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Abstract—Cross-chain bridges, realizing the transfer of in-
formation and assets between blockchains, form the core of
blockchain interoperability solutions. Most existing bridge net-
works are modelled in an honest-malicious setting, where the
bridge nodes are either honest or malicious. Rationality allows
the nodes to deviate from the protocol arbitrarily for an economic
incentive. In this work, we present HyperLoop, an efficient cross-
chain multi-signature bridge and prove that it is safe and live
game-theoretically, under the more realistic rational-malicious
model.

As rational bridge nodes are allowed to deviate from the
protocol and even collude, a monitor mechanism is necessitated,
which we realize by introducing whistle-blower nodes. These
whistle-blowers constantly check the operations of the bridge
and raise complaints to a complaint resolution network in case
of discrepancies. To enforce punishments, it is necessary for the
nodes to stake an amount before participating as bridge nodes.
Consequently, a cap on the volume of funds transferred over the
bridge is established. We describe a sliding window mechanism
and establish a relation between the stake and the sliding window
limit necessary for the safety of the bridge.

Our design yields an economic, computation, and
communication-efficient bridge. We realize and deploy our
bridge prototype bridging Ethereum and Polygon chains over
testnets. For a 19-node bridge network, each bridge node takes
an average of only 3 msec to detect and sign a source chain
request, showing the highly efficiency and low-latency of the
bridge.

I. INTRODUCTION

Cross-chain bridge protocols provide the bridging function-
ality to transfer financial assets across blockchains. As per De-
fiLlama on 18th Dec 2024, around USD 930 million of value
is bridged in the preceding 24 hours. As the bridge protocols
gain popularity, the attacks on them have also seen a rise.
Since May 2021 as of Aug 2024, these attacks have accounted
for approximately USD 3.2 billion in stolen assets [17]. The
attacks on bridges show that the bridges form the weakest link
in the ecosystem making the security of the bridge paramount.

Like most cryptographic and multiparty computation
schemes [23], [24], [19], [25], [33], [20], bridge protocols
[5], [15], [16] have been proposed whose security has been
discussed and argued in what we call the ‘honest-malicious’
model where a subset of the parties are always assumed to
be honest. However, with the increasing total value being
withheld in the blockchains, assuming some nodes handling

this large value to behave honestly is not realistic. The reality
is that nodes may interact arbitrarily for economic gains. This
particular behaviour makes many existing bridge mechanisms
[5], [15], [16] extremely vulnerable to large volume of funds
being usupred. Hence there is a dire need to analyze bridges
in a more realistic rational setting, which is the focus of this
work.

Our multi-signature bridge protocol is simple. The bridge
nodes watch for bridge requests from users on the source
chain. Then they submit transactions to the destination chain
endorsing the requests observed. Bridge smart contracts on the
destination chain wait for a threshold number of endorsements
and then they do the required response. Typically, these re-
quests are in the form of locking a certain volume of assets on
the source chain, and responses are in the form of minting or
releasing the corresponding volume of assets on the destination
chain. Since all the honestly behaving nodes have the same
view of the source chain, they sign same set of transactions
and blocks, this removes the need for consensus or interaction
among the bridge nodes.

Rational setting entails that the bridge nodes participate cor-
rectly in such a bridge protocol only if it is profitable to them.
Towards that goal, we design an incentive-penalty mechanism
that yields a game-theoretically stable bridge protocol.

• To enforce penalties on the bridge nodes, they need to
stake a certain amount first. Then the maximum penalty
that can be imposed is the staked amount. Then the bridge
nodes could collude and place fraud endorsements on the
destination chain for a bridging amount greater than their
cumulative stake of the bridge nodes. The important thing
to note is that the maximum penalty is not a deterrent here
as the profit gained by the bridge nodes is more than the
loss owing to their penalty. So, naturally we need to limit
the bridged amount of transfers.

• Note that it is still allowed by the protocol for the bridge
nodes to collude and fraudulently place a bridge response
transaction on the destination under the limit. Hence, we
need whistle-blowers to constantly monitor the source and
destination chains and raise complaints whenever a source
request - destination response mismatch occurs.

• To resolve the complaints, we need another entity since
rational whistle-blower nodes can themselves collude
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Fig. 1: Architechture of the HyperLoop. Whistle-blower nodes
follow the transactions on both chains and raise a complaint
to CRN when there is a discrepancy.

with the bridge nodes. We use a Complaint Resolution
Network (CRN) network of nodes for this purpose. If
a whistle-blower’s complaint is true, then the colluding
bridge nodes’ stakes are confiscated. To prevent false
alarms by whistle-blowers, we mandate a minor stake
on the whistle-blower nodes whenever they are raising
complaints. When found that the complaint is false, then
the complaining whistle-blower’s stake is confiscated.

A pertinent question is: - if you have a set of CRN nodes
to behave honestly as a network, why can’t they offer the
bridge node services themselves? It is to be noted that the
CRN network is external to the bridge and does not participate
in the regular mechanism at all. They are mostly dormant
and are approached only in extreme cases of discrepancy
in transactions by the bridge nodes. Penalization ensures
the security of the bridge, and hence, bridge nodes are not
incentivized to collude, making collusion/discrepancy a very
rare event. Thus, the honest-malicious nature of the network is
limited to the CRN network, which does not participate in the
network and appears only on a rare event of an active attack.
Moreover, it is quite challenging to totally avoid such honesty
assumption, without making any extra assumptions on the
functionality of the chains than what they traditionally offer.
This is especially the case when both the bridge nodes and
whistle-blower nodes are allowed to be rational and collude.
Without a resolving entity, all the rational entities will simply
collude to perpetually usurp funds. Refer Section H for a
comment on how to avoid the CRN with extra assumptions
on the chains.

Thus, our HyperLoop comprises three sets of actors: staked
bridge nodes, monitoring whistle-blower nodes, and a Com-
plaint Resolution Network (CRN). The architecture of the
bridge is provided in Figure 1.

It must be noted that even with whistle-blower nodes, the
bridge nodes may collude and sign off large value transaction
before it can be caught by the whistle-blower nodes. To prevent
this, a limit on the total value that can be transferred in a

window should be limited. We realize this limit using a sliding
window mechanism to maximize the value bridged in a given
time. See Section V for further details. There is a natural
turnaround time for whistle-blowers to detect a collusion and
report to the CRN network that validates and resolves the
complaint. This turnaround time would be the sliding window
length.

Non-interactivity. Whenever a cross-chain request or event
appears on the source chain, each of the bridge nodes inde-
pendently generates a signature on the request and forwards
it to the destination chain. Bridges like CCIP [5] use a
consensus protocol among all bridge nodes to agree on the
source transaction(s) and generate a signature. We leverage
the fact that all the honestly behaving bridge nodes have a
consistent view of the source chain. The advantage of this is
twofold: first, a simple majority of the number of signatures
from the bridge nodes is sufficient to prove the validity of the
source chain events. This makes the bridge network operate in
the 2f+1 model requiring simple majority instead of the 3f+1
model requiring super majority of signatures for f Byzantine
nodes in the bridge network. Second, it completely avoids
interaction among the bridge nodes, improving computational
and communication efficiency. This also allows supporting
higher transfer values for the same stake of bridge nodes.

Additional features of HyperLoop include batching requests
for efficiency, allowing reverts of requests to ensure quality of
service. See the full version of this paper [9, Appendix C]
for further details. HyperLoop allows both permissioned and
non-permissioned nodes to offer the services.

Towards proving the security of the protocol, we propose an
ideal functionality of the protocol that explicitly allows for col-
lusion among rational parties. Then, using game theoretic and
cryptographic analyses, we build a simulator that provides an
indistinguishable view in the ideal world-real world paradigm.

We implement the HyperLoop protocol and deploy between
Ethereum and Polygon testnet for different numbers of bridge
nodes and transactions. Each bridgenode takes ∼ 3msec to
detect a request event and generate the signature on the
transaction. The total end-to-end delay from the point of
emitting the event on the source chain till the finalization of
the transaction on the destination chain is dependent on the
chain finality times, and for the Ethereum-Polygon bridge, it
is ∼ 5 sec for a 19−node bridge setup.

Contributions.
• We construct HyperLoop, a bridge protocol that requires a

simple majority of bridge node signatures (under honest-
malicious setting) in a non-interactive way.

• Using game theoretic analysis, we derive an incentive-
penalty mechanism and show that the non-collusion is the
dominant strategy for the bridge nodes so that the crypto-
economic security of the bridge protocol is assured. As far as
we know, we are the first ones to analyze a bridge protocol
in the much-needed rational-malicious setting.

• We realize a decentralized collusion detection mechanism
by introducing incentivized whistle-blowers, who can also
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be rational.
We also introduce the sliding window limit on high-value

transfers so that the loss due to collusion is capped. We then
realize different batching strategies, through which we make
our bridge design gas-efficient and scalable.

II. RELATED WORK

Initially, approaches like wrapping[22] to use assets like
Bitcoin on other blockchains have been developed, especially
to tap the economic potential of Bitcoin on different DeFi
applications on other chains. The standard way was to deposit
some Bitcoins in a custodian’s account on the Bitcoin chain,
and then the custodian is to mint the same amount of wrapped
Bitcoin (wBTC) on the destination chain. These wBTC can
then be used for different applications and, when needed,
exchanged back to the original Bitcoin on the Bitcoin network,
typically in a 1 : 1 ratio. This involved trusting the custodian.
Our focus is to avoid centralized custody. This trust can be
decentralized by using a threshold-distributed version of the
custodian.

Trustless Bridges. Trustless bridges work without adding any
extra trust assumptions. Examples include bridges based on
zero-knowledge proofs ([35]), atomic swaps[29], [34], and on-
chain book-keeping of validator committees [10], [7].
• ZK bridges require at least one honest node to provide

the proof of correctness of requests. However, they suffer
from high proof generation times — for example, zkBridge
takes 20 sec to generate the proof (using multicores and
multithreading), whereas our HyperLoop takes 3 msec to
the bridge.

• Atomic swap mechanisms [29], [34] offer a bridging func-
tionality, but they require another entity on the destination
chain to set up keys with the requesting client and publish
transactions. This process can not be automated through
smart contracts.

• Checking the set of validator signatures [12] of the source
chain at the destination chain requires validating the signa-
tures of a typically high number of validators (the number
of Ethereum validators is of the order of a million). It also
involves updating the validator information continuously at
the destination chain. All these approaches lead to high
latency. This latency becomes a bottleneck especially with
the latest chains [2], [11] which achieve fast finality, even
sub-second finality times.
Recent bridges like XCLAIM [36] and Across [1], assume

the existence of players like liquidity providers who constantly
monitor the source chain for requests and respond. While
XCLAIM has been shown to be crypto-economically secure,
it (still) requires a proof of honoring the request by the
liquidity provider. This results in high latency for the bridging
operation.

Trustless bridges are fine for use-cases that tolerate high
latencies. The focus of this paper is towards a low latency
decentralized multi-signature based bridges.

HyperLoop is a multi-sig chain or a ‘middle chain’ where
confirmation from a group of staked bridge nodes is sought
for an event communicated between chains. Some popular
examples in the space are Wormhole [16] and Axelar [14]. The
main distinguishing feature is HyperLoop is focused mainly
on achieving low latency while allowing rational behavior of
nodes. It essentially tries to achieve a sweet spot between
the latency and trust-assumption trade-off. HyperLoop is a
pairwise bridge solution and differs from interoperability-
focused systems like Cosmos [4] and Polkadot [8]. A detailed
discussion of the comparison of HyperLoop with the latest
famous chains is presented in Appendix A.
Rationality and Collusion. Multiple attempts have been made
to study cryptographic protocols in the rational setting over the
period of time. Gordon et al. [28] propose a rational secret-
sharing scheme initially. Beyond rationality, study of collusion
[30], [31], [32] has seen an uptick in the recent times with the
economic aspect of blockchains taking prominence. Significant
number of existing mechanisms and protocols remain insecure
against colluding parties in the multi-party setting. Mangipudi
et al. [31] have studied and proposed a collusion deterrent
scheme for providing escrow services to clients. Gong et al.
[27] study collusion prevention schemes in the private informa-
tion retrieval mechanism. However, since the protocols differ
significantly from one another, the mechanism design differs
for each application. In this work we design a mechanism to
deter collusion in cross-chain bridge application.

Recently, a new framework for rational protocol design
(RPD) was proposed by Garay et al. [26]. In contrast to
previous works in rational cryptography, they consider a zero-
sum two-player game between the protocol designer and the
attacker, where the designer selects a protocol and the attacker
(with knowledge of the protocol) selects his strategy. In this
framework, both the designer’s and the attacker’s objective
is to maximize their utility. Following work by Badertscher
et al. [18], showed that the Bitcoin protocol is secure against
rational adversaries implying that no coalition has an incentive
to deviate from the protocol given that the remaining parties
follow it.

III. SYSTEM SETUP

In this section, we set up the preliminaries and definitions
required for the rest of the paper.

HyperLoop is a pairwise bridge protocol that connects two
blockchains, enabling information and asset transfer between
them. There are three actors in our protocol – a network of
bridge nodes, a set of whistle-blowernodes, and a Complaint
Resolution Network (CRN) network. The bridge nodes run
the clients of both the source and destination chains to follow
the events on them. The whistle-blower nodes also run both
the clients and constantly monitor and verify the actions of
the bridge nodes. They complain about discrepancies to the
CRN network. The protocol’s security ensures that the rational
bridge nodes do not deviate.

The nodes (Bridge and Whistle-blower) can be of the
following kind:
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• Rational node that always takes rational actions for eco-
nomic incentive. The node may deviate from the expected
actions or responses prescribed by the protocol. The node
has a (rational) strategy to maximize the utility obtained by
such a deviation. The strategy space may be known to other
nodes in the protocol. However, the parties’ exact strategy
is unknown to the other parties.

• Malicious node that can arbitrarily deviate from the protocol.
The actions taken by the node need not maximize the
node’s utility nor result in an economic incentive. Nodes
compromised by the adversary can act maliciously and are
called Byzantine.

We analyze the protocol in the rational-malicious model. The
nodes may behave honestly for economic incentives. We use
the word node throughout the paper to mean a bridge node
unless otherwise explicitly stated.
Network Model. The bridge network is completely connected
and asynchronous [21]. An asynchronous network entails that
the messages sent by the honest parties are delivered to
other honest parties eventually, and none of the messages
are dropped. There is no bound on the message latency.
Bridge nodes may have different views of the chain at any
given instant due to the asynchrony of the network. All the
bridge nodes are connected by authenticated point-to-point
links and have access to a reliable broadcast channel.
Threat Model. We consider a rational-malicious model in
which the protocol tolerates up to f of malicious nodes. The
rest are rational. The malicious nodes can deviate arbitrarily
from the protocol. In this work, we consider static corruptions,
where the adversary corrupts up to f nodes at the beginning
of the protocol when the network is initialized and controls
all communication between the parties.
Notion of Time. Time is needed for handling re-
vertable bridge requests (See Appendix B). Blocks of many
blockchains typically carry Wall-clock time-stamps; these
approximated Wall-clock block time-stamps can be used to
specify the time factor for revertable requests. When the block
time-stamps are not available, we use the number of blocks
on the (destination) chain as the factor of time for reverts.
Staking. The bridge nodes are required to stake a predeter-
mined amount S. The external whistle-blower nodes are also
required to include a stake amount at the time of raising a com-
plaint. Upon successful complaint by the whistle-blower node,
the stake of the bridge nodes is slashed and is paid as a
reward to the whistle-blower node. The whistle-blower nodes
are also paid a periodic reward for the verification process. The
stake amount of complaints is withheld when the complaint
is determined to be false. Section V expands on the staking
requirements.

The properties expected from the bridge are provided in
Appendix B.

IV. HYPERLOOP

We first present the ideal functionality Fbridge of the bridge
and then describe the HyperLoop protocol that realizes it.

Functionality. The functionality Fbridge is provided in Ap-
pendix Figure 8. The functionality interacts with the source
chain SC and destination chain DC, n bridge nodes and m
whistle-blower nodes. The adversary can corrupt up to f
bridge nodes and f ′ whistle-blower nodes. The functionality
interacts with the corrupted nodes through the simulator S.
Here n > 2f + 1 and m > f ′ + 1. The non-corrupted bridge
and whistle-blower nodes are rational.

All the messages for a session are identified with the session
id sid. The simulator forwards the keygen message along
with the total sets of bridge and whistle-blower nodes and
the sets of corrupted parties. The functionality checks if the
number of corrupted parties is within bounds and proceeds
to generate key pairs for all the non-corrupted parties and
forwards the keygen message to all the parties. All the
bridges send deposit (stake) of value S. The functionality
accepts requests only after all the bridge nodes have forwarded
the deposits. The functionality transfers the deposits to an
address which it controls.

The functionality receives the requests from the source chain
through the req message. It checks whether the cumulative
value of requests in the last window (sliding window) of size
T to be less than the sliding window limit L. If it does not,
a revert message is sent to SC. The accepted request is
forwarded to all the bridge nodes. The simulator forwards a
signature on the requests on behalf of the corrupt nodes. The
functionality verifies these signatures and if verified, records
the index. The non-corrupt nodes just forward a sig message
and the functionality locally computes the signature since it
holds the secret keys pertaining to the honest bridge nodes. If
the total number of signatures is greater or equal to f +1 for
a request, the list of signatures is forwarded to the destination
chain and the whistle-blower nodes.

The destination chain forwards an ack to the function-
ality, which stores the time t′ at which the message is
received. This message is immediately forwarded to the
whistle-blower nodes. Then the functionality checks if there
is a matching source chain request. If such a request does not
exist, it does nothing. This precisely captures the collusion
scenario in which a destination chain transaction forwarded
by the functionality is finalized without a valid source chain
request.

If there is a matching source chain request, the functionality
checks if the revert time window has passed. If it has, a
revert message is forwarded and the request is reverted.
However, the functionality also checks if any source chain
requests have not been acknowledged within the revert time
window. All such requests are reverted.

Any whistle-blower node can raise a complaint to the
functionality. However, they have to deposit a minor stake
before raising a complaint. This is withheld incase of false
complaints and hence prevents them. If the complaint is valid,
all the bridge nodes who have signed an invalid request are
penalized by withholding their stake. The minor stake and a
reward are forwarded to the complaining whistle-blower node
upon valid complaint.
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The system consists of two chains SC,DC, and n bridge nodes realizing the bridge functionality and m whistle-blowernodes. Each bridge
node deposits value S before offering the service. It also consists of a CRN to resolve any complaints.
Setup:

• Each bridge node Bi has a secret key pair (ski, pki). Two smart contracts scs and scd are deployed on the source and the
destination chains.

• scd accepts signed messages from the bridge nodes. The public keys pki are registered with scd.
• All the parties have access to a global clock T .

Source chain smart contract scs

• scs accepts requests from the clients along with a value payment val.
• It computes the value valcum of total requests within the last time window w. Checks if valcum + val < L. If yes, it accepts the

request. Else, it rejects.
• Accepts signatures for rx transactions form the bridge nodes. If a certain transaction has more than f+1 signatures, rx is considered

authorized and posted onto the chain.
Bridge nodes

• Each bridge node observes the events on the smart contract scs. An event is a request transaction transferring a value val to scs.
• The bridge node awaits the finality of the transaction and a pre-determined B number of blocks on the source chain after the block

in which the transaction appears on the source chain SC.
• After waiting for the finality, each Bi, checks for the sliding window condition:

– If the total requested value in the last time window w is less than L, admit the transaction
• After admitting the transaction, Bi generates σi = σ(dx, ski), a signature on the destination chain transaction dx and forwards it

to the destination chain smart contract scd.
– For batching, check different batching criteria to form the batch and then generate the signature.

Reverts
• Each bridge node observes the events on the destination chain for the forwarded signatures
• If the transaction dx does not appear with in a time τr , the bridge node generates a signature

Destination chain smart contract scd

• scd receives the message (dx, σi) from the bridge nodes. It verifies each signature ⊤ ← V er1(σ, pk). If not verified, the signature
is dropped. It collects the signatures to form a Quorum Certificate. The QC and the request are considered valid if the number of
valid signatures exceeds the threshold f + 1.

• Computes the value v′r of total requests within the last time window w.
• Checks if v′r + val < L. If yes, accept the transaction dx and the value transfer. Else, reject.
• If accepted, scd transfers value val to the address add specified by the client in the transaction tx.

Complaint
• A whistle-blowernode can raise a complaint against any destination transaction dx to the CRN by depositing a minor stake Swb.
• CRN verifies the complaint, if valid, withholds the stake of all the applicable bridge nodes. Else withholds the stake of

whistle-blower node.

Protocol πbridge

Fig. 2: HyperLoop protocol

Protocol. In Figure 2, we present the protocol that realizes
the functionality discussed above. In the protocol, we focus
on value transfer requests, though any kind of request can be
supported by the protocol. n bridge nodes realize the bridge
between the source and destination chains. A smart contract,
scs is deployed on the source chain SC; a client C forwards a
request to this smart contract with the required value value.
The client expects an equivalent value on the destination chain
DC on the address add owned by the client. Each bridge node
Bi, i ∈ [n] generates a secret key - public key pair (ski, pki)
1. The bridge nodes act as full clients of both chains. Each
bridge node Bi watches for the value request event on the
source chain smart contract scs. They check for the requests
to reach finality, with B blocks appearing after the block where
the request occurs on the source chain. After confirming the

1In case of threshold signature, these would be key shares instead of
independent keys

finality of the request (by waiting for a certain number of
blocks, etc), each bridge node individually fetches the request
and generates an equivalent destination chain transaction dx.
Each bridge node generates a signature σi(dx, ski) using the
secret key ski. All the honest bridge nodes have a consistent
view of the source chain. All the parties in the system have
access to a global clock, typically achieved using the time-
stamping of blocks on the chains.

The bridge nodes admit the source chain transactions only
if they agree with the sliding window value limit. The source
chain, bridge nodes, and destination chain independently check
this limit for redundancy. However, it is sufficient if the
destination chain smart contract checks if the admitted requests
satisfy the sliding window limit. The destination chain smart
contract, scd, verifies each signature received from the bridge
nodes. It collects the verified signatures for each request and
forms a quorum certificate when a sufficient threshold of
signatures is obtained. It independently checks if the validated
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transactions satisfy the sliding window limit. The correspond-
ing transfer is initiated once a request transaction achieves a
valid multi-sig.

Each value request on the source chain is handled individ-
ually. The bridge nodes generate signatures σi(dx, ski) using
the secret key shares ski. These signatures are forwarded to
the destination chain smart contract scd which collects them
to form the quorum certificate.

Rational-Malicious Setting

We consider the setting where the bridge nodes are rational
and work to maximize their gains. Upto f nodes can be
malicious, a single adversary controls all the malicious nodes.
The rational bridge nodes can collude, illegally sign off a non-
existent bridge request, and mint money on the destination
chain. To prevent this, we introduce an incentive-penalty
mechanism. We require the nodes to stake an amount S,
to implement slashing and penalization. Depending on the
nature of the deviation from the protocol, the penalization
could include - suspension from participation for a time
period, banning completely, or legal recourse in case of a
permissioned setup. For the malicious node to succeed in
posting arbitrary transactions, at least one rational node should
collude with them. Even if f malicious nodes publish their
secret information, at least one more signature from a rational
node is required for the multi-sig validation.

Sliding time-window transfer limit. Staking does not fully
solve the problem as the rational bridge nodes can collude, as
mentioned earlier, and mint an amount greater than the staked
amount on the destination chain. The penalization from the
staked amount cannot act as a deterrent here, as the gained
illegitimate amount could be way higher. Hence, a limit on the
number of bridge requests is necessary. HyperLoop imposes
a value limit of L for a time-window of length T . This time-
window is implemented as a sliding window instead of the
non-sliding approach. If a value v has been approved for a
source chain in a time t, the HyperLoop disallows authorizing
a transfer of value greater than L− v in the next T − t time.
The limit or restriction is realized as a sliding window where
the limit is imposed over the continuous time domain. The
relation between L and the stake S is presented in Section V.

HyperLoop enforces this sliding window limit simultane-
ously at 3 places: bridge smart contracts on the source chain,
the bridge client, and at the bridge smart contracts on the
destination chain. This layered security avoids exploiting the
loop-holes (software vulnerabilities) in one place. This is also
better in terms of UX (user experience) because if a bridge
request is not admitted owing to the crowded sliding window
pipeline, then the client’s request on the source chain itself
fails. The client then needs to resubmit this request perhaps
with a higher transaction fee on the source chain.

Whistle-blowers & CRN. As mentioned, the
whistle-blower nodes are introduced to prevent collusion
among bridge nodes. The bridge nodes could potentially
keep generating fraudulent transactions that mint tokens on

the destination chain. These tokens may be equally shared
among the colluding nodes. By appropriately selecting the
parameters of the system, i.e. the stake S, the fee f, and the
complaint reward rc, we can show that in the presence of
an honest whistle-blower a bridge node is incentivized to
act as a whistle-blower node and ‘snitch’ on the coalition.
Simultaneously, the whistle-blower nodes prefer to complain
compared to a promise of future payoffs by the bridge.

The whistle-blower nodes constantly monitor the source
and destination chains and the signatures generated by bridge
nodes and raise complaints to the Complaint Resolution Net-
work (CRN) network in case of any discrepancy. The first
node that generates a valid complaint is rewarded. This reward
includes the sum total stakes of all the colluding bridge nodes.
However, the whistle-blower nodes need to deposit or stake
a certain value Swb before forwarding the complaint. This
prevents any of them from generating invalid complaints and
false alarms.

The CRN network [6] is assumed to always have the
threshold number of honest nodes required to correctly assess
complaints and resolve them. The CRN network consists of
independent nodes with access to the source and destination
chain states and the transactions signed by the bridge nodes.
Upon a valid complaint from a whistle-blower, the CRN net-
work may request each bridge node for the response. If no
valid response is obtained within a time window, the stake
of the bridge nodes is confiscated, and the bridge nodes are
publicly banned from the system. The first whistle-blower
node who raises a valid complaint is then rewarded.

Collusion is an unusual event among the bridge nodes and
may not occur too often, especially with a banning policy
imposed on misbehaving nodes. To motivate the external nodes
to validate constantly, we reward them periodically. While this
periodic reward motivates them, it may also make them ‘lazy’
without verifying the transactions and collecting the reward. To
prevent such a scenario, we request that the whistle-blowers
submit proof of validation before the periodic reward. The
mechanism for the periodic reward is presented in Section F.

V. GAME-THEORETIC REWARD AND STAKE ANALYSIS

In this section, we design the rewards and penalties for
the different parties to prevent collusion. We first consider a
purely rational model and then extend it to a rational-malicious
model. After discussing the collusion scenarios, we present the
analysis for setting the rewards for each party.

A. Considerations and assumptions

Before we analyze the system, we present the assumptions
under which the protocol is practical.

• When multiple nodes raise a complaint to claim the
reward, each node wins the race with equal probability. This
is for the ease of the analysis. If we indeed consider different
probabilities, it deters the nodes further to collude and snitch
since they do not know if they have a higher/lower probability
of success.
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• The permissioned bridge nodes provide verifiable physical
identities before offering the service. This ensures that the ban
can be implemented and is effective. This shall also ensure that
the banned bridge node can not offer the service again.

• All the bridge nodes are similar. Also, no nodes or
agent(s) can impose negative payoffs on any other parties
outside the protocol, such as using blackmail. However, they
may offer positive pay-offs like bribes to encourage a certain
strategy.

• γ is the expected reward of the bridge nodes for offering
the service in the future, at any time. γ is not just the receivable
payments from future payments of the current service offering
but any other future business offering by the agents. This is
because identities are physically verifiable, and any ban is
public.

Game Theory Definitions. Before we proceed with the analy-
sis of the protocols, we will define the necessary notions from
game theory. Since the parties are interacting simultaneously
on rounds we model the games as a repeated game. Infinitely
repeated games represent games where the participants do not
know when is the final round, even though the game is finite. It
is important to note that for infinite horizon games, the players
value the utility gained in the present higher than in future
rounds. This is modeled with the discounted rate assumption.
Formally,

A strategy of the player i is a function ϕi that assigns to
each history (a1, a2, . . . , as−1) an action asi ∈ Ai. In repeated
games, we are interested in subgame perfect equilibrium,
defined below.

Definition 1 (Strategy). A strategy of player i in a repeated
game with perfect information is a function si that assigns a
history (a1, a2, . . . , at−1) to an action ati ∈ Ai.

Definition 2 (Subgame perfect equilibrium (SPE)). The strat-
egy profile ϕ = (ϕ1, . . . , ϕN ) in a repeated game with perfect
information is a subgame perfect equilibrium if, for every
player i, every history h, and every strategy ϕ′

i of player i,
discounting reward generated by ϕi after the history h is at
least as good according to player i’s preferences as discounted
reward generated by the strategy profile (ϕ′

i, ϕ−i) in which
player i chooses s′i while every other player j chooses ϕj .

The following principle gives a condition for a strategy to
be an SPE. Informally, a strategy s is an SPE if, and only if,
no player can gain by deviating from s in a single stage and
conforming to s thereafter.

Definition 3 (One-stage deviation principal). Consider an
infinite-horizon games, G∞, that is continuous at infinity.
Then, the one-stage deviation principle holds. The profile s∗

is an SPE if, and only if, for all i, ht, and t, we have
that ui(s

∗
i , s

∗
−i|ht) ≥ ui(si, s

∗
−i|ht), for all si that satisfies

si(h
t) ̸= s∗i (h

t) and si|ht(ht+k) = s∗i |ht(ht+k)

Collusion and its prevention. The (rational) bridge nodes
may collude at any point among themselves for an economic

incentive i.e., if the payoff from a deviation from the protocol
is higher. They may collude to endorse non-existent bridge
requests on the source chain and mint money on the destination
chain essentially breaking the Validity property stated in
Appendix B. However, since we enforce the sliding window
limit, the bridge nodes can not transfer a value more than
L in a time window of size T . Before offering the services,
each bridge node stakes a deposit of value S. It is withheld
in case of deviation from the expected honest behavior in the
protocol. Any deviation from the protocol by the bridge nodes
is publicly visible. We consider two scenarios for the bridge
nodes:
• Permissionless nodes may join the bridge network and offer

services by depositing a stake of value S. Any node may
offer services as a permissionless node as soon as the stake
is deposited.

• Permissioned nodes submit publicly verifiable identities
along with the stake deposits. They enter into legal contracts
before offering services. In case of dishonest behavior, the
nodes are penalized by confiscating the stake, banned from
offering services, and a legal course is taken if needed. Each
node incurs an additional negative pay-off of value γ due
to banning. This is the total pay-off they may obtain from
future service offerings and the cost of repercussions owing
to legal recourse, etc.

B. Design of the stake and reward value

We now compute the bounds on the rewards and stake of the
nodes to join the bridge network. Due to the sliding window
value limit enforcement, no collusion event can extract more
than value L. Here, we assume that the whistle-blower nodes
are guaranteed to detect fraud and raise a complaint to the
CRN and get it resolved within the sliding window time limit
of T from the start of the malicious event.

The protocol introduces a repeated game between the bridge
nodes with a strategy space of three strategies - act honest-ly,
collude, and collude but snitch on the other colluding nodes,
for the stage game. Any node can either follow the protocol
honestly or collude with other nodes to transfer a value of
L and share the transferred value. However, each node may
participate in collusion and get their share, but it may also
proceed to act as a whistle-blower to snitch on the other
colluding nodes. This way, the node that acts as a whistle-
blower will also obtain an extra reward, thereby improving
the pay-off from the system.
System setting. Each node, upon offering services honestly,
receives a pay-off f for each window of time T . Each bridge
node has computation cost cb for following the protocol
honest and communication cost c̄b for colluding with the other
bridge nodes. Any dishonest behavior is assumed to be caught
and reported by the whistle-blower nodes in a time limit of
T upon the transaction appearing on the destination chain.
The maximum value that can be authorized by the bridge
nodes in any window of time T is L. Each dishonest node
loses the stake S upon being caught. All permissioned nodes,
upon dishonest behavior, incur an additional negative pay-off
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Stake value of the bridge node S
Fee for following the protocol f
Penalty for breaking Liveness θ
Penalty for breaking Validity S + γ
Bridge node cost per round cb
Bridge node cost per round (collusion) c̄b
Whistle-blower stake while raising a complaint Swb

Whistle-blower reward for a successful complaint rc
Whistle-blower periodic reward rp
Whistle-blower cost per round cwb

Whistle-blower cost per round (collusion) c̄wb

Complaint resolution turnaround time T
Revert window time limit τr
Transfer limit in a sliding time-window of duration T L

TABLE I: Variables in the incentive-penalty system

of γ once caught. The client requesting may request a revert of
the request if not honored within a time window of τr from the
time the request is finalized on the source chain. Each bridge
node receives a fee of value f for offering services honestly
for every time window of size T .

We first illustrate the pay-offs and strategies using a two-
node example for the forward case where the bridgenodes
generate signatures on the source chain transactions and extend
it to a general case of n nodes for the permissionless and
permissioned node cases. We then discuss the game induced
during reverts for the revertable transactions.

Two node example. Let the bridge network consist of two
nodes {A1,A2}, wherein both nodes are required to endorse a
bridge request for the corresponding action to be taken on the
destination chain. Either party can choose a strategy among
the three strategies of honesty, colluding, and snitching.

Permissionless setting: Table II presents the pay-offs each
node will obtain for the different strategies for a permissionless
node case in the stage game. If one of the nodes is honest, col-
lusion does not occur, and they obtain a positive pay-off f. Un-
der collusion, they can transfer a maximum value L together
and, assuming they divide it equally, can obtain a pay-off of
L
2 . However, once they collude, the whistle-blower nodes raise
a complaint, and both will get caught. Then, both the nodes
lose their stake of S, making the pay-off L

2 − S − c̄b for
collusion. However, after collusion, any node can act as a
whistle-blower themselves and raise a complaint. If only one
node raises the complaint, they obtain a reward rc. If both the
nodes play the snitch strategy and raise a complaint on the
collusion, we assume each of them would win with half the
probability and hence, in expectation, would receive a reward
of value rc

2 . When a deviation is caught the game stops, and
a new instance starts from the setup phase.

Now, we will show that it is in the best interest of the bridges
to follow the protocol honestly. Assume that the bridge nodes
collude at some epoch e ≥ 1, after which the game stops.
For the first e − 1 epochs their utility is f for following the
protocol honestly. In epoch e their utility from colluding is
L
2 − S − c̄b. Notice that for rc > 0 a node can unilaterally
increase their pay-off by playing the strategy snitch instead
of collude irrespective of the other player playing collude or
snitch. Hence, we assume that when there is collusion among

the bridge nodes they play the snitch strategy. For honest
behavior to be SPE, we would need the discounted utility of
the honest strategy, that continuous indefinitely, to be greater
than snitch strategy, therefore we need,∑+∞

s=1 δ
s−1(f − cb) >

∑e−1
s=1 δ

s−1(f − cb)
+ δe−1

(
L
2 − S + rc

2 − c̄b
)

From rearranging, we get that the fee f must satisfy,

f >
δe−1∑+∞
s=e δ

s−1

(
L

2
− S +

rc
2

− c̄b

)
+ cb

= (1− δ)

(
L

2
− S +

rc
2

− c̄b

)
+ cb

(1)

The fee f is typically collected as a percentage of the total
value requested to be bridged by the client. The minimum
value of f is zero. This is because it is possible that during
some intervals of time, the bridge nodes do not get any fee
owing to the lack of requests. This modifies the above relation
to S > L+rc

2 − c̄b +
1

(1−δ)cb.
In the setting with permissioned nodes, the nodes being

caught upon collusion will lose an additional utility of γ in the
collude and snitch strategies. The pay-off matrix is depicted
in the Table III. The pay-off matrix is similar to the non-
permissioned case except for the loss of future pay-off γ.
Similar to the previous case, for honesty to be the dominant
strategy in the permissioned node case, from Table III, we have
the following relation f > (1− δ)

(
L
2 − S − γ + rc

2 − c̄b
)
+ cb

Taking the minimum value of f to be 0 gives
S > L+rc−2γ−2c̄b

2 + 1
1−δ cb

General case with n bridge nodes. In a scenario with n
bridge nodes, a request is authorized if f + 1 or more nodes
generate a signature on the source chain transactions. Hence,
the collusion scenario needs at least f +1 nodes to cooperate.
In the non-permissioned bridge node case, the pay-off would
be f for each node for honest behavior. However, when at
least f + 1 nodes collude and make a (maximum) transfer of
value L, the transferred value is divided equally among all
the colluding nodes with each obtaining a value of L

f+1 . In a
simple collusion scenario, a whistle-blower node would raise
a complaint and all the colluding nodes would lose their stake
S. Thus the pay-off of each node of the f+1 colluding nodes
is L

f+1 −S. All the other nodes would obtain a value f if they
follow the protocol honestly.

If any colluding node plays the snitch strategy, they obtain
a pay-off of L

f+1 −S+rc. The other f colluding nodes would
obtain a pay-off of L

f+1−S. If k nodes play the snitch strategy,
we assume that each of them wins the reward with equal
probability and the expected reward for any of the k nodes
is L

f+1 − S + rc
k .

Following the two node example, given a choice between
a collude strategy and snitch strategy, a node will always
play the snitch strategy. This is because the node can have a
better pay-off from the system under collusion irrespective of
what other colluding nodes are playing. Thus, all f +1 nodes
would play the collude strategy, with each of them obtaining
a pay-off of L

f+1 − S + rc
f+1 . For the honest behavior to be
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A1

A2 honest collude snitch

honest (f− cb, f− cb) (f− cb, f− cb) (f− cb, f− cb)

collude (f− cb, f− cb)

(
L

2
− S − c̄b,

L

2
− S − c̄b

) (
L

2
− S − c̄b,

L

2
− S + rc − c̄b

)
snitch (f− cb, f− cb)

(
L

2
− S + rc − c̄b,

L

2
− S − c̄b

) (
L

2
− S + rc

2
− c̄b,

L

2
− S + rc

2
− c̄b

)
TABLE II: Pay-off matrix in permissionless setting

A1

A2 honest collude snitch

honest (f − cb, f − cb) (f − cb, f − cb) (f − cb, f − cb)

collude (f − cb, f − cb)

(
L

2
− S − γ − c̄b,

L

2
− S − γ − c̄b

) (
L

2
− S − γ − c̄b,

L

2
− S − γ + rc − c̄b

)
snitch (f − cb, f − cb)

(
L

2
− S − γ + rc − c̄b,

L

2
− S − γ − c̄b

) (
L

2
− S − γ + rc

2
− c̄b,

L

2
− S − γ + rc

2
− c̄b

)
TABLE III: Pay-off matrix in permissioned setting

a dominant strategy, a node should obtain a higher pay-off
than any collusion strategy. This would give us the following
relation f > (1− δ)

(
L

f+1 − S + rc
f+1 − c̄b

)
+ cb.

Similarly, for the permissioned node case, we have the
following relation to make honesty the dominant strategy
f > (1 − δ)

(
L

f+1 − S − γ + rc
f+1 − c̄b

)
+ cb. Taking the

minimum value of f to be zero gives the following relations:
S > L+rc

f+1 − c̄b +
1

1−δ cb,
S > L+rc

f+1 + γ − c̄b +
1

1−δ cb

Theorem 1. With the proposed reward mechanism in Sec-
tion V, with at least one honest and available whistle-blower
node, under the Nash Equilibrium of the induced Bayesian
game, the rational bridge nodes do not collude in both the
permissionless and permissioned bridge node settings. Under
such a scenario, the HyperLoop protocol of Figure 2 that
includes the enforcement of the limiting sliding-time-window
satisfies all the correctness properties of Section B.

C. Collusion scenarios of bridge nodes with
whistle-blower nodes

The stake value settings to prevent collusion, through which
the bridge nodes can transfer a total value of L are described in
Section V-B. If there is at least one honest whistle-blower node
in the network, they will always raise valid complaints when
needed. However, when all the whistle-blower nodes are ra-
tional, they have an incentive to collude with the bridge nodes
and not raise complaints during protocol deviation. Here, we
analyze the reward of the rational whistle-blower node so that
they are always incentivized to raise valid complaints.
Rational whistle-blower. In this model, the bridge nodes
and any external node that can act as a whistle-blower is
considered rational. Let the whistle-blower nodes be denoted
as Pi, i < m. To improve the pay-off from the system,
any whistle-blower node that finds a malicious transaction
can approach the bridge nodes to obtain a share in the total
malicious transaction value.

Each whistle-blower has a set of actions for each epoch
(stage game), that is A = {lazy, honest, collude, snitch}. We

assume that the whistle-blower nodes incur zero cost when
they choose the lazy strategy, cwb when playing honest, and
c̄wb when colluding or snitching. For epoch e, let ae =
(ae1, . . . , a

e
m) be the action selected by the whistle-blowers.

We model the game as a game with perfect information since,
within the coalition, all identities are known. Also, the reward
of the honest behavior does not depend on the actions taken by
the other whistle-blower nodes. Notice that since the whistle-
blowers are identical, their utility depends only on the number
of honest and colluding/snitching whistle-blowers. Table IV
presents the pay-off of any whistleblower i with respect to
the action vector a−i. It is important to note the bridge may
deviate from the protocol even if there is no collusion with
whistle-blower nodes, hence for the stage game utility, we
multiply the complaint reward rc with an indicator that is
1 if there is a deviation by the bridges and 0 otherwise.
Finally, we denote by rp the expected periodic reward given
to whistle-blower nodes per round when they submit the proof
of validation. We refer the details of the reward mechanism
for the periodic reward to Appendix F.

One honest in a−i All colluding in a−i

lazy 0 0
honest rp + rc · 1{deviation} − cwb rp + rc · 1{deviation} − cwb

collude rp − c̄wb
L

m+f+1
− c̄wb

snitch rp + rc · 1{deviation} − c̄wb
L

m+f+1
+ rc − c̄wb

TABLE IV: Pay-off matrix of a whistle-blower i

First, to ensure that the period reward is sufficient to
incentivize honest behavior we need rp > cwb. Otherwise, the
cost of monitoring is higher than the reward and the whistle-
blowers would prefer the lazy strategy over the honest strategy.

If we blindly follow the intuition from the analysis of the
bridges, we would get that in a single epoch the strategy
snitch is preferred over collude, and therefore any deviation
would be caught. However, the bridge nodes may promise the
whistle-blower nodes a share among the total value transferred
through collusion from the upcoming epochs as well. In this
case, the whistle-blower nodes do not have any incentive
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to raise a complaint. The attack would be undetected and
perpetual.

Assume that at epoch e the whistle-blower nodes collude
with the bridge nodes. In order for the collusion to be caught,
the pay-off of the strategy snitch and then honest for all rounds
to be preferred over collude the utility of the first strategy must
be greater than the second. The utility of snitch & honest strat-
egy is δe−1

(
L

m+f+1 + rc − c̄wb

)
+

∑+∞
s=e+1 δ

s−1(rp + rc ·
1{deviation} − cwb). However, in the worst case, if there are
no complaints in the future epochs, and the periodic reward
is almost equal to the cost the utility from the honest strategy
is almost zero. Therefore, we need the pay-off of epoch e ,
δe−1

(
L

N+f+1 + rc − c̄wb

)
, to be greater than the utility of

the collude-ing strategy. Therefore, we get,
δe−1

(
L

m+f+1 + rc − c̄wb

)
>

∑+∞
s=e δ

s−1
(

L
m+f+1 − c̄wb

)
Rearranging the above inequality, we get the complaint

reward rc must satisfy
rc >

1
δe−1

∑+∞
s=e+1 δ

s−1
(

L
m+f+1 − c̄wb

)
= δ

1−δ

(
L

m+f+1 − c̄wb

)
For extension of the protocol with general discount func-

tions besides exponential, see Section D-A. We further extend
the analysis of the protocol to allow the adversary to have a
bribing budget, see Appendix D.

Theorem 2. The HyperLoop protocol πbridge, with the
rational-malicious model on the bridge nodes and whistle-
blower nodes, with the reward mechanism described in Sec-
tion V, realizes the functionality Fbridge.

The proof of the theorem has been provided in Appendix
E.

Batch size Time Gas units Tx fee-POL Tx fee (ethereum)
5 1 ms 210,717 0.00895264 21 USD

10 3 ms 281,212 0.01124848 27 USD
15 3 ms 351,831 0.01407324 33 USD
20 5 ms 422,623 0.01690492 40 USD
25 5 ms 493,551 0.01974204 47 USD
30 7 ms 564,616 0.02258464 54 USD

TABLE V: Time to sign and gas costs along with transaction
fee for different batch sizes for a bridge network with 19 nodes

VI. EXPERIMENTATION AND PERFORMANCE ANALYSIS

We implement 2the HyperLoop protocol to bridge Ethereum
and Polygon by realizing the source and destination chain
smart contracts in Solidity along with the bridge node
logic in Rust. We deploy the one smart contract each on
Sepolia Testnet and Polygon Amoy with the respec-
tive block explorers sepolia etherscan and oklink
amoy to log the different parameters of the blocks of the
chains. The bridge nodes have been deployed as virtual
machines on a Mac OSX with M3 chip at 2.75GHz and 8GB
RAM. We time the protocol for different bridge sizes and
report the gas costs for different batch sizes.

2https://anonymous.4open.science/r/hyperloop–3172/

Each bridge node keeps track of the source chain events.
After detecting the an emitted request, generates an ECDSA
signature on the constructed destination chain transaction and
forwards it to the destination chain. Before joining the bridging
service, each bridge node should register with the destination
chain. The node registers by forwarding the public key and
proving in zero knowledge, using a Schnorr-based proof that
it knows the secret key of the forwarded public key. The
destination chain keeps track of the public keys, anytime a
bridge node leaves, the corresponding public key is removed
and vice versa.

The sliding window logic is applied in each of the three
places, the source, destination chains and the bridge nodes
for defence in depth. The destination chain smart contract
maintains a key value pair, with the key as the hash of the
block and the different signatures from different bridges nodes
as a list. Each signature is verified before being added to
the list. When a threshold number of verified signatures are
received, a transfer event is triggered and the corresponding
payment is transferred to the specified destination chain public
key. However, even after the threshold is reached, the bridge
node values are still buffered if valid. This is essential to pay
the reward to the bridge nodes for the signatures.

Batching. We consider different batching criterion – the bridge
node waits for a certain fixed time period before forming the
batch and forwarding. If the value of requests already fills up
the sliding window limit, a batch is formed and signed.

We deploy different sets of bridge nodes with multiple
transactions being batched. Each bridge node hashes the set
of transactions and generates a signature on it. Hence with
increasing batch size, the change in delay on the bridge node
is only due to the hashing which is typically minimal compared
to other operations. However, a large batchsize results in larger
gas cost on the destination chain since the whole batch needs
to be buffered and the respective signatures of bridge nodes
collected. Hence the total number of transactions that can be
batched is only limited by the block gas cost on the destination
chain. Table V shows the time taken by the bridge nodes
to sign the batches and the gas costs for the verification on
Ethereum. The bridge nodes time includes the time to hash the
transactions and generate a signature on the hash. They take
3 msec for a batch of 10 transactions and 20 msec for a batch
of 200 transactions. The total gas units and the corresponding
USD price for Ethereum for the verifying the transactions on
destination chain is also presented in the Table V.

End-to-end delay. We time the bridging path by using two
time measurements. First is the end to end delay. This is
computed for a request as the difference between blockstamp
time on the source chain when the request appeared and
blockstamp time on the destination chains when the corre-
sponding response transaction is finalized. The second one is
with reverts. If the request is not honoured within a specified
amount of time, the bridge nodes sign a revert transaction and
it is posted on the source chain if threshold number of bridge
nodes sign it. To compute this, we include the forward end to
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Fig. 3: End to end delay for different batch sizes
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Fig. 4: End to end delay with reverts for different batch sizes

end time and the time taken to generate a revert transaction
and have it finalized on the source chain.

Table V also indicates the gas costs required for fulfilling
the response. The depicted gas cost is the cost when the
threshold is reached and the response transaction is posted
on the destination chain. For the signatures received before
the threshold is hit, the gas cost would be lesser since the
smartcontract just verifies the signature and adds them to a
list. Also, once the the threshold is reached and the request is
fulfilled, the smartcontract may still buffer the signatures from
the bridges so that they can be rewarded later, depending on
the reward policy for the bridge nodes. Table V also presents
the cost of verification and posting the response on Ethereum.

Figure 3 and Figure 4 indicate the end to end delay for
transactions for different batch sizes from 5 to 30. The timings
indicate the variation with which each transaction is included
in a block and finalized on the destination chain. This is
not deterministic and can vary with the particular instant.
However, it might be noted that all the batches have been
finalized within two blocks on the destination chain. Figure 6
and Figure 5 indicate the average gas and gas when the
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Fig. 5: Total gas units (threshold) for different batch sizes
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Fig. 6: Average gas units (including threshold tx) for different
batch sizes

threshold is reached for the destination smart contract. When
the threshold is reached, a transfer is initiated, taking higher
gas than the usual signature message being forwarded to the
smart contract. A detailed discussion on why honest majority
is more beneficial, why multisig is better for this particular
application than threshold signature and the different uses and
applications of HyperLoop are found in Appendix C.
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APPENDIX A
COMPARISON OF HYPERLOOP WITH OTHER WELL-KNOWN

CHIANS

Cosmos IBC [4] is of hub-and-spoke architecture, with
Cosmos Hub in the center and zones as the spokes. All the
zones are independent and run Tendermint [13] consensus
protocol and communicate with other zones via Cosmos Hub
using Inter Blockchain Protocol (IBC). The nodes of the zones
also run the Tendermint light clients of the Cosmos Hub so
that all the communication is bridged via the Cosmos Hub.
The communication between zones works on the principles of
relaying rather than a multi-sig approach of HyperLoop. Since
Tendermint light clients cannot be run on the validators of
external (to Cosmos) chains like Ethereum, it requires another
network, a specialized Cosmos zone called peg zone, to bridge.
Then this peg zone serves as multi-sig bridge between an
external chain and Cosmos zones. Because this peg zone runs
an instance of Tendermint Consensus protocol in a partially
synchronous networking model, they need a super-majority
rather than HyperLoop’s simple majority. Another distinguish-
ing factor is latency. Communication from a Cosmos zone
to an external chain has to go through the relay process of
the Cosmos Hub, followed by the consensus protocol of the
peg zone, to reach the external chain. In contrast, there is no
distributed protocol in the HyperLoopbridge design, and hence
faster, apart from these factors of honest simple majority and
latency.

Polkadot [8] is also of the hub-and-spoke model with a
Relay chain at the Hub. The Relay chain does not host any
user transactions. Only the parachains (spokes) contain the
user transactions. The relay chain maintains the state and
the corresponding Merkle root of all the parachains. It also
provides finality to the blocks of the parachains.

The communication between parachains happens through
the principles of relay bridging. Similarly, the communication
between Polkadot and external chains follows the relay bridg-
ing approach.

LayerZero The central thesis of LayerZero[15] is to require
two separate entities: oracles and relayers, necessarily to effect
a transfer from a source chain to a destination chain. They
claim that as long as the interests of oracles and relayers
conflict, collusion attacks on any transfers using this pair
of entities are not possible. LayerZero claims the selection
of oracles and relayers to be configurable, though Chainlink
Oracle [3] appears to have been hardwired for the Oracle role
for all practical purposes. As mentioned before, we analyze
any Bridge protocol from a natural rational-malicious model
that has not been done before. In a rational model, the relayer
and the oracle committees can simply collude and convince
the destination chain of any transaction, minting currency. This
leads to an undetected and perpetual attack on the system.

Also, a two-entity model yields significant power to each of
the groups in terms of affecting the ordering, yielding to MEV
attacks, and mounting delaying (leading to front running), back
running, sandwiching and censorship attacks. In LayerZero
model, a dapp is motivated to run a relayer on his own and
retain control to play these attacks. Thus it is possible for
gullible users of a dapp to be oblivious of such attacks by
malicious dapp developers.

Chainlink’s Cross-Chain Inter-operability Protocol (CCIP)
[5] protocol consists of three actors: a committing Distributed
Oracle Network (DON), an executing DON, and a Risk Man-
agement Network (RMN). The committing DON monitors the
events of an OnRamp smart contract on the source chain.
It then bundles the bridge requests generating those events
and computes a Merkle Root of this bundle. This Merkle
root is then posted on to the destination chain along with a
Quorum Certificate (QC) of the committing DON showing
its Byzantine Fault Tolerant (BFT) consensus. The nodes in
RMN also follow the bundle of bridge requests on the source
chain, compute the Merkle root independently, and validate
the committing DON posted Merkle root on the destination
chain. Upon success, the RMN node ‘blesses’ this Merkle
root, else it ‘curses’. The nodes in the executing DON post
these bridge requests along with its Merkle proof against the
blessed Merkle root on the destination chain, and then they
get processed on the destination chain.

Mainly the protocol has 3 steps: Merkle root posting by
the committing DON after a consensus inside the committing
DON, Merkle root endorsement by the RMN, relay of the
bridge request and its Merkle proof by an executing DON
node. In comparison, HyperLoop has just one step without
any interaction in the distributed protocol during normal (non-
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collusion/malicious) operations and, hence is faster.

APPENDIX B
CROSS-CHAIN BRIDGE - PROPERTIES

We define the properties we expect the bridge protocol to
satisfy in this section.

We use bridge-requests for the transactions on the source
chain asking for a message transfer or an asset transfer or
requesting for some service from the bridge network. The
corresponding transaction posted on the destination chain
by the bridge nodes is termed bridgeresponse. The Bridge
requests could come with an optional revert period τrev ,
indicating that the submitter of the request expects his/her
transaction on the source chain to be reverted in case an
appropriate Bridge response is not posted on the destination
chain within τrev . τrev is specified either as Wall-clock time
approximated by block time stamps or by the number of blocks
on the destination chain. Such requests are termed revertable,
and the corresponding reverting transactions on the source
chain are termed reverted bridge requests.

We use the following notation and definitions in describing
the properties expected from the bridge:
• ⟨req1,req2, . . . ,reqk⟩ indicates the transactions on a

chain respecting the total order from req1 to reqk.
• valid(req,res) is a relation that holds on a tuple – a

Bridge request req and a Bridge response res, only if they
are valid and successful.

• validRevert(req,rev) is a relation that holds on a
tuple – a Bridge request req and a transaction on the source
chain that reverts the request rev.

• limit(reqi+1,reqi+2, · · · ,reqi+k) is a relation that
holds on a sequence of Bridge requests only if they satisfy
a limit condition. Typically, this condition is used to limit
the total value of the amount transferred in a time duration.
We now present the properties we expect from the

bridges and group them as the classical safety and liveness
properties.
Safety Properties. We expect the bridge to satisfy the follow-
ing validity , ordering and sliding window limiting properties
for the safety of the bridge.
• Validity

– Every pair of non-revertable bridge request req and its
bridge response res must satisfy valid(req,res).

– Every pair of revertable bridge request req and its
bridge response res satisfies valid(req,res) if and
only if res happened within τrev .

– Every pair of revertable Bridge request req and
its reverted Bridge request rev satisfies
validRevert(req,rev)if and only if there is
no Bridge response res within τrev such that valid (
req,res) holds.

• Ordering
– Let the ordered sequence of Bridge requests be ⟨req1,
req2, · · · ⟩, and let the ordered sequence of Bridge re-
sponses be resp = ⟨res1,res2, · · · ⟩. Then, for every

1 ≤ i, if resi ∈ resp then valid(reqi,resi) holds,
otherwise reqi is a revertable Bridge request.

– Let the ordered sequence of reverted Bridge requests be
⟨res1,res2, · · · ⟩. Then there must be an ordered subse-
quence of revertable Bridge requests ⟨req1,req2, . . . , ⟩
such that validRevert(reqi,revi) with 1 ≤ i.

• Sliding Window Limiting. Let ⟨req1,req2, . . . ,reqk⟩ be
the sequence of Bridge requests in any duration of predeter-
mined length, say T . Then limit(req1,req2, . . . ,reqk)
holds.

Liveness Properties. The protocol needs to satisfy the follow-
ing properties to ensure that the bridge is live.
• For every non-revertable Bridge request there must exist a

Bridge response.
• For every revertable Bridge request, there exists exactly one

of the following (XOR relation):
– Bridge response res within τrev, (XOR)
– reverted Bridge request.

APPENDIX C
BATCHING AND REVERTS

Bridging every bridge request separately and individually
could be inefficient especially when these are of small value
transfers or of custom messages. An efficient, scalable ap-
proach is to batch multiple requests together. To improve
efficiency and latency, the bridge nodes batch the value transfer
requests and generate signatures on the batches. The bridge
nodes form batches based on the time or volume limits of
the number of transactions. Since each honest node forms the
batch according to the same criteria, the batches forwarded by
each honest bridge node which achieve a valid multi-sig at the
destination chain scd node would be the same and consistent.
Each time a batch is formed and signatures are generated, the
elapsed-time clock is reset locally at the bridge nodes, and the
elapsed time is counted from then on afresh. Time is measured
as Wall-clock time when available or in terms of the number of
blocks of the destination chain. This realizes the functionality
of Figure 8. Batching helps amortize the costs of multi-sig
verification on the destination chain among multiple bridge
requests, lowering the bridging fees.

A. Reverts

The distributed protocol of HyperLoop is set in the
asynchronous networking setting. There is no theoretical time
bound on the submission of the corresponding response trans-
actions on the destination chain. There are scenarios where
the user expects the response transaction on the destination
chain to happen within a certain time, and if not s/he prefers
reverting the transaction rather than to wait. To cater to
such scenarios, HyperLoop offers optional revertable bridge
requests, wherein bridge requests come with a time parameter
τrev . Here we require the bridge smart contracts on the
destination chain to ensure that the bridge requests are not
honoured past their τrev . In other words, if the response
transaction posted by the bridge nodes lands in a block of
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Agent 1

Agent 2

Fig. 7: Game progression among the two bridge nodes for the permissioned setting. For non-permissioned setting, consider
γ = 0. With f > L

2 − S − γ + rc, honesty would be the dominant strategy of any player.

the destination chain with a timestamp value more than τrev
then they fail.

Once a requested transaction does not appear by time τr on
the destination chain (from the time of appearing on the source
chain), the bridge nodes generate a signature on a transaction
reverting the request. However, the bridge nodes may collude
and delay posting the revert transaction. Nevertheless, it can
be observed that they do not have any economic incentive to
do so. The colluding nodes can only affect the liveness of the
network by delaying or withholding the revert transactions.
We now show that generating the signature without delay and
posting the transaction is a dominant strategy for the rational
nodes.

Once again, we consider a two-node bridge network and
depict the pay-offs of the nodes when both should generate a
signature for the revert in Table VI. The nodes can either delay
the transaction or post it immediately. The pay-offs of the
two nodes under delay and posting immediately (delay, post)
strategies are depicted in Table VI. In the case when both
play the delay strategy, both will lose their stake leading to
the total pay-off of value −S. If only one of them plays the
delay strategy, that node obtains a pay-off of −S, and the other
node obtains the fee for honest behavior. If both the nodes post
the revert, they will both obtain the fee f. It can be observed
that whoever plays the delay strategy obtains a negative pay-
off of value −S and hence post is the dominant strategy of
the game induced during reverting the transaction requests. To
penalize the delaying nodes, the whistle-blower nodes need
to impose a time limit on the delay before they expect the
bridge nodes to post the revert transaction. This would be a
system parameter indicating a large time window. It should
be noted that the protocol itself offers only eventual revert
guarantee in the revert path of the transaction.

TABLE VI: Pay-offs of rational permissionless bridge nodes
under different strategies during reverts.

A1

A2 delay post

delay (−S,−S) (−S, f)
post (f,−S) (f, f)

APPENDIX D
ADVERSARY WITH A BRIBING BUDGET

In this model, all bridge nodes except the corrupted bridge
nodes are considered rational. Initially, we consider at least
one honest whistle-blower node. The adversary has a bribing
budget of β to induce the rational parties to collude. The
adversary can corrupt up to f parties; for collusion to occur,
the adversary should induce (one more) the f + 1st party by
offering a bribe of up to β. The bribe budget β is over and
beyond the total stake that the adversary is willing to lose.
Along with the bribe, the adversary may also forego all the
transferred value L to the induced node. The rational node will
accept the bribe and collude if the total gain is more than the
total loss, which would be the stake withheld. In this case, the
total gain for the node is L+β, and the total loss would be S.
Hence, the rational node would not collude with the adversary
as long as S > L+ β.

In the case of rational whistle-blower nodes, the adversary
may try to bribe and corrupt these nodes as well. The corrupt
whistle-blower node either does not raise a complaint or raises
false complaints. However, before raising a complaint, the
whistle-blower nodes should deposit a minor stake, which will
be withheld in case of false alarms. The only advantage the
adversary gains by spending his budget on the whistle-blower
nodes is briefly pausing the bridge.

In the case of rational whistle-blower nodes, the adversary
induces them to collude with f + 1st node to perform the
attack. The value L+β that the adversary provided the f+1st

bridge node before should be divided among the bridge node
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• The functionality Fbridge interacts with the source chain SC and the destination chain DC, n bridge nodes and
m whistle-blower nodes. The adversary can corrupt up to a maximum of f bridge nodes and f ′ whistle-blower nodes.
The functionality interacts with the corrupted nodes through the simulator S.

• The functionality controls an address pksid to which it can forward funds when necessary.
• The functionality Fbridge generates the secret keys locally for the honest nodes and maintains lists SKeys, Keys for

the keys and eventList, confirms, Deposits for the source chain and destination events. It also maintains the
variables currentTime, startTime, timeLimit, batchsize etc. All the variables and lists are initialized
to ϕ or 0 appropriately.

Key Generation Upon (keygen, S,W,CS , CW , {pki}i∈IS
, {wpkj}j∈JW

, sid) from S
• Define HS := S \ CS and HW := W \ CW set n := |S| and m := |W |.
• If CS > f mark S as Corrupt and exit. Else if CW > f ′, mark W as Corrupt and exit the procedure.
• Else sample key pairs {(ski, pki)}i∈HS

and set Keys[i] := pki∀i ∈ S. Set Skeys[i] := ski∀i ∈ HS .
• Send (keygen, sid) to all {Pi}i∈S .

Deposits Upon receiving (deposit, S, i, pki, sid) from either Sor party Pi, transfer the deposit value S to the public key
pksid using a transfer subroutine and append (i, pki) to the list Deposits. If the number of deposits received is
n, set alldeposits to ⊤.

Event requests Upon (req,val, rid, sid) from SC at time t, if alldeposits is ⊤, compute the cumulative value of
requests valcum in the time window [t− w, t]. Else, do nothing.
• If valcum ≤ L,

– Record recreq := ⟨val, rid, t, sid⟩ and forward it to all {Pi}i∈HS
and S.

• Else, send ⟨revert, rid, sid⟩ to SC.
Signature Evaluation • Upon (sig, σi, pki, i,val, rid, sid) from S,

– If Signature.verfiy(σi, pki) = ⊤, append (i, σi, pki) to the list Sig[rid, sid]. Else, do nothing.
• Upon (sig, i,val, rid, sid) from Pi ∈ HS ,

– Generate signature, σi := Signature.sign((rid, sid), Skeys[i]) and append (i, σi,Keys[i]) to list Sig[rid, sid].
If |Sig[rid, sid]| ≥ f + 1 forward (Sig[rid, sid],val) to DCand {Pj}j∈W and S.

Destination chain finality Upon (ack, rid, sid) at t′ from DC, record ⟨ack, rid, t′, sid⟩ and forward it to {Pj}j∈HW
,S.

Then check for the record ⟨val, rid, t, sid⟩. If it exists, continue. Else, do nothing.
• If t′ > t+ τrev, then forward (revert, rid, sid) to SC.
• Else, do nothing.

Revert At any given time t′′ if a record ⟨val, rid, t, sid⟩ exits such that t < t′′ − τrev, send ⟨revert, rid, sid⟩ to SC.
Complaint Upon (complaint, s, rid, sid, ) from Pj ∈ HW or S, check if matching records ⟨val, rid, t, sid⟩ and

⟨ack, rid, t′, sid⟩ exist for the same rid.
• If yes, send (penalize, sid) to Pj .
• Else, send (penalize, sid) to all Pi for all (i, σi) ∈ Sig[rid, sid], transfer the reward and stake value s+ r to Pj

using the transfer subroutine.

Functionality Fbridge

Fig. 8: Ideal functionality of cross-chain bridge with batching and reverts

and the whistle-blower nodes. Thus, the total number of nodes
sharing the value L+β is N +1; since the adversary controls
f corrupt nodes, they do not expect any pay-off. Assume a
discount factor δ as before. The reward that needs to be paid
to the rational whistle-blower node to raise a valid complaint
is

rc >
δ

1− δ

(
L+ β

(m+ 1)
− c̄wb

)
(2)

System’s point of view. It should be noted that even if the
system (or the firm implementing the bridge) sets the stake to
be S > L

t+1 , it will not lose any currency. Under collusion, the

total loss to to the system is L and the total stake withheld is
> (t+1)S. The system does not lose currency if (f +1)S >
L implying S > L

f+1 . This is because the bribe β is being
transferred between the adversary and the bridge node, and
the security of the system ensures that it does not incur any
loss due to the same.

Preventing false alarms from whistle-blowers. Any node
that wishes to raise a complaint against the Bridge nodes
first must provide a stake of value Swb before making the
complaint. If the complaint is valid, the sum total of all the
stakes of the Bridge nodes is given as a reward along with
the stake Swb. However, if the whistleblower node is rational,

15



they may not raise a complaint; they may instead approach the
Bridge nodes to share the transferred value. We resolve this
in the following analysis.

A. General discounting functions

We can extend the previous results to general discounting
functions. Let δ : N → R be a decreasing function such that∑+∞

s=1 δ(s)ui(a
s) < +∞.

Similar to Equation (1) and Section V-B, for non-
permissioned and permissioned setting respectively, we get
that f must satisfy:

f > max
e

δ(e)∑+∞
s=e δ(s)

(
L

2
− S +

rc
2

− c̄b

)
+ cb (3)

f > max
e

δ(e)∑+∞
s=e δ(s)

(
L

2
− S − γ +

rc
2

− c̄b

)
+ cb (4)

For the whistle-blower nodes the complaint reward must
satisfy the following two inequalities for the rational setting
and the rational-malicious model respectively(equivalent to
Section V-C and Equation (2)):

rc > max
e

1

δ(e)

+∞∑
s=e+1

δ(s)

(
L

m+ f + 1
− c̄wb

)
(5)

rc > max
e

1

δ(e)

+∞∑
s=e

δ(s)

(
L+ β

(m+ 1)
− c̄wb

)
(6)

APPENDIX E
POSTPONED PROOFS

Theroem-1

Proof. The proof of the theorem is canonical. Since at least
f + 1 signatures are required to form the Quorum on the
destination chain, at least one honest node should provide a
valid signature. Given a signature scheme that is secure against
existential forgery, no adversary can forge the signatures of the
honest nodes. No honest node would generate signatures on
transactions that are out of order or have invalid requests. We
assume the honest bridge nodes to be continuously available,
and hence, liveness is not affected as at least f+1 nodes gen-
erate valid signatures for every request. The honest nodes also
generate destination chain transaction requests with matching
values, check the sliding window limits, and drop the requests
if they exceed the limit. The adversary can corrupt a maximum
of f parties and can never achieve a Quorum set of signatures
on its own. Hence, all the correctness properties of the bridge
are naturally achieved in an honest-malicious model.

Theorem-2

Proof. First, we show that honesty is a dominant strategy,
and then the correctness properties of the HyperLoop protocol
follow. Then we should that the protocol is cryptographically

secure by showing a simulator that provides an indistinguish-
able view of the real and ideal worlds.

When the number of bridge nodes is two, if one of the nodes
plays the honest strategy, no matter what the other node plays,
both the nodes obtain a pay-off of f. If both the nodes play
the collude strategy, they would share the maximum value
transfer L among each other, each obtaining L

2 . However,
with at least one honest and available whistle-blower node,
the value obtained by each node would be L

2 the maximum
expected pay-off from collusion for any of the nodes is L

2 −S
in the permissionless setting. If the fee f and stake are designed
such that Equation (1) is met, the pay-off L

2 −S < f. Any agent
can deviate unilaterally to play the honest strategy and improve
their pay-off to f. Thus, the strictly dominant strategy of any
node is to follow the protocol honestly. This is true even if
one player is playing the collude strategy and the other player
wishes to play the snitch strategy. The game progression is
depicted in Figure 7.

If the node wishes to play the snitch strategy, the second
node can play any strategy. If the second node plays honest,
both the nodes obtain f. If the second party plays either the
collude or the snitchstrategy, the first node obtains L

2 −S+ rc
and L

2 − S + rc
2 respectively. With 1 is met, then f would

be greater than either values. The second node can unilater-
ally change their strategy to honest to obtain better pay-off,
making honest the dominant strategy. This is evident from the
extensive form game depicted in Figure 7.

The argument extends to a n bridge node scenario where
at least f +1 nodes are required to authorize a transaction on
the destination chain. As long as Section V-B and Section V-B
hold, honest would be the dominant strategy in the Bayesian
game induced among the nodes. When players are colluding
and if one of the agents decides to snitch on others, every
other rational agent would attempt to snitch; they end up with
every node under collusion receiving a lower pay-off than
honest behaviour.

Simulator S.

• The simulator S interacts with the functionality Fbridge,
and the corrupted bridge and whistle-blower nodes. The
adversary can corrupt up to a maximum of f bridge nodes
and f ′ whistle-blower nodes. The simulator has the set of
bridge nodes and whistle-blower nodes that the adversary
has corrupted. It has access to the function Signature
with methods sign and verify.

• During key generation, the simulator does the
following: For i ∈ CS , j ∈ CW , obtain the
public keys of the corrupted parties and forward
(keygen, sid, S,W,CS , CW , {pki}i∈CS

, {wpkj}j∈CW
)

to the functionality.
• To forward the deposit amounts, for i ∈ CS for-

ward the value S to the functionality by sending the
(deposit, S, i, pki, sid) message to the functionality.

• To handle the requests, upon receiving ⟨val, rid, t, sid⟩
from the functionality, for each party i ∈ CS ,
forwards the partial signature generated through
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σi = Signature(⟨val, rid, t, sid⟩, ski) as
(sig, σi, pki, i,val, rid, sid) to the functionality.

• The simulator can also raise complaints on behalf of
the corrupted whistle-blower nodes by forwarding the
message (complaint, s, rid, sid)

The simulator controls the view of the corrupted parties. The
simulator forwards the public keys of the corrupted parties to
the functionality, which upon receiving the these, populates the
key pairs along with the key pairs of the honest parties. The
simulator also forwards the initial deposit amount of behalf
of the corrupted parties to the functionality. The simulator
also forwards the signatures of the requests obtained from
the corrupted parties to the functionalities. It can also raise
complaints on behalf of the corrupted parties. The interacting
corrupted parties have a consistent view in the real and ideal
world since they forward deposits and the signatures on the
received requests to the simulator just as in the real world.

APPENDIX F
PERIODIC REWARD FOR WHISTLE-BLOWERS

As we mentioned in the introduction, collusion among
the bridge nodes is a rare event. Therefore, periodic re-
ward is necessary to mitigate the computational cost in-
curred by the whistle-blower nodes. While this periodic re-
ward motivates them, it may also make them ‘lazy’, i.e.
collect the reward without verifying the transactions. Thus,
the whistle-blower nodes must submit proof that they were
actively monitoring the system to get rewarded. In this section,
we are going to describe the periodic reward mechanism.

At a high level, the reward mechanism will randomly
challenge a whistle-blower node to provide proof that they
were actively monitoring for a random interval in the past.
To submit the proof, they have to post a bridge request in
the SC with the hash of the pairs in the interval. The bridge
nodes can efficiently verify the proof’s validity since they have
access to the pairs of requests and responses. If the proof
is valid the bridge nodes sign off the transactions and the
whistle-blower node is rewarded Rp from a smart contract in
the DC. Note that if the bridge nodes collude and refuse to
sign off the transaction the honest whistle-blower can raise a
complaint to the CRN network.

To avoid overloading the system with periodic reward chal-
lenges, instead of checking every epoch, let {e1,e2 . . .} be a
set of randomly selected epochs, or checkpoints, where the re-
ward mechanism runs. Let ē be the expected distance between
checkpoints. At a checkpoint ei an active whistle-bloweris
selected uniformly at random to provide a proof for the interval
[rei ,ei − 1] in order to get reward Rp, where rei is selected
at random. The selected whistle-blower node must post the
proof as a bridge request in the next epoch. To bypass the
issue of whistle-blowernodes only checking the interval they
have been requested the endpoint rei

is selected at random
hence the whistle-blower cannot be prepared in advance. We
also require that rei < ei−1 in order to guarantee that all
epochs until the checkpoint ei have been verified at least once.

Furthermore, the interval [rei ,ei − 1] is large enough that
retroactively checking cannot be done between in time to be
posted in the next epoch.

The parameters of the mechanism that we need to decide
on are ē, Rp, and rei

. In Section V-C, we showed that
the expected periodic reward per round (rp) must satisfy the
following, rp > cwb, therefore, we have that the expected
reward per round rp =

Rp

m·ē > cwb.
Notice, that a whistle-blower node can copy the solution

from another whistle-blowerin exchange for part of the reward.
It is important to point out that even in this scenario, the system
is secure since at least one active whistle-blower is honestly
monitoring the bridges. However, it is in the best interest of
any whistle-blower node to monitor the bridge nodes since the
whistle-blower nodes enter and exit the system freely. This
makes coordinating with the rest of the nodes and finding
another node that can provide the random interval requested
much harder. Finally, to disincentivize copying the proofs we
can increase the number of random intervals requested per
checkpoint.

APPENDIX G
DISCUSSION

Honest simple majority and honest super majority. We
observe that in almost all of the existing bridge networks
a super majority threshold is employed, and the assumption
there is that there exists at least super majority of honest
nodes in the bridge network. We feel that it is an inspiration
from Byzantine Agreement and Byzantine Fault Tolerant State
Machine Replication (BFT SMR) protocols.

We remark that this need not be the case, mainly because
the bridge requests are already ordered owing to the execution
of BFT SMR protocol on the source chain. These bridge
requests also have a unique place on the source blockchain
– typically the block number and the transaction index inside
the block. When we have this unique placement of the requests
on the source chain, a Byzantine Agreement or a BFT SMR
protocol is an overkill. We observe that there is no possibility
of equivocation in the bridge network. All that is required
is a confirmation or an endorsement by a simple majority
threshold set of nodes in the bridge. The bridge nodes just
relay the requests on the source chain to the destination
chain while preserving the unique indexing information. The
bridge smart contracts on the destination chain then needs
to receive such relay messages only from a simple majority
of bridge nodes, before taking the corresponding action on
the destination chain. The simple majority requirement then
guarantees inclusion of one honest node’s endorsement (in
the honest-malicious model), which is sufficient to take the
required response on the destination chain.

By doing away with the roles of proposers and aggregators,
the bridge protocol yields to a simpler game-theoretic analysis,
as presented in Section V.

Threshold signature. For the purposes of paying rewards
for good behaviour and penalizing for bad behaviour we need
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accountability of bridge nodes. As the standard designs of
threshold signature cryptography do not provide accountability
we do not use it. Also, we do not have any aggregators in the
bridge protocol itself. The signatures are individually verified
on the destination chain until the simple majority threshold is
reached.

An argument can be made that this approach of validating
individual signature is not scalable. Consider the alternative.
The alternate solutions typically include a role of an ag-
gregator in the protocol. Here the aggregator receives the
signed endorsements of bridge requests from the bridge nodes,
aggregates them into a multi-sig along with a bit-map or
a threshold signature, and submits to the destination chain
as one single transaction. As mentioned above, owing to
accountability, we need to go with a multi-sig approach.
The validation on the destination chain smart contract would
typically involve aggregating the public keys (using the bit-
map) and then validating the aggregate multi-sig with this
aggregated public key.

We reckon that this alternate approach is expensive in terms
of gas costs as the public key aggregation and aggregated
signature validation is happening on the destination blockchain
virtual machine. In HyperLoop protocol the signature valida-
tion happens as part of the transaction validation outside of
the blockchain virtual machine, and is hence cheaper.

This alternate approach also yields to higher latency as we
now have an interactive protocol with aggregators in the play.
Use-cases and architecture. Hyperloop is essentially a cross-
chain message-passing protocol. Many kinds of cross-chain
applications may be built on top of this message-passing layer.
These applications include:

• cross-chain smart contract function calls,
• lock-and-mint wrapped asset bridging,

• bridging with liquidity pools,
• cross-chain DeFi apps like lending, derivatives etc.

A. Criterion for batching

Criterion: We use three configurable parameters for batch-
ing the request transactions:
timeLimit We batch requests for the duration set by
timeLimit. This avoids waiting unnecessarily for inordi-
nately long times.
valueLimit We batch the bridge requests up to or imme-
diately greater than the value of valueLimit. If the sum
of the values of the requests is greater than or equal to the
valueLimit then those requests are batched and forwarded.
If a request is of value greater than valueLimit then it is
still admitted as long as the total set of requests satisfy the
sliding window limit.
numLimit We cap the number of bridge requests to be
batched by numLimit.

APPENDIX H
AVOIDING CRN IN THE SYSTEM

If we can assume that the events of the source and destina-
tion chains can be verified on each other, then one may attempt
to remove a trusted CRN from the system. This information
transfer may be achieved by protocols like checking the source
chain validator multisig on the destination chain and vice
versa. However, this capability is difficult to assume among
different chains especially if chains like Bitcoin are involved.
In the case when it is possible, the whistle-blower nodes can
raise complaints at both the chains and pause the bridge. Upon
resolution, they can transfer the result to the other chain while
proving that the complaint has been made and the bridge is
paused. The analysis of this approach is beyond the scope of
this paper.
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