + 2134 0.31 2135.77 70%

128/128 53=5+43+5 17-bit DW 348.6h 47,14,12,43 2−124.59 2116 + 2118 0.19 2120.72 67%
128/256 56=6+43+7 17-bit DW 64,33,55,78 2−124.59 2230 + 2246 0.19 2248.40 67%

Search Time: the time of searching linear hull utilized in the attack;
C1: the time complexity to run the attack a single time;
PS : success probability to run the attack a single time;
Time= C1 × 1

PS
: the average time by assuming that the attack is repeated 1

PS
times;

P : success probability after 1
PS

attempts.

TABLE 9
Probability of a 17-round differential (∅, {0}) → ({0}, ∅) evaluated under different windows for SIMON48(12,5,3) and SIMON48(7,0,2).

SIMON48n(12,5,3)

w-bit 9 10 11 12 13 14 15 16 17
EDP(SW) -inf -inf -inf -inf -66.89 -66.49 -64.63 -59.89 -59.65
EDP(DW) -inf -inf -48.13 -47.47 -47.34 -47.14 -47.02 -46.91 -45.99
SIMON48n(7,0,2)

w-bit 9 10 11 12 13 14 15 16 17
EDP(SW) -inf -inf -inf -inf -51.95 -50.70 -49.05 -48.10 -47.62
EDP(DW) -inf -inf -50.86 -49.01 -48.78 -47.75 -47.48 -46.70 -46.26

(a, b, c) and block size n as SIMONn(a,b,c). To further com-
pare DW with SW, we show in Table 9 the probability of the
17-round differential (∅, {0}) to ({0}, ∅) for SIMON48(12,5,3)
and SIMON48(7,0,2) for different window sizes. Whatsmore,
for the variant SIMONn(1,0,2), which can not be evaluated
by SW due to the rotation constant (c > a, b), DW can adjust
the output difference or mask and trace the diffusion of the
input to solve this problem.

Finally, for SIMON48(1,0,2), we rotate the output differ-
ence of the left branch to (1 << ((r − 1) × 2)%n

2
) and get a

19-round differential (∅, {0}) to ({12}, ∅) with EDP 2−43.13.
We also get a 21-round differential (∅, {0}) to ({16}, ∅) with
EDP 2−47.54. Impressively, we observe that the advantage of
DW over SW is more significant when applied to large rotation
constants (12, 5, 3). Compared to SW, DW better exploits the
diffusion property of the cipher and guarantees the minimal
loss of trails in the first few rounds.

Compared to Dinur et al.’s work [26]. Recently, Dinur et
al. proposed new, faster generic black-box algorithms for
finding certain statistical properties (high-probability dif-
ferentials, linear biases, boomerangs) in block ciphers [26].
All algorithms are based on ”surrogate differentiation”.
According to [26, Table 1], the time complexity of finding the
differential with EDP≥ p is bounded by Õ(2n/2p−1) costing
memory Õ(2n/2p−1). They also presented a memoryless
version, while time complexity is increased to Õ(2n/2p−2).

When applied to SIMON-like ciphers, our DW method-
ology exhibits several benefits over the technique presented
in [26]:

1) DW can detect low probability distinguisher. The

algorithm presented in [26, Algorithm 1] relies on a
probability testing mechanism that is less adept at
identifying low probability distinguishers due to a
large amount of required data complexity.

2) DW can find a key recovery friendly distinguisher.
When applied to SIMON-like ciphers, a distinguisher
with low hamming weight input-output can mount
a longer key recovery attack due to fewer key
candidates. In [26], they detect all differential with
probability greater than p, which may cause an
unsatisfied distinguisher.

3) DW has a constant growth in time complexity.
Furthermore, the time complexity of our approach
is solely dependent on the window size w, and as
demonstrated in Fig. 4, a small w suffices to achieve
satisfactory accuracy. For variants with larger block
sizes, the time complexity of the method proposed
in [26] enlarges exponents due to the increased
value of n and the decreased probability p. In con-
trast, the growth in complexity of our method is
constant, due to the extended number of rounds r.

With high applicability, the methods developed by Dinur
et al. are well-suited for constructing Differential Distribu-
tion Tables (DDT), Linear Approximation Tables (LAT), and
Boomerang Connectivity Tables (BCT) of large Sbox. When
applying dataset experiments, these structures are more
likely to be revealed due to higher probability/correlation.

Application to other kinds of ciphers. For symmetric ciphers
with different linear layers, for instance, SPN structures with
MDS/almost MDS (Maximum Distance Separable) linear
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layers or Addition-RX algorithms, further research on the
DW approach is required. Even for SIMON-like ciphers with
larger rotation constant parameters, their diffusive prop-
erties are much weaker than those of SPN ciphers. For
example, one active bit causes at most three active ones in
each round.

The SPN cipher typically exhibits more rapid diffusion
than the SIMON-like cipher, which is also because the latter is
designed with an extreme focus on minimal hardware area.
For SPN cipher like AES, which utilizes an MDS matrix as
the linear layer, full diffusion occurs by the second round.
This implies that a significant portion of active bits must be
discarded early on with the dynamic window (DW) strategy,
which can lead to bad results.

For those with an almost MDS matrix, the DW approach
can reduce the searching space of the differential or linear
hull. Once the input difference/mask is fixed, we can utilize
MLW in section 3.1.1 to narrow the search space by forcing the
discarded bits to be zero. Meanwhile, it should be noted that
determining a DW for these ciphers is not an easy task. The
MLW works around full diffusion round, which means that
we need to use LWIM to combine several MLW and form a DW
with more rounds. For these ciphers, we believe combining
MLW with SAT problems could yield better results, and we
defer this task to future work.

8 CONCLUSION

In this paper, we followed Leurent et al.’s framework but
adopted a dynamic way of choosing windows for each
round. To determine these dynamic windows (DW), we
proposed the MLW (minimal loss window) and LMIM (link
window in the middle) strategies. In our MLW strategy, the
window is chosen to contain all possibly active bits as the
number of them is no greater than the window size w. If
the number of active bits is greater than w, we heuristically
exclude some possibly active bits out of the window and
restrict them as zero differences/masks. To maintain a lower
loss of trails, these excluded bits are chosen using minimal
active probability test. However, the test can only apply to
the first few rounds (around the full diffusion). To solve
this problem the LWIM strategy is proposed to link two
short MLWs and form a full DW. With these two strategies,
we obtained the w-bit DW for SIMON and SIMECK. These
windows are very different from the SW for SIMON, while
being similar to those SW for SIMECK. Benefiting from these
dynamic windows, we observed stronger differentials and
linear hulls than previously proposed for almost all versions
of SIMON. With these stronger distinguishers, we mounted
the best key recovery attacks against SIMON. Moreover, we
improved the previous analysis results on the small version
of SIMON.
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