
VITĀRIT: Paying for Threshold Services on Bitcoin and Friends

Lucjan Hanzlik
CISPA Helmholtz Center for Information Security

hanzlik@cispa.de

Aniket Kate
Purdue University/Supra Research

aniket@purdue.edu

Easwar Vivek Mangipudi
Supra Research

e.mangipudi@supraoracles.com

Pratyay Mukherjee
Supra Research

pratyay85@gmail.com

Sri AravindaKrishnan Thyagarajan
University of Sydney

tsrikrishnan@gmail.com

Abstract—Blockchain service offerings have seen a rapid rise
in recent times. Many of these services realize a decentralized
architecture with a threshold adversary to avoid a single
point of failure and to mitigate key escrow issues. While
payments to such services are straightforward in systems
supporting smart contracts, achieving fairness poses challenges
in systems like Bitcoin, adhering to the UTXO model with
limited scripting capabilities. This is especially challenging
without smart contracts, as we wish to pay only the required
threshold of t + 1 out of the n servers offering the service
together, without any server claiming the payment twice.

In this paper, we introduce VITĀRIT 1, a novel payment
solution tailored for threshold cryptographic services in UTXO
systems like Bitcoin. Our approach guarantees robust provable
security while facilitating practical deployment. We focus on
the t-out-of-n distributed threshold verifiable random function
(VRF) service with certain properties, such as threshold BLS
signatures, a recently highlighted area of interest. Our protocol
enables clients to request verifiable random function (VRF)
values from the threshold service, triggering payments to up
to t+ 1 servers of the distributed threshold VRF.

Our efficient design relies on simple transactions using
signature verification scripts, making it immediately applicable
in Bitcoin-like systems. We also introduce new tools and
techniques at both the cryptographic and transaction layers,
including a novel signature-VRF exchange protocol for standard
constructions, which may be of independent interest. Addition-
ally, our transaction flow design prevents malicious servers
from claiming payments twice, offering broader implications for
decentralized payment systems. Our prototype implementation
shows that in the two-party interaction, the client takes 126.4

msec, and the server takes 204 msec, demonstrating practicality
and deployability of the system.

1. Introduction

Today, clients frequently delegate their computational
tasks to third-party services, driven by either the compu-

1. A Sanskrit word for ‘distributed’

tational intensity of the tasks or the desire to maintain
conceptual simplicity in the client’s application. To mitigate
the vulnerability of a single point of failure, these services
often operate as distributed systems comprising a set of n
servers, any t < n of which can potentially be corrupted.
The client’s desired final output can be computed through a
straightforward computation on the results obtained from any
t+1 of the servers. This service configuration is referred to as
having a t-out-of-n threshold structure, widely implemented
in many real-world systems.

However, this service comes at a cost, requiring the client
to provide monetary compensation. In the context of Web2, a
trusted party, typically the service itself or an authority such
as a bank or court, can be relied upon to ensure an atomic
exchange between the computation output and the payment.
Atomicity ensures that the service receives payment only
if the client obtains the computation output successfully.
However, depending on a trusted party for such exchanges
is undesirable from a security standpoint. Therefore, there
is strong advocacy for embracing Web3 or decentralized
solutions, which eliminate the need for reliance on a central
authority, enhancing the overall security of the exchange.

Blockchain-based solutions have prominently emerged as
the focal point for facilitating client-service exchanges [1],
where users leverage smart contracts on blockchain systems
such as Ethereum. For a better understanding, let us consider
the following two representative applications.

Application 1: Randomness Service. In an online event,
such as a game, a client may require random coins (referred
to as randomness) for active participant engagement, with
applications extending to enhancing the security of critical
infrastructure in the Web3 ecosystem [2]. To obtain the
desired randomness, the client typically enlists the services
of a third party. The associated smart contract facilitates
an atomic transfer of d coins (belonging to the client) to
the service, contingent upon receiving a valid randomness
within a time frame. While the service could employ various
cryptographic mechanisms [3], [4], [5], [6] for randomness
generation, the widely adopted choice for public verification,
as required by the contract, is verifiable random functions



(VRF) [7], [8], a cryptographic primitive to generate random-
ness and publicly verifiable proof. If the service operates on
a t-out-of-n threshold structure, it employs distributed VRF
(DVRF) [9], [8], [10] where each server generates partial
values, and t+1 of them collectively contribute to generating
the final randomness and the proof.
Application 2: Oracle Service. In the second scenario, the
client seeks a digital attestation for a real-world event denoted
by m from a service referred to as an oracle. Depending
on the specific nature of m, this oracle may take the form
of a notary, insurer, trading house, or another authoritative
entity entrusted with attesting to real-world occurrences. In
the Web3 ecosystem [11], [12], [10], these oracle services
have become integral, serving as gateways for accessing real-
world information to be incorporated into blockchain smart
contracts. To compensate for the service, the client initiates
a smart contract with the message m hard-coded, and the
payment of x coins is only executed upon receiving a valid
attestation from the oracle. In a threshold setting, the client
has the flexibility to seek attestations from any t+1-out-of-n
independent oracles or want a single attestation computed
when t+1 oracles provide their partial values. Both scenarios
can be supported for an atomic payment-attestation exchange
through appropriate verification steps embedded in the smart
contract.
Limitations of Smart Contracts. Unfortunately, the smart
contract-based exchange comes with multiple issues:
• Privacy: Smart contracts deployed on public blockchains

expose sensitive information about clients, third-party
services, requests, and associated applications to the
entire network, raising privacy concerns. This transparency
allows malicious players to launch MeV attacks [13],
and potentially censor transactions, posing a threat to
exchange atomicity and making the system vulnerable to
DoS attacks. The community has extensively explored
these challenges, offering insights and solutions applicable
to various blockchain applications [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25].

• Efficiency: The smart contract-based approach involves
blockchain nodes performing complex cryptographic op-
erations to verify the “validity” of the service’s response.
However, running such operations on smart contracts is
significantly more expensive than just regular transaction
verification, both in terms of verification time and monetary
costs like gas costs (in Ethereum) or transaction fees. For
example, to verify a BLS-based VRF [9], one needs a
pairing verification check, which is well known to be
computationally expensive, costing 113K gas on Ethereum.

• Compatibility: Smart contract-based exchange solutions
face compatibility challenges with prominent blockchain
systems like Bitcoin, Stellar [26], Ripple [27], Monero [28],
Zcash [29], etc. Opting for solutions that minimize contract
or script usage proves advantageous in achieving broader
compatibility with these major blockchain systems. More-
over, such an approach also contributes to enhanced privacy
and cost-effectiveness, as discussed earlier.

Bitcoin Compatibility: A One-Shot Solution. Bitcoin,

a pioneer in the Web3 ecosystem [30], has garnered en-
during credibility. Recently, there is a surge in interest to
develop Bitcoin-compatible protocols for diverse blockchain
applications [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [31]. New scalability solutions like
Bitcoin Rollups, and BitVM2 have expanded the ambit of
Bitcoin, prompting further exploration of Bitcoin’s potential.
Developers and researchers are leveraging Bitcoin’s robust
infrastructure to address smart contract limitations by min-
imizing contracts and prioritizing privacy. These protocols
expose only essential information on the blockchain, using
standard transactions with minimal scripts like signature
verification. The core principle is that secure, efficient
protocols built on Bitcoin’s simple scripts can be widely
applied across blockchain systems while preserving privacy.
Therefore, we ask the question:

Can we build a privacy-preserving Bitcoin-compatible
protocol that enables atomic payments in exchange for

computational tasks provided by a threshold service, like a
randomness service?

In this work, we answer this question by presenting an
efficient Bitcoin-compatible protocol for randomness services
whose template can also be applied to other services. We
propose several new techniques to overcome challenges
arising from the threshold nature of the service and the
atomicity requirement in the ensuing payment. We now
summarize the contributions made in this work.

1.1. Our contribution

Firstly, we introduce the first formal security model for
the threshold service-payment atomic exchange between a
client and a t-out-of-n threshold service. Here, the threshold
service is computing some keyed function f on the client’s
input request. Assuming any t + 1 servers are honest and
available,3 and the adversary can corrupt a maximum of t
servers including the client, our model outlines the conditions
for final output evaluation. Atomicity requires that only the
first t + 1 (correctly) responding servers are eligible for
payment. We rely on the Universal Composability (UC)
framework [32] to establish a robust foundation for this
atomic exchange. Next, we present VITĀRIT, the first Bitcoin-
compatible, i.e., without Turing complete scripts, atomic ex-
change solution for a distributed verifiable threshold service
(DVTS). VITĀRIT uses standard transactions and signature
verification scripts within Bitcoin, representing the most
minimal script/contract implementation across blockchain
systems. The modular design of our protocol incorporates
various novel cryptographic building blocks and ideas in
blockchain payment design. At its core, VITĀRIT makes
novel use of a new encryption scheme called verifiable non-
committing encryption (VNE). VNE is an encryption scheme

2. a Bitcoin Virtual Machine to run and verify complex proofs
3. In most settings, the service requires an honest majority, i.e., t+1 > n

2
,

but our model only requires t+ 1 honest servers where t is the corruption
threshold.
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where one can verify if the message encrypted satisfies
certain useful properties. On a high level, VNE has a non-
committing property that helps in the security analysis to
show that an adversarial client learns an honest server’s
partial evaluation value if and only if they behaved honestly
during the interaction, and learn no information otherwise.

Next, we instantiate VITĀRIT for the case of a t-out-
of-n distributed VRF (DVRF) service (where t < n

2 ) as
the underlying DVTS. For this, we primarily instantiate our
VNE with an efficient construction involving novel cut-and-
choose proof techniques complemented by optimizations via
batching, which may be of independent interest. Compared
to a SNARK proof-based construction, which may have
efficient communication, our instantiation avoids inefficient
and theoretically unsound computation similar to [25], where
a random oracle is treated as an arithmetic circuit.

Finally, we evaluate our VITĀRIT protocol using a
rust prototype implementation (see Section 9). The client
interacts with each of the servers individually; the two-
party interaction takes 126.4 msec for the client and 204.67
msec for the server, showing the practicality and efficiency
of the protocol. The server posts one transaction on the
blockchain to claim the funds; the client obtains the partial
VRF value using the data from the posted transaction. To
demonstrate that our protocol improves even protocols using
smart contracts, we realize the threshold VRF functionality on
Ethereum through the traditional smart contract approach and
one using VITĀRIT. Even after ignoring the high deployment
cost of the traditional approach, the usage of VITĀRIT results
in consuming approximately 290K gas for five servers,
which is a more than 68% cost saving compared to the
prior approach consuming 932K gas. This improvement only
increases with increasing number of servers.

2. Related Work

The exploration of using blockchains to achieve fairness
in multi-party computations originated with Bentov and
Kumaresan [33]. They demonstrated the utilization of smart
contracts on blockchains to ensure fair information exchange
among parties. Simultaneously, within the blockchain ecosys-
tem, there emerged the concept of cryptocurrency-based
contingent payments. This involves users exchanging a digital
secret for payment in a way that ensures the seller gets paid
only if the secret is revealed to the buyer within a specific
timeframe. The smart contract facilitating this exchange
is known as a hash timelock contract (HTLC) [34], [35].
These contingent payments have found several applications
in blockchain systems over the years, notably the Lightning
Network [36]. All of these works laid the foundation for
a blockchain-based marketplace where clients and services
can interact with the guarantee of atomicity.

Recently, a successful line of academic and industry
works has delved into the topic of smart contract min-
imization. Malavolta et al. [14] present a cryptographic
machinsm called anonymous multihop locks for realizing
payment channel networks using on signature verification
scripts from the blockchain. In a follow-up work, Thyagarajan

and Malavolta [15] expand the cryptographic toolset to help
realize payment channel networks across all blockchain sys-
tems without using any smart contracts. Subsequently, many
Bitcoin-compatible scalability improvement solutions [18],
[16] have been proposed that ensure similar levels of
privacy. Coin mixing, which is a method to anonymize
coins in a blockchain-based cryptocurrency has also been
studied in the Bitcoin-compatible setting [22], [23], [25]
with efficient and minimal script solutions. Thyagarajan,
Malavolta, and Moreno-Sanchez [21] proposed universal
atomic swaps that allowed users to atomically exchange
their coins without relying on any smart contracts. Madathil
et al. [24] proposed a solution for oracle-based conditional
payments in blockchains. The above applications are some
of the many examples where we only knew of solutions that
relied on smart contracts. All of these works introduce new
cryptographic techniques to abstract away the smart contract
logic and let only simple transactions and signatures go on
the blockchain.

Accountable threshold signatures [37], [38] is another
cryptographic primitive where the final threshold signature
can be traced to the servers that contributed signature shares
for its reconstruction. We can hope to extend the functionality
to any threshold service and make payments to the traced
servers. However, the primitive as such requires a trusted
combiner party to combine the threshold shares and is not
directly compatible with the threshold services currently in
use. But we foresee using accountable threshold services as
an interesting future direction.

3. Solution Overview

In this section, we present an overview of the challenges,
and techniques involved in the design of our model, and the
construction of an efficient Bitcoin-compatible protocol. We
will start with a brief look at the system model.

3.1. System Model and Setup

We consider a system with a client party A and a t-out
of-n threshold randomness service with n servers, denoted by
S1, . . . , Sn. The network is fully connected and synchronous;
any message forwarded by an honest party reaches all honest
parties within a time limit of δ. An adversary can corrupt the
client A and up to t servers of the service at the beginning of
the protocol and the corruption is static. All the non-corrupted
parties are honest, continuously available, and have secure
authenticated communication channels with each other. The
client and the servers also have access to a public blockchain,
where they can read and write transactions.
Distributed Verifiable Threshold Service - Random Func-
tion Service. For ease of presentation in this section, we
will use the Distributed Verifiable Random Function (DVRF)
service as the candidate threshold service DVTS. A verifiable
random function [7] can be seen as the public-key version
of a keyed cryptographic hash function Fsk (·), where a
trusted party evaluates Fsk (m) on inputs m in such a way
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that the output v can publicly be verified via a proof πv

using a verification algorithm Verify(). The final output and
the proof are unique for a given m, and the output itself is
pseudorandom. A distributed (or threshold) verifiable random
function [9] fundamentally distributes the trust among n
parties. Instead of one party holding the secret key sk ,
n parties or servers hold shares of the secret key sk or
skDVRF to make the context of DVRF explicit. The servers
execute a (possibly distributed) key generation to generate
the joint verification key vkDVRF (corresponding to skDVRF),
where the i-th server obtains the share (skDVRF

i , vkDVRF
i ) of

the key pair. When evaluating the VRF on input m, the
i-th server employs PartEval() using its secret key share
skDVRF

i , resulting in a partial evaluation vDVRFi and a proof
πDVRF
i . One can verify if the partial evaluations are correct

using PartVerify(). Combining t+1 partial evaluations using
Combine() algorithm produces the final VRF value vDVRF

and a proof πDVRF. With the verification key vkDVRF, input m,
output vDVRF, and proof πDVRF, anyone can publicly verify
the correctness of the VRF computation using the Verify()
algorithm. The security guarantee ensures pseudorandomness
even if up to t servers are corrupted [9].

We are now ready to describe the system setup. The
service verification key vkDVRF and the server’s partial ver-
ification keys (vkDVRF

1 , . . . , vkDVRF
n ) are publicly available,

including the client A. The servers keep the secret key shares
privately; the secret key skDVRF is only known collectively
by at least t+ 1 servers. The client has input m = m∗, and
wants Fsk (m

∗) from the service along with the proof πm∗ .
For convenience we assume that the proof is part of the
output in this exposition.

3.2. Atomic Payment-Randomness Exchange

At the core, the client seeks payment assurance only
when the final VRF output Fsk (m

∗) is disclosed. Conversely,
the service intends to unveil the final VRF output solely
upon receiving payment. However, dealing with payment
in a threshold service, structured as t-out-of-n, introduces
complexity: Without a designated leader, each of the n
servers holds an equal position. Consequently, payments must
be directly transferred to these servers, posing a nuanced
challenge.

Attempt 1: Pay all servers. We can have a mechanism
where the client’s payment is distributed to all servers equally.
However, unless t = n−1, and if in fact t+1 < n, we have
a “freeriding” problem where a set of up to n− t− 1 free-
riding servers might get paid without contributing any “DVRF
work”. While being unfair and hurting the incentive structure,
this approach also makes the mechanism highly resource-
inefficient by overburdening the t+ 1 working servers.

Attempt 2: Pay only the working servers. In this scenario,
the exchange protocol will evenly distribute the payment
among the fastest responding t+1 servers. Let’s break down
this protocol into three phases for clarity: (1) deposit, (2)
exchange, and (3) payout.

Deposit phase: The client initiates a deposit of d · (t + 1)
coins through transaction txSetup into address addrD. This
address is jointly controlled by the client and the service
(as a whole) to prevent unilateral fund withdrawal. To
support the threshold structure of the service, addrD is
set to be controlled by any server. More concretely, the
address consists of two public keys, pkA (client) and pkS

(service), with the client holding the secret key for pkA and
each server holding the secret key for pkS . Any transaction
spending from addrD must be signed with pkA and pkS .
Moreover, refunding from addrD to the client is possible
after a predefined timeout T.
Exchange phase: Post deposit, the client requests all the
servers (whichever ones respond) to perform a VRF on m∗.
Each server locally runs its own DVRF partial evaluation
on m∗ and broadcasts the partial results to the other servers.
With t + 1 honest servers online, any server can combine
partial values to obtain the final VRF output. For simplicity,
let us assume that servers S1, . . . , St+1 were the fastest
responding t+ 1 servers. Now, any server (which need not
be from the first t + 1 servers), acting as a combiner that
combined the values, can contact the client claiming to hold
the final VRF value. The client and the combiner set up a
payment transaction tx pay for coin distribution from addrD to
servers S1, . . . , St+1. The combiner can sign the transaction
as it holds the secret key skS (corresponding to pkS). To
finalize the payment, the combiner has to obtain the client’s
signature on tx pay. To fairly exchange the final VRF output
and the signature of the client on tx pay, the client and the
combiner can execute a special purpose 2-party protocol Γ∗,
which we will revisit in more detail later in the section.
Remark 1. Note that the system has at least t+ 1 available

servers; the client does not check which servers are alive.
The first t + 1 servers pick themselves by the order
in which they publish the payment transaction on the
blockchain, spending the t+ 1 deposits.

Remark 2. Throughout this paper, all interaction between
the client and each server is via private communication
channels.

Payout phase: The combiner, having learned the client’s
signature, can publish the transaction tx pay on the blockchain
along with the two signatures required to spend. By the
fairness of Γ∗, the client obtains the VRF output. While the
above solution looks natural, it suffers from the following
issues.
• Malicious combiner: The first security vulnerability is

when the combiner is malicious. In this scenario, the
corrupt combiner can manipulate payment transactions
(tx ′

pay) to exclusively redeem payments for itself or choose
any t + 1 servers. This vulnerability is twofold. Firstly,
any server can potentially become a combiner, including
a malicious one. Secondly, the malicious combiner can
exploit a loophole—avoiding any "DVRF work" by not
generating partial evaluations—and still gain access to
the final VRF value through t + 1 honest servers. The
combiner can now choose its choice of t+ 1 servers and
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negotiate a payment for them. This, however, deprives all
honest servers of any payment, constituting a form of a
"denial of payment" attack.

• Malicious servers: An attacker corrupting a subset of
servers can create conflicting views to honest servers
regarding the list of fastest responding servers. To resolve
these divergent views, one must rely on a trusted com-
biner to report the correct list of servers or a distributed
consensus mechanism to decide on the correct list. This
necessitates an extra trust assumption or involves more
intricate and complex mechanisms with higher communi-
cation and computation complexity.

Therefore, we explore an alternative approach where the
client bypasses the combiner and pays the working servers
directly.
Attempt 3: Pay the working servers directly. Here, the
client directly interacts with all the servers and compensates
only the fastest responding t + 1 servers. The exchange
protocol follows the same three phases as the previous
attempt.
Deposit phase. The client deposits a total of d · (t+1) in the
form of t+ 1 independent deposits, each containing x coins.
Similar to the previous attempt, joint control is established
between the client and all servers for each deposit, while the
client can also refund unspent deposits after a timeout T.
Remark 3. Note that at this point, the client does not know

which are the fastest t+1 servers, and therefore, the t+1
deposits are independent of this information and are only
dependent on the common service public key pkS . If, at
any point, a server does not respond, the client simply
continues its interaction with the other servers.

(or) (or)

(or) (or)

(or) (or)

Figure 1. Transaction flow sketch. Server Sj has t+ 1 possible payment
transactions that it can use to get paid.

Exchange phase. Upon initiating the VRF request with the
message m∗, the client negotiates payment transactions
individually with each server. An essential consideration
is that the i-th deposit is not exclusively assigned to the
i-th server; any server Sj (where i ̸= j) has the potential to
redeem the i-th deposit. Consequently, for i ∈ {1, . . . , t+1}
and j ∈ {1, . . . , n}, the client formulates the payment
transaction tx i

pay,j , transferring d coins from the i-th deposit
to the address of server Sj (see Figure 1). Each server Sj ,
independently computes the DVRF partial evaluation on
m∗. Subsequently, it interacts with the client to exchange
the partial output for the client’s signature on tx i

pay,j for
i ∈ {1, . . . , t+1}. This involves executing a special purpose
2-party exchange sub-protocol Γ∗, akin to the previous

attempt, with the exception that now it is for server Sj’s
DVRF partial value vDVRFj and the client’s signature on the
payment transaction tx i

pay,j .

Payout phase. Server Sj publishes transaction tx i∗

pay,j for
some i∗ ∈ {1, . . . , t + 1} on the blockchain, accompanied
by its signature on the transaction and the client’s signature
obtained from the sub-protocol. As a reminder, server Sj

can sign the transaction since it holds joint control of the
i∗-th deposit. Like the previous attempt’s payout phase, the
client locally obtains the partial DVRF value vDVRFj (from
the 2-party protocol Γ∗) and t other partial DVRF values
from t other servers. With t+1 partial values, the client can
learn the final VRF output vDVRF.

While the protocol guarantees payment for the working
servers, a closer examination reveals the possibility of over-
payment for a working server. It’s important to note that a
server cannot know in advance which i∗-th deposit it will
successfully redeem. Consequently, to maximize its chances
of payment, a server will try to redeem all t + 1 deposits.
There is a high probability that the server will succeed in
multiple attempts and receive payments more than once. This
unintended consequence may prevent honest servers from
receiving payments. If we had smart contracts, we could
easily solve this issue by letting the contract keep track of
the keys of the paid servers and disallowing double payments.
However, keeping track of paid servers when all servers can
potentially redeem all deposits is tricky in our setup.
VITĀRIT - Pay the working servers exactly once di-
rectly. We introduce a new auxiliary address-based payment
mechanism to address the challenge of multiple successful
redemption attempts and build our solution VITĀRIT. This
approach ensures that servers can try to redeem all t + 1
deposits but succeed in at most one attempt.

Here’s a simple idea: Each server Si locks a small amount
of coins (ϵ = 1 Satoshi) in an auxiliary address addraux,i,
which includes the server’s public key pk aux,i. Each payment
transaction tx j

pay,i for j ∈ 1, . . . , t+ 1 is now bound to
spending not only from the j-th deposit address but also
simultaneously from the server’s auxiliary address addraux,i
(as illustrated in Figure 2). In an honest scenario, to publish
tx j

pay,i, server Si only needs to post the signature w.r.t. pk aux,i
since it knows the corresponding secret key.

Due to the unspent transaction output (UTXO) model
of Bitcoin, if addraux,i is spent using tx j

pay,i, then no other
payment transaction txk

pay,i for j ̸= k can be published on the
blockchain. This ensures that a server can get paid at most
once. While the server may have multiple such auxiliary
addresses, the UTXO model ensures that the transaction
tx j

pay,i is bound to exactly one specific addraux,i (created by
tx aux,i as shown in Figure 2) of the server Si.

3.3. 2-Party Protocol Γ∗: Partial VRF-Signature
Exchange

A key element in VITĀRIT involves a specialized 2-party
protocol Γ∗ where the client and the server exchange the
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Figure 2. Transaction flow for the payment. We assume it is the i-th server
that gets paid from the j-th deposit. The payment transaction tx j

pay,i spends
from the outputs of transactions tx aux,i and txSetup simultaneously.

client’s signature on the payment transaction and the server’s
partial VRF value.

This protocol is constructed using two cryptographic
tools: adaptor signatures [39] and a novel tool introduced in
this work called verifiable non-committing encryption (VNE).
At a high level, adaptor signatures allow users to pre-sign
a message m using the signing key sk and a statement Y
from the NP relation R, generating a pre-signature σ̂. This
pre-signature is not yet a valid signature but can be adapted
into one using the witness y corresponding to the statement
Y . The witness y can also be efficiently extracted from the
pre-signature σ̂ and the adapted signature σ.

To better grasp the intuition behind VNE, consider a
standard public key encryption scheme and sketch the 2-
party protocol.
1) The server Si generates an encryption-decryption key

pair (ek , dk), and sends a ciphertext ct to the client that
encrypts the partial VRF value vDVRFi .

2) The client uses the encryption key ek as the statement Y
of the adaptor NP relation such that the corresponding
decryption key dk is the witness y. The client sends a pre-
signature σ̂ on the payment transaction tx j

pay,i, j ∈ [t+1],
generated w.r.t. Y , and the client’s signing key.

3) The server uses the witness y = dk to adapt σ̂ and
obtain the client’s signature σ and later publish it on the
blockchain along with tx j

pay,i to get the payment.
4) The client reads the blockchain and locally extracts the

witness y = dk using the adaptor signature extraction.
5) The client can decrypt ct using dk and learn the partial

VRF value vDVRFi of Si.
Verifying the messages transmitted by the respective re-
cipients is crucial for the security of the above exchange.
More specifically, the client verifies the correct encryption
of the partial VRF value in the ciphertext ct, while the
server ensures the proper generation of the pre-signature σ̂
through efficient verification enabled by adaptor signatures.
To achieve the former, the encryption scheme must allow
efficient ciphertext verification, which the VNE achieves:
The encryption scheme is defined w.r.t. an NP relation R
where we encrypt a witness wit of an instance inst , such that
(inst ,wit) ∈ R. The relation R in our case is the relation
between the partial VRF values and DVRF verification keys.
The resulting ciphertext ct can be verified efficiently to check

if it correctly encrypts a witness of the instance inst . VNE
also guarantees a non-committing property which is critical
for the security analysis as discussed below.
Non-Committing property of VNE. When proving security
against a corrupt client, we want to ensure that the adversary
cannot learn any information about the partial value vDVRFi if
a valid signature is unavailable to the server. The verifiability
property of the adaptor signature ensures that if the pre-
signature sent by the client is verified successfully, then the
honest server is guaranteed to receive the correct signature (by
extracting using its partial DVRF evaluation). Therefore, we
need to care about the case when the adversary does not send
a valid pre-signature. Here, the only information the client
has about vDVRFi is in the ciphertext ct . A straightforward
idea is to replace ct with a fake random ciphertext ct ′

independent of vDVRFi in step (1). We can hope to rely on
the security of the encryption scheme to do this step in an
indistinguishable manner. Additionally, the fake ciphertext
ct ′ must ‘verify’ successfully to the adversary, for which
we can rely on standard zero-knowledge-style simulation
arguments.

However, analyzing the adversary’s behavior during the
ciphertext switch is challenging. If the ciphertext is switched
to a fake one, the adversary can distinguish the views, but
later, the adversary submits a valid pre-signature in step (2),
and subsequent steps proceed honestly. In the context of
VITĀRIT, we also cannot guess efficiently if the adversary
succeeds in step (2) or not, because there are an exponential
number of possible combinations of n− t servers where the
adversary can fail in step (2). Hence, we refine the encryption
scheme to be non-committing: A simulator can simulate the
ciphertext ct ′ in step (1) without prior knowledge of vDVRFi .
If the adversary succeeds in step (2), the simulator explains
the ciphertext ct ′ in a way that, after step (5), the client
decrypts the correct vDVRFi , mirroring an honest run. The non-
committing property ensures indistinguishability between the
simulated and real views.

Importantly, if the adversary fails in step (2), the simulator
isn’t obligated to explain, relying on the encryption scheme’s
hiding property. Ultimately, we guarantee that an adversary
without generating a valid pre-signature in step (2) cannot
extract any information about vDVRFi .
Constructing VNE. Let us now see how to construct such a
VNE efficiently. To encrypt a witness wit = vDVRFi , the
encryption algorithm samples r, s ← Zp and returns a
ciphertext ct := (c, π) where c := (c1, c2, c3), such that
c1 := gr, c2 := ekr · gs, c3 := H(gs)⊕ wit . Here ek = gdk

is the encryption key, H is a hash function and π is a non-
interactive zero-knowledge proof (NIZK) for the relation:

R :=
((

(c1, c2, c3), vk
DVRF,

(
vkDVRF

ℓ

)
ℓ∈[n]

,m∗
)
, (vDVRFi , r, s)

)
:

s.t . , (vDVRFi , ·)← DVRF.PartEval(skDVRF
i ,m∗)∧

c1 := gr, c2 := ekr · gs, c3 := H(gs)⊕ vDVRFi


where

(
vkDVRF,

(
vkDVRF

ℓ , skDVRF
ℓ

)
ℓ∈[n]

)
is generated hon-

estly by running DVRF.DKgen(1λ, t, n). The proof certifies
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that c is well-formed with respect to the correct partial VRF
value corresponding to the i-th verification key vkDVRF

i . We
can verify the ciphertext ct by verifying the proof π and
to decrypt given the decryption key dk , one can simply
return wit := c3 ⊕ H(c2 · (cdk1 )−1). If we model H as a
programmable random oracle in the security analysis, we
can show that the above construction is non-committing.

Efficient Construction. One of the main disadvantages of
the above construction is that we use a circuit representation
of the random oracle H. This technique is acceptable and
used in practice, i.e., proving knowledge of the pre-image
of the hash function-based random oracle using SNARKs
[40], [41]. Unfortunately, the implications of this approach
on formal security have not been well studied. Therefore,
we will discuss an efficient construction that circumvents
this issue using the well-known cut-and-choose techniques.

More concretely, the VNE ciphertext will now consist of
group elements and non-committing encryption ciphertexts
generated in the following way. As part of the VNE ciphertext,
we add values Aj := gaj , Bj := gbj , and ciphertext
ctj := (c1,j , c2,j , c3,j) generated as above (in Section 3.3)
that encrypts the value A

bj
j (instead of wit). Here we have

j ∈ [2λs] for statistical security parameter λs.
The cut-and-choose technique proceeds as follows:

We compute the challenge set J by hashing all tuples
Hc

(
(Aj , Bj , ctj)j∈[2λs]

)
(akin to Fiat-Shamir transform).

The set [2λs]/J are the indices we “open” to the verifier. In
other words, we prove they were computed according to the
protocol. We provide aj , bj , and the randomness rj used
in the ciphertext ctj for all j ∈ [2λs]/J . For the unopened
set j ∈ J , we add additional values Zj := A

bj
j · wit , and a

NIZK proof πj that Zj is well-formed, where wit := vDVRFi .
The proof πj can be easily constructed using simple pairing
checks. Putting it all together, the final VNE ciphertext ct
consists of all the values (Aj , Bj , ctj), along with the opened
and unopened values.

To validate the VNE ciphertext, we first check if all the
opened values are correct using simple canonical checks, and
for the unopened values we check the NIZK proofs πj . If
all checks are successful, the cut-and-choose guarantees that
with overwhelming probability, for some j ∈ [2λs]/J , the
ciphertext ctj is well-formed and can be correctly decrypted.

To decrypt the ciphertext ct , the decryption algorithm
picks the j ∈ [2λs]/J , such that ctj is correctly formed.
Using the decryption key dk , it decrypts ctj to reveal Abj

j .
It finally outputs the witness wit , by using A

bj
j to unblind

the value Zj .

Curve compatibility and batching. A key advantage of our
VNE construction is that the key pair (ek , dk) for the inner
encryption scheme can be based on the same group Gp, as
supported by the adaptor signature scheme (e.g., a Schnorr
group). In contrast, the witness wit and the values Zj for
j ∈ [2λs]/J can be based on the group Gq that supports
pairings. We also present additional batching techniques
for our VNE construction in the full version Section 8.2.1 ,
where the client and the server interact to exchange witnesses

for N instances rather than just one. The idea is reminiscent
of the batching technique introduced by Lindell and Riva [42]
and explored by Madathil et al. [24] and brings down the
communication cost from scaling linearly in λs to scaling
linearly in a smaller constant 1 + λs

1+logN .
We discuss further interesting extensions of VITĀRIT in

Section 8.3

4. Preliminaries

We denote by λ ∈ N the security parameter and by
x ← A(in; r) the output of the algorithm A on input in
using r ←$ {0, 1}∗ as its randomness. We often omit this
randomness and only mention it explicitly when required.
We say that an algorithm is (non-uniform) PPT if it runs
in probabilistic polynomial time. We say that a function is
negligible if it vanishes faster than any polynomial. We use
[n] to denote the set {1, 2, . . . , n} (for n ∈ N). A tuple of
values is denoted by the vector notation v = (v1, v2 . . .).
The notation ?

= denotes an equality check and if the check is
unsuccessful, the respective algorithm aborts the execution
and reports failure.

For payments, transactions are generated by the transac-
tion function tx . A transaction txA, denoted

txA := tx

(
[(addr1,Φ1, v1), . . . , (addrn,Φn, vn)],
[(addr′1,Φ

′
1, v

′
1), . . . , (addr

′
m,Φ′

m, v′m)]

)
,

charges vi coins from each input address addri for i ∈ [n],
and pays v′i coins to each output address addr′j where j ∈ [m].
Here Φi and Φ′

j are scripts that encode the conditions to
spend the coin from the associated addresses. Primer on
the UTXO Transaction Model. In an Unspent Transaction
Output (UTXO) model, the coins are stored in addresses
denoted by addr ∈ {0, 1}λ and addresses are spendable (i.e.,
used as input to a transaction) exactly once. Transactions
can be posted on the blockchain to transfer coins from a set
of input addresses to a set of output addresses (excluding
transaction fees). More precisely, transactions are generated
by the transaction function tx . A transaction txA, denoted

txA := tx

(
[(addr1,Φ1, v1), . . . , (addrn,Φn, vn)],
[(addr′1,Φ

′
1, v

′
1), . . . , (addr

′
m,Φ′

m, v′m)]

)
,

charges vi coins from each input address addri for i ∈ [n],
and pays v′i coins to each output address addr′j where j ∈ [m].
It must be guaranteed that

∑
i∈[n] vi ≥

∑
j∈[m] v

′
j . The

difference f =
∑

i∈[n] vi −
∑

j∈[m] v
′
j is offered as the

transaction fee to the miner who includes the transaction in
his block.

An address is typically associated with a script Φ :
{0, 1}λ → {0, 1} which states what conditions need to
be satisfied for the coins to be spent from the address.
A transaction is considered authorized if it is attached
with witnesses [x1, . . . , xn] such that Φi(xi) = 1 (publicly
computable) for all i ∈ [n]. In this work, we only require
the scripts Φ to be signature verification algorithms with the
public key hard-coded in them.
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Public-Key Encryption Scheme. A public-key encryption
scheme PKE := (KGen,Enc,Dec) allows one to generate a
key pair (ek , dk)← KGen(1λ) that allows anyone to encrypt
messages as c ← Enc(ek ,m) and allows only the owner
of the decryption key dk to decrypt ciphertexts as m ←
Dec(dk , c). We require perfect correctness and standard CPA
security from PKE. We additionally want a non-committing
property for the encryption scheme, that intuitively says that
there exists a simulator Sim that can create a pair of an
encryption key ek and ciphertext c, indistinguishable from
a real pair encryption key/ciphertext. Given any message
m at any later point in time, the simulator can output the
randomness r that explains the transcript (ek , c) for m, i.e.,
c := Enc(ek ,m; r). For formal definitions, refer [43].
Digital Signatures. A digital signature scheme DS, has a
key generation algorithm KGen(1λ) that takes the security
parameter 1λ and outputs the public/secret key pair (pk , sk),
a signing algorithm Sign(sk ,m) that inputs sk and a message
m ∈ {0, 1}∗ and outputs a signature σ, and a verification
algorithm Vf(pk ,m, σ) that outputs 1 if σ is a valid signature
on m under pk , and outputs 0 otherwise. We require strong
unforgeability from the signature scheme which is the
standard notion of security
Adaptor Signatures. Adaptor signatures [39] let users
generate a pre-signature on a message m that can be adapted
into a valid signature using some secret value. For this, the
primitive is defined w.r.t. a hard relation R.
Definition 1 (Adaptor Signatures). An adaptor signa-

ture scheme AS w.r.t. a hard relation R and a sig-
nature scheme DS = (KGen,Sign,Vf) has algorithms
(pSign,Adapt, pVf,Ext) defined as:

• σ̂ ← pSign(sk ,m, Y ): the pre-sign algorithm takes as
input a signing key sk , message m ∈ {0, 1}∗ and statement
Y ∈ LR, outputs a pre-signature σ̂.

• 0/1 ← pVf(vk ,m, Y, σ̂): the pre-verify algorithm takes
as input a verification key vk , message m ∈ {0, 1}∗,
statement Y ∈ LR and pre-signature σ̂, outputs either
1 (for valid) or 0 (for invalid).

• σ/⊥ ← Adapt(σ̂, y): the adapt algorithm takes as input a
pre-signature σ̂ and witness y, outputs a signature σ or ⊥.

• y ← Ext(σ, σ̂, Y ): the extract algorithm takes as input
a signature σ, pre-signature σ̂ and statement Y ∈ LR,
outputs a witness y such that (Y, y) ∈ R, or ⊥.

An adaptor signature scheme AS has pre-sign algorithm
pSign(sk ,m, Y ) that takes as input a a signing key sk ,
message m and statement Y ∈ LR, outputs a pre-signature
σ̂. The pre-verify algorithm pVf(vk ,m, Y, σ̂) takes as input
a verification key vk , message m, statement Y and pre-
signature σ̂, outputs either 1 (for valid) or 0 (for invalid). The
adapt algorithm Adapt(σ̂, y) takes as input a pre-signature σ̂
and witness y, outputs a signature σ. The extract algorithm
Ext(σ, σ̂, Y ) takes as input a signature σ, pre-signature σ̂
and statement Y , outputs a witness y such that (Y, y) ∈ R.

For security, we want unforgeability even when the ad-
versary is given access to pre-signatures w.r.t. the signing key
sk . We also require that, given a pre-signature and a witness
for the instance, one can always adapt the pre-signature into

a valid signature (pre-signature adaptability). Finally, we
require that, given a valid pre-signature and a signature with
respect to the same instance, one can efficiently extract the
corresponding witness (witness extractability). For formal
definitions, we refer the reader to [44].
Hard Relations. We denote by LR the associated language
defined as LR := {Y | ∃y, (Y, y) ∈ R}. The relation
is called a hard relation if the following holds: (i) There
exists a PPT sampling algorithm GenR(1λ) that outputs
a statement/witness pair (Y, y) ∈ R; (ii) For all PPT
adversaries A the probability of A on input Y outputting
a witness y is negligible. In this work, we use the dis-
crete log language LDL defined with respect to a group G
with generator g and order p. The language is defined as
LDL := {Y | ∃y ∈ Zp, Y = gy} with corresponding hard
relation RDL.
Non-Interactive Zero Knowledge Proofs. Let R : {0, 1}∗×
{0, 1}∗ → {0, 1} be a n NP-witness-relation with correspond-
ing NP-language L := {stmt | ∃wit s.t. R(stmt ,wit) = 1}.
A non-interactive zero-knowledge proof (NIZK) [45] system
for the relation R is initialized with a setup algorithm
Setup(1λ) that, on input the security parameter, outputs
a common reference string crs and a trapdoor td. A prover
can show the validity of a statement x with a witness
w by invoking Prove(crs, x, w), which outputs a proof π.
The proof π can be efficiently checked by the verification
algorithm Vf(crs, x, π). We require a NIZK system to be (1)
zero-knowledge, where the verifier does not learn more than
the validity of the statement x i.e., there exists a simulator
algorithm Sim(crs, td, x) that without any information of
the witness, w can convince the verifier to output 1, and (2)
sound, where it is hard for any prover to convince a verifier
of an invalid statement (chosen by the prover).

5. Formal Model

All the guarantees of our approach are captured by the
ideal functionality Fswap, detailed in Figure 3. The ideal func-
tionality interacts with client C, the set of servers {Sj}j∈[n],
and the simulator Sswap. It keeps track of the following
variables {J , R, I,B}, all initialized to ⊥ (or ∅) implicitly. It
also maintains different lists Keys, SKeys, Inp,Out, Paid
as required. The functionality has access to a key function
f(·, ·) with various interfaces for key generation, key sharing,
evaluating the function, aggregating partial evaluations, and
verifying the function evaluation. This function represents
the threshold function being evaluated by the servers in the
real world. The functionality controls a public key address
pksid and transfers funds to that address when needed.
Adversary’s capabilities. The adversary can corrupt the
client and up to t servers, with at least t+ 1 servers being
honest and always available. Corrupted parties interact with
the functionality via the simulator Sswap, which notifies the
functionality of client corruption via a corrupt-client
message.

During key generation, the functionality Fswap gets the
list of corrupted servers C from the simulator. It aborts if
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• The functionality Fswap interacts with the client C, the server I := {Sj}j∈[n], and the simulator Sswap. Fswap has access to the functionality
which realizes a keyed function f(·, ·). f() has interfaces keygen,keyshare,eval,aggregate,verify to generate key pair, share
the secret key, evaluate the function, aggregate multiple evaluations and verify each evaluation of the function.
– I is the set of all servers offering the service. J is the set of all server indices the client wants to initiate the swap with.B is the set of all

server indices with which the client wishes to abort the interaction (initialized to ϕ). R is the list of all server indices responding with
partial output.

– Keys,SKeys, Inp, Out,Paid are initialized to empty lists.
Client Corruption Upon receiving (corrupt-client, C) from Sswap, mark the client C as corrupt.
Key Generation Upon receiving (keygen, sid,C) from Sswap, do the following:

1) Define CI := C ∩ I and HI := I \ CI and set nI := |I|
a) If nI < 2t+ 1, exit. Else, continue
b) If |CI | > t, mark I as corrupt and exit. Else, continue

2) Sample a key pair (sk , vk)← f.keygen(1λ)
3) Generate shares of the generated key pair {(sk i, vk i)}i∈I ← f.keyshare(sk , vk)
4) Append (sk , vk) to Keys[I, sid]. For each Si ∈ I, append (sk i, vk i) to SKeys[Si]
5) Send (keygen, sid, vk , I, {(sk i, vk i)}i∈CI ) to Sswapand (keygen, sid, vk , I) to each Si ∈ HI

Client deposit and input. After receiving (swapc, sid, vk ,m, (t + 1)d, skd, pkd,J ) from C, or from Sswap in case C is marked as corrupt,
do the following:
1) If Inp[vk ,m] = ⊥, and (·, vk) ∈ Keys[·, sid], then set Inp[vk ,m] := C and forward the message (swapc, sid, vk ,m, (t+ 1)d, pkd,J )

to Sswap. Else, exit
2) If Sswap returns the same message, do the following. Else, exit

a) Call the subroutine freeze(sid, (t+ 1)d, skd, pkd, pksid). If the freeze call is unsuccessful, abort. Else, continue
b) Send (swapc, sid, vk ,m, d) to each Si ∈ HI

Client selective abort. Upon receiving (abort, sid,m, j) from C at any point in time, update B ← B∪{j} and call unfreeze(sid, pkd, skd, d).
Server partial evaluation. • Upon receiving the message (swaps, sid, vk,m, j, vkj , rkj , yj) from Sswap, if j ∈ J , j ∈ CI and (·, vkj) ∈

SKeys[Sj ], do the following:
1) Run ϕ← f.verify(yj , vkj)
2) If ϕ = 1, do the following. Else, do nothing.

a) Append j to the list R
b) Set Out[vkj ,m] := yj
c) If j /∈ B, j /∈ Paid [I, sid] and |Paid [I, sid]| ≤ t + 1, then call transfer_pay(sid, rkj , d) and set Paid [I, sid] :=

Paid [I, sid] ∪ {j}
• Upon receiving the message (swaps, sid, vk,m, j, vkj , rkj) from Sj , if j ∈ J and j ∈ HI , do the following:

1) Send (sid, j) to Sswap
2) Compute yj ← f.eval(skj ,m), set Out[vkj ,m] := yj
3) If j /∈ B, j /∈ Paid [I, sid] and |Paid [I, sid]| ≤ t+1, then call transfer_pay(sid, rkj , d) and set Paid [I, sid] := Paid [I, sid]∪
{j}

Client Obtaining VRF values Upon receiving {obtain_vrf, sid,m} from C or Sswap,
• If C is corrupt, and the message is received from Sswap, do the following:

– For each j ∈ Paid[I, sid], append (j, yj) to the set O where Out[vkj ,m] = (yj)
– Forward (y, vk , O) to Sswap.

• Else
1) Run y := f.eval(sk ,m), append y to Eval [vk,m] and Forward (y, vk) to C.

Verification: Upon (verify, vk ,m, y, π) from C ,
1) If there is an I for which (·, vk) ∈ Keys[I] and Eval[vk,m] is defined then do the following:

a) If (y, π) ∈ Eval[vk ,m], set f := f.verify(y, π, vk). Else, set f := 0.
2) Else, set f := 0.
3) Finally return f to C.

The subroutines are described here:
• freeze(sid, v, pkd, skd, pksid): Transfers value v from pkd to pksid using skd via Post(sid, pkd, pksid, v). The function is successful if

the transaction is accepted.
• unfreeze(sid, pk, pksid, v) - Transfers the frozen value held by pksid back to pk, via Post(sid, pksid, pk, v).
• transfer_pay(sid, rkk, d) - Transfers the value d to the server receiving key rkk from pksid.

Ideal functionality Fswap

Figure 3: Ideal functionality of the swap protocol - the client pays only t+ 1 servers
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the number of corrupted parties is a majority. Otherwise,
it generates a secret and public key pair (sk , vk). The
functionality also generates shares sk i of the secret key sk
and the corresponding public keys vk i, i ∈ [n]. The generated
key pairs (sk i, vk i) are stored and associated with each server
SKeys. The functionality forwards the secret key share and
corresponding verification keys of the corrupted parties to
the simulator and verification keys to each non-corrupted
party.

The client C deposits (t+ 1) · d coins to the public key
pkd and forwards both the secret key skd and the public
key pkd to the functionality. It also forwards the input mand
the server set J with which the client wants to interact.
Forwarding the secret key skd ensures the client can not
withdraw the funds prematurely before paying the servers.
They also indicate the verification key vk against which
the requested output should be verified. Once the swap
request is forwarded to and acknowledged by the simulator,
the functionality transfers the deposit to a public key pksid

and freezes it. If the freeze is unsuccessful, the protocol is
aborted. If not, a swap request signal is forwarded to all the
non-corrupt parties.

At any point before payment, the client can abort in-
teraction with a server by sending an abort signal. The
functionality tracks aborted servers, unfreezing corresponding
deposit values using unfreeze for each abort.

The simulator forwards the server partial evaluations
yj on behalf of the corrupted parties through the swapS
message. The functionality Fswap verifies the values and
stores them to the set of (partial) outputs. It also receives the
evaluation signals from the honest parties and stores them
against their verification keys vk j and input x. For the honest
parties, the functionality computes the partial evaluation and
stores it. The functionality checks if each of the servers from
which a value or signal is obtained is in the abort list. If no,
and if the server is not paid and if a total t+ 1 servers are
paid till that time, the server forwards the payment to the
server using transfer_pay to the receiving address rk j

specified by the server or the simulator using a Post(·)
call.

A non-corrupt client or the simulator can forward the
obtain_vrf for the input x. If the client is corrupt, the
functionality collects all the partial values of the servers
that have been paid and forwards them to the simulator.
Otherwise, it computes the final function output for the
secret key sk and forwards it to the client. The functionality
also allows the client to forward the verify message to
request the functionality to verify the received final output.

The functionality immediately pays the servers which
forward the values to ensure that the servers are paid exactly
in the order in which they respond with the values. It also
ensures that a maximum of t + 1 servers are paid. The
client can not obtain partial values and abstain from paying
the server fee. Also, for aborted interactions, the deposit
is returned to the client. The functionality forwards all the
partial evaluations to the corrupt client; the final value is
directly computed and forwarded to an honest client.

5.1. Distributed Verifiable Threshold Service.

We generalize the notion of threshold primitives, that
are verifiable, such as threshold VRF, threshold signatures,
etc. Here we have n parties who generate keys, possibly
in a distributed fashion, such that any t + 1 parties only
collectively know the key. They perform partial evaluations
on an input and given any t+ 1 of such partial values, one
can combine them to obtain the final value. Additionally,
all the partial and final values are publicly verifiable. For
simplicity, we consider non-interactive interfaces except for
the key generation phase, which can be distributed using
specific protocols (e.g. [46]).
Definition 2. A (t, n)-distributed verifiable threshold

service DVTS consists of five PPT algorithms
(DKgen,PartEval,PartVerify,Combine,Verify) that are
defined below:

• (vk , (vk j , sk j)j∈[n]) ← DKgen(1λ, t, n): the distributed
key generation algorithm is a (possibly interactive) al-
gorithm executed among n parties. It takes as input the
security parameter 1λ, parameters t and n, and returns a
global verification key vk to all and partial verification-
secret key pairs (vk j , sk j) to the j-th party.

• (vi, πi) ← PartEval(sk i,m): the partial evaluation algo-
rithm takes as input a secret key share sk i, and a message
m, and returns partial evaluation vi, and a proof of partial
evaluation πi.

• 0/1 ← PartVerify(i, vk , (vk j)j∈[n],m, vi, πi): the partial
verification algorithm takes as input an index i, the global
verification key vk , the partial verification keys (vk j)j∈[n],
a message m, the partial evaluation vi and the proof of
partial evaluation πi, and returns 1 indicating valid, or
returns 0 indicating invalid.

• (v, π)← Combine(vk , (vk j)j∈[n],m, {(ki, vki
, πki

)i∈[t+1]}):
the combine algorithm takes as input the global verification
key vk , the partial verification keys (vk j)j∈[n], a message
m, and a set of t+ 1 tuples where the i-th tuple consists
of an index ki, a partial evaluation vki

, and a proof of
partial evaluation πki

. It returns an evaluation result v
and a proof π.

• 0/1← Verify(vk , (vk j)j∈[n],m, v, π): the full verification
algorithm takes as input the global verification key vk ,
the partial verification keys (vk j)j∈[n], a message m, the
evaluation v and the proof of evaluation π, and returns 1
indicating valid, or returns 0 indicating invalid.

We require (t, n) − DVTS to satisfy correctness that
guarantees for honestly generated keys and partial evaluations,
any t + 1 of them can be combined to generate a valid
full evaluation value. We additionally want unpredictability,
which intuitively says that an adversary with the knowledge
of t honestly generated keys cannot predict the full evaluation
on a message m∗ for which it has not obtained any honest
partial evaluation. Finally, DVTS must satisfy robustness that
says if t+1 partial evaluations given by an adversary verify
successfully, then the combined full evaluation must also
verify successfully. The formal definitions of the properties
are described in Appendix 6
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ExpPrivADVTS,t+1,n(λ):
C ← A(λ)
(vk , (vk j , sk j)j∈[n])← DKgen(1λ, t, n)
(m∗, v, π)← AOPartEval(vk , (vk j , sk j)j∈C)
OPartEval(S,m) returns (vi, πi)← PartEval(sk i,m) for all
i ∈ S ⊆ [n] \ C
Winning condition: Output 1 if
Verify(vk , (vk j)j∈[n],m

∗, v, π) = 1 and m∗ was not
queried to OPartEval.

Figure 4: Unpredictability experiment for DVTS.

6. Properties of DVTS

Definition 3 (Correctness). A (t, n)-distributed verifiable
threshold service DVTS is said to be correct if for all
λ ∈ N, all (vk , (vk j , sk j)j∈[n]) ← DKgen(1λ, t, n), all
messages m ∈ {0, 1}λ, all (vi, πi) ← PartEval(sk i,m)
for any i ∈ [n], it holds that:

• For all i ∈ [n]
Pr

[
PartVerify(i, vk , (vk j)j∈[n],m, vi, πi) = 1

]
= 1

• For any K ⊆ [n], where |K| = t+ 1, we have
Pr

[
Verify(vk , (vk j)j∈[n],m, v, π) = 1

]
= 1

where (v, π)← Combine(vk , (vk j)j∈[n],m, {(k, vk, πk)k∈K}).
Definition 4 (Unpredictability). A (t, n)-distributed verifiable

threshold service DVTS is said to be unpredictable if
there exists a negligible function negl, for all λ ∈ N, all
PPT adversaries A, the following holds:

Pr
[
ExpPrivADVTS,t+1,n(λ) = 1

]
≤ negl(λ)

where ExpPriv is described in Figure 4.

Definition 5 (Robustness). A ((t), n)-distributed verifi-
able threshold service DVTS is said to be robust
if for all λ ∈ N, for all (vk , (vk j , sk j)j∈[n]) ←
DKgen(1λ, t, n), there exists a negligible function negl,
such that for any PPT adversary A that returns
m, (k1, vk1 , πk1), . . . , (kt+1, vkt+1 , πkt+1) and the fol-
lowing holds simultaneously with probability at most
negl.

• For all k ∈ {k1, . . . , kt+1} ⊂ [n],

PartVerify(k, vk , (vk j)j∈[n],m, vk, πk) = 1

• Verify(vk , (vk j)j∈[n],m, v, π) = 0, where

(v, π)← Combine(vk , (vk j)j∈[n],m, {(ki, vki , πki)i∈[t+1]})

Instantiations. We remark that the above generic primitive
captures many threshold / distributed primitives satisfying
a structural requirement4 similar to BLS signatures [47].5

4. As mentioned earlier, we want a ‘non-interactive’ reconstruction of
the final output given partial evaluations with all evaluations - partial and
full - to be publicly verifiable. These properties are supported by the BLS
signature-based cryptographic objects (but not, e.g., Threshold Schnorr).

5. For BLS threshold or multi-signatures, it is easy to see that the
properties are achieved straightforwardly.

Among them the most prominent ones are the BLS-based
distributed VRFs [9], [10], [8]. Additionally, this structural
similarity extends to other primitives like threshold Boneh-
Franklin identity-based key-derivation [48], as evidenced
by a recent proposal [49] for a verifiable scheme; variants
of threshold signatures [50], [51], [52] certain distributed
PRFs [53] etc. We notice that, at the core of all these
primitives, two things are common: (i) the communication
pattern is one request from a client and one response from
each server, two rounds in total over a star network, where
servers don’t communicate; (ii) the public verifiability of the
individual and final (after combining) evaluations. It is worth
noting that, DVTS does not require a compact final output –
for example, a Combine procedure can just be an identity
function. We present VITĀRIT w.r.t. this generic primitive,
to ensure that any such instantiations would be immediately
compatible.

7. VITĀRIT Protocol

In this section, we formally describe our VITĀRIT
protocol. Recall that we have a client party A and a (t+ 1)-
out of-n threshold service. We make use of the following
cryptographic tools:
1) A signature scheme DS := (KGen,Sign,Vf) that is used

to sign transactions on the blockchain.
2) A (t + 1)-out-of-n or (t + 1, n)-(Non-Interactive) Veri-

fiable Distributed Threshold Service scheme DVTS :=
(DKgen,PartEval,PartVerify,Combine,Verify).

3) An adaptor signature scheme AS :=
(KGen, pSign,Adapt, pVf,Ext) that is defined with
respect to the signature scheme DS and discrete
logarithm hard relation RDL.
We use an additional tool called verifiable non-

committing encryption scheme that we introduce below.

7.1. Verifiable Non-Committing Encryption

We consider a efficiently sampleable NP relation R with
the sampling algorithm GenR(1λ) that returns an instance
inst , a witness wit , and some private auxiliary information
z , such that (inst ,wit) ∈ R. We now define a verifiable non-
committing encryption scheme with respect to the relation
R. The definition is inspired by the work of Brakerski et
al. [43].

Definition 6 (Verifiable Non-Committing Encryption ).
A verifiable non-committing encryption scheme VNE is
defined with respect to a NP relation R, and consists of
algorithms (KGen,Enc,VfEnc,Dec) defined as:

• (ek , dk)← KGen(1λ): the key generation algorithm that
inputs the security parameter λ and outputs an encryption
key ek and a decryption key dk .

• ct ← Enc(ek , inst ,wit , z ): the encryption algorithm takes
as input the encryption key ek , an instance inst , a witness
wit , and an auxiliary information z . It returns a ciphertext
ct .
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• 0/1 ← VfEnc(ek , inst , ct): the verification algorithm
takes as input the encryption key ek , an instance inst , and
a ciphertext ct . It returns 1 for valid, otherwise returns 0.

• wit ← Dec(dk , inst , ct): the decryption algorithm takes
as input a decryption key dk , an instance inst , and a
ciphertext ct . It returns a witness wit .

Remark 4. The GenR algorithm outputs values inst , wit and
z, and they are generated from the protocol in which
VNE interfaces are executed as a sub-routine (Figure 8,
steps [4-6]).

We provide the definitions of correctness, simulatability
and soundness of VNE in Section B

7.1.1. Constructing VNE. To construct our VNE scheme,
we make use of a public-key encryption scheme PKE :=
(KGen,Enc,Dec) described in Figure 5. The encryption
scheme is similar to the hashed Elgamal which works with a
group Gp of prime order p, and a generator gp. It additionally
uses a hash function Hm : Gp → {0, 1}|m| where |m| is
the size of messages being encrypted. It is folklore [54]
that the encryption scheme is non-committing when Hm

is modeled as a random oracle and the simulator in the
simulatability definition can program Hm. Henceforth we
denote the encryption scheme as PKEnc to distinguish the
scheme from standard PKE schemes.

KGen(1λ): The key generation algorithm does the
following:
• Sample x← Zp

• Set ek := gxp , dk := x
• Return (ek , dk)

Enc(ek ,m): The encryption algorithm does the following:
• Sample r, s← Zp

• Set c1 := grp, c2 := (ek)r · gsp, c3 := Hm(gsp)⊕m
• Return c := (c1, c2, c3)

Dec(dk , c): The decryption algorithm does the following:
• Parse c := (c1, c2, c3)
• Return m′ := c3 ⊕Hm

(
c2/c

dk
1

)
Figure 5: The concrete non-committing PKEnc scheme

We additionally need a NIZK proof [45], [55] for the
NP language L described below:

L :=

{
(c, ek , inst) : ∃ (wit , r) s.t . ,
c← PKEnc.Enc(ek ,wit ; r) ∧ (inst ,wit) ∈ R

}
With the above PKEnc scheme and the NIZK proof, we

give a generic construction of VNE for any NP relation
R in Figure 6. Note that the Enc algorithm ignores the
auxiliary information z entirely. The auxiliary information
plays a more vital role in the concrete instantiation which we
discuss in Section 8. The below theorem states the security
of the VNE construction (Figure 6). The proof is deferred
to Section C.
Theorem 1. Let PKEnc be a secure non-committing public

key encryption scheme. Let (SetupL,ProveL,VfL) be a

We make use of the PKEnc (Figure 5) and NIZK for
language L.
KGen(1λ): The key generation algorithm does the
following:
• Sample (ek , dk)← PKEnc.KGen(1λ)
• Return (ek , dk)

Enc(ek , inst ,wit , z ): The encryption algorithm does the
following:
• Sample r from randomness space of PKEnc (Figure 5)
• Compute c← PKEnc.Enc(ek ,wit ; r)
• Compute π ← ProveL(crsL, (c, ek , inst), (wit , r))
• Return ct := (c, π)

VfEnc(ek , inst , ct): The verification algorithm does the
following:
• Parse ct := (c, π)
• Return Vf(crsL, (c, ek , inst), π)

Dec(dk , inst , ct): The decryption algorithm does the
following:
• Parse ct := (c, π)
• Return wit ← PKEnc.Dec(dk , c)

Figure 6: Construction of VNE scheme

NIZK proof system for the language L. The construction
from Figure 6 is a secure VNE scheme with respect to
the relation R.

7.2. VITĀRIT Protocol Flow

The payment protocol is described in Figure 7. As
outlined in Section 3, we have a setup phase where party A
first creates t addresses and deposits x coins into each address.
Let the j-th address be denoted by public keys (pkA,j , pkS,j)
and script ϕj that requires the spending transaction to be
signed with respect to both the public keys pkA,j (of party A)
and pkS,j (of the servers). Note that every server knows the
secret key skS,j that is designated to spend the j-th deposit.
Server Si also deposits ϵ coins into an auxiliary address with
the public key pk aux,i and it knows the corresponding secret
key sk aux,i. The script ϕaux,i associated with the auxiliary
address is a straightforward script that requires the spending
transaction to be signed with respect to the public key pk aux,i.

In the payment phase, when party A and server Si

interact, they generate a payment transaction for each of the
t deposits. Let us consider the j-th deposit where j ∈ [t+1].
Each of these transactions also simultaneously spends from
the auxiliary address pk aux,i of server Si. Party A chooses
a request message m∗ and engages with server Si in a two-
party sub-protocol Γ̃2PC

DVTS,DS to exchange a payment from A
and server Si’s partial evaluation value. More specifically, the
server Si learns the signature of party A from Γ̃2PC

DVTS,DS and
publishes the payment transaction spending the j-th deposit,
along with its own signatures (for pkS,j and pk aux,i). In
the next step, party A uses the information published on
the blockchain, specifically, the signature of party A that
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was published by the server, to extract the partial value
(i, vDVTSi , πDVTS

i ).
After successful interactions with t+ 1 servers, where

the servers published the payment transactions and got
paid from all of the party A’s deposits, party A has t + 1
partial values. Without loss of generality, let us assume
the first t + 1 servers were successful in the above two-
party sub-protocol. In this case, party A has extracted
((1, vDVTS1 , πDVTS

1 ), . . . , (t + 1, vDVTSt+1 , πDVTS
t+1 )), and it can

combine the values using DVTS.Combine() to obtain the
final value vDVTS.

7.2.1. Two-party Sub-protocol Γ2PC
DVTS,DS. The two-party

protocol Γ2PC
DVTS,DS (described in Figure 8) is executed be-

tween server Si and party A to exchange the partial value
and party A’s signature on the payment transaction. We rely
on the VNE scheme for the relation Ri for i ∈ [n], which is
defined as,

Ri :=

{((
vkDVTS,

(
vkDVTS

j

)
j∈[n]

,m∗
)
, vDVTSi

)
: s.t . ,

vDVTSi ← DVTS.PartEval(skDVTS
i ,m∗)

}

where
(
vkDVTS,

(
vkDVTS

j , skDVTS
j

)
j∈[n]

)
is generated

using DVTS.DKgen(1λ, t, n). Here we have, inst i :=(
vkDVTS,

(
vkDVTS

j

)
j∈[n]

,m∗
)

and wit i := vDVTSi . Addi-

tionally, we require the key structure of the VNE scheme to
be as follows: The decryption key dk is the discrete log of
the encryption key ek with respect to the generator gp, i.e.,
ek = gdkp , as shown in Figure 5.

On a high level, Si samples a key pair (ek , dk) for the
VNE scheme and encrypts the witness wit i := vDVTSi into
the ciphertext ct . Party A ensures the ciphertext is valid,
and generates an adaptor pre-signature σ̃A,j on the payment
transaction tx j

pay,i with Y as the adaptor statement. Here
Y := ek , thereby implicitly setting y := dk as the adaptor
witness. Party A sends the pre-signature to server Si which
checks if the adaptor statement Y is indeed the encryption key
ek , and that the pre-signature is valid. If so, the server adapts
the pre-signature using dk and obtains the signature σA on
the payment transaction. The server publishes the transaction
and the signatures σA,j , σS,j and σaux,i on the blockchain
to get paid. On the other hand, party A extracts the adaptor
witness y or the decryption key dk from the signature σA,j ,
and obtains vDVTSi . The following theorem states the security
of VITĀRITand the formal proof is deferred to Section D.
Theorem 2. Let AS be a secure adaptor signature scheme

with respect to a strongly unforgeable signature scheme
DS and a hard dlog relation R. Let VNE be a simulatable
and sound verifiable non-committing encryption scheme
and let DVTS be a secure distributed verifiable threshold
service. Then VITĀRIT protocol described in Figure 7,
UC-realizes the functionality Fswap.

We instantiate the DVTS with a Threshold VRF service
(see Appendix 8); we then have the following theorem.
Theorem 3. Let PKEnc be the secure non-committing

public key encryption presented in Figure 5. Let

(SetupL′ ,ProveL′ ,VfL′) be a secure NIZK proof system
for the language L′. The construction described in Fig-
ure 9 is a secure VNE scheme with respect to the relation
Ri under the decisional Diffie-Hellman assumption in
groups Gq, Gp and in the random oracle model.

8. Instantiation With a Threshold VRF Service

In this section, we describe instantiations of the different
cryptographic tools we use in our VITĀRIT protocol. Firstly,
we instantiate the signature scheme DS with the Schnorr
signature scheme [56] which is set to be in the group Gp,
with generator gp and order p. Below we discuss in detail
about our instantiation of DVTS and how to correspondingly
instantiate the VNE scheme.

8.1. Distributed Verifiable Random Function as
DVTS

We instantiate DVTS with the (non-interative) distributed
verifiable random function DVRF scheme from [9]. The
interfaces are similar in both primitives and the notations
are translated by replacing DVTS with DVRF. The concrete
DVRF scheme that we use from [9] is based on a modified
version of BLS signature scheme. Concretely, the partial
evaluation DVRF.PartEval(skDVRF

i ,m∗) run by server Si

outputs (vDVRFi , πDVRF
i ), where vDVRFi is a BLS signature

under the key skDVRF
i ∈ Z∗

q . πDVRF
i is a discrete-log equality

proof between the partial verification key vkDVRF
i and the

BLS signature vDVRFi = Hq(m
∗)sk

DVRF
i , where hash function

Hq is defined as Hq : {0, 1}∗ → Gq. Independently of the
partially evaluated values, we still need a bilinear pairing
function to allow for aggregation of the partial evaluations
and public verifiability of the full evaluation. Thus, we
instantiate the DVRF in groups with an admissible bilinear
pairing function e : G1×G2 → GT , where G1,G2, and GT

are different groups of order q. From [9], we can see that the
final VRF value vDVRF ∈ G1 and the VRF verification key
vkDVRF ∈ G2. We will instantiate G1 := Gq. Note that we
we use gq , ĝq , and gT to respectively denote the generators
of groups G1, G2, and GT .
Instantiation of VNE. With the instantiation of DVTS
with DVRF, we have concrete relation R for the VNE
scheme. Recall that in our VITĀRIT, for the VNE usage
in Section 7.2.1, we required the relation Ri for i ∈ [n].
Below we specify the relation Ri, given the instantiation
with DVRF for DVTS:

Ri :=

{((
vkDVRF,

(
vkDVRF

ℓ

)
ℓ∈[n]

,m∗
)
, vDVRFi

)
: s.t . ,

(vDVRFi , ·)← DVRF.PartEval(skDVRF
i ,m∗)

}

where
(
vkDVRF,

(
vkDVRF

ℓ , skDVRF
ℓ

)
ℓ∈[n]

)
is generated

honestly by running DVRF.DKgen(1λ, t, n)
The only component left to be instantiated in the VNE

scheme from Section 7.1 is the NIZK proof for the language
L. We can instantiate the NIZK proof using ZK-SNARK [55],
where we use SHA-256 for the hash function Hm needed
in PKEnc and interpret the same as an arithmetic circuit.
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Global input: (tx aux,i, pk aux,i, ϵ)i∈[n], (pkA,j , pkS,j)j∈[t+1], (x · t, pkA),. The DVTS verification keys of servers denoted by
(vkDVTS

1 , . . . , vkDVTS
n ) and the global DVTS verification key vkDVTS are also available.

Party A’s input: (skA, skA,1, . . . , skA,t+1).
Server Si’s input: (skDVTS

i , sk aux,i, skS,1, . . . , skS,t+1).

Setup Phase
1) Party A generates the setup transaction

tx stp := tx
(
[(pkA, ϕA, x · (t+ 1))], [(pkA,1, pkS,1, ϕ1, x) . . . , (pkA,t+1, pkS,t+1, ϕt+1, x)]

)
2) Party A publishes tx stp on the blockchain by adding its signature on the transaction onto the blockchain.

Payment Phase
Server Si for i ∈ [n] interacts with party A who has a chosen message m∗ ← {0, 1}∗, and the following steps are executed:

1) Party A and server Si generate payment transactions
tx j

pay,i := tx
(
[(pkA,j , pkS,j , ϕj , x), (pk aux,i, ϕaux,i, ϵ)], [pk i, ϕS,i, x+ ϵ]

)
for j ∈ [t+ 1]. Here the public key pk i

belongs to the server Si.
2) Server Si generates (vDVTSi , πDVTS

i )← DVTS.PartEval(skDVTS
i ,m∗).

3) Party A together with server Si executes the sub-protocol Γ2PC
DVTS,DS(inpA, inpS,i, cinp) for j ∈ [t+ 1] (described

in Figure 8), where the common input for both parties is set as cinp := (pkA,j , vk
DVTS, vkDVTS

i ,m∗, tx j
pay,i). Here

party A’s private input is denoted by inpA := skA,j , and the private input of server Si is denoted by
inpS,i := (skDVTS

i , vDVTSi , πDVTS
i , skS,j , sk aux,i).

4) At the end of the sub-protocol, Si gets the payment of x coins from tx j
pay,i for exactly one j ∈ [t+ 1] if j-th output

address in txSetup was unspent. While party A obtains vDVTSi .
Reconstruction Phase

After extracting output shares from t+ 1 servers, w.l.o.g., the first t servers, party A executes
(vDVTS, πDVTS)← DVTS.Combine

(
vkDVTS, (vkDVTS

i )i∈[n],m
∗, {(1, vDVTS1 , πDVTS

1 ), . . . , (t+ 1, vDVTSt+1 , πDVTS
t+1 )}

)
. It returns

vDVTS as its output.

Figure 7: VITĀRIT protocol

However, as discussed earlier, given Hm is modeled as
a random oracle in the security analysis, we want to avoid
proofs that treat the hash function Hm as a concrete function.
Therefore, we design a new cut-and-choose-based NIZK
proof and a corresponding VNE scheme, which we describe
in Figure 9. On a high level, the encryption algorithm takes
an instance inst consisting of the DVRF verification key
vDVRF, the partial verification keys vkDVRF

ℓ , and message
m∗. The witness wit is the partial evaluation value vDVRFi ,
and the auxiliary information is the partial secret key skDVRF

i .
For j ∈ [2λs], the algorithm samples values rj , aj , bj and
computes Aj := ĝ

aj
q , Bj := ĝ

bj
q , and the PKEnc ciphertext

ctj that encrypts A
bj
j using rj as the encryption randomness.

The challenge index set J is computes using the hash function
Hc : {0, 1}∗ → J where J ⊂ [2λs] and |J | = λs. For indices
not in J , the algorithm reveals values in plain, while for
the indices in J , the algorithm reveals a value Zj that hides
vDVRFi using A

bj
j . The algorithm also adds NIZK proofs for

language L′ that assure that values Zj are well-formed. We
specify the language below:

L′ :=


(
i, A,B, Z, vkDVRF, (vkDVRF

j )j∈[n],m
∗
)
:

∃(b, skDVRF
i , vDVRFi ), s.t . ,

B = gbq ,∧ Z = Ab · vDVRFi ∧
(vDVRFi , ·)← DVRF.PartEval(skDVRF

i ,m∗)


where

(
vkDVRF,

(
vkDVRF

ℓ , skDVRF
ℓ

)
ℓ∈[n]

)
is honestly gen-

erated using DVRF.DKgen(1λ). The final VNE ciphertext is

the collection of all PKEnc ciphertexts, all group elements
Aj and Bj , along with all opened and unopened values.

To verify the ciphertext, the algorithm checks the well-
formedness of the opened values, and for the unopened
values, it checks all the NIZK proofs for the language L′.
The soundness guarantee of the cut-and-choose is that if all
the checks are verified successfully, then there exists at least
one unopened PKEnc ciphertext that is correctly formed. The
decryption algorithm given the decryption key dk , decrypts
this well-formed ciphertext denoted by ctk where index
k ∈ J .

8.2. Optimizations

In this section, we discuss additional techniques that can
improve the communication and computation of our protocol.

8.2.1. Batching in our VNE instantiation. If party A,
and server Si interact to exchange multiple partial DVRF
evaluations for payments, they have to run the 2-party sub-
protocol from Figure 8 as many times. If we have N number
of exchanges, that is, we have instances (inst1, . . . , instN )
for which the witnesses will be encrypted using VNE, then
this would naively involve N number of VNE encryptions
and verifications. Concretely, the total number of PKEnc

ciphertexts sent from the server to party A would be 2N ·λs,
where λs is the cut-and-choose security parameter. We ignore
the additional group elements here for ease of understanding.
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We make use of VNE scheme from Figure 6, which has the encryption-decryption key structure from Figure 5.
Common input: pkA,j , vk

DVTS, vkDVTS
i ,m∗, tx j

pay,i

1 : Party A(inpA) Server Si(inpS,i)

2 : inpA := skA,j inpS,i := (skDVTS
i , vDVTSi , πDVTS

i , skS,j , sk aux,i)

3 : (ek , dk)← VNE.KGen(1λ)

4 : inst :=

(
vkDVTS,

(
vkDVTS

j

)
j∈[n]

,m∗
)

5 : wit := vDVTSi

6 : z := skDVTS
i

7 : ct ← VNE.Enc(ek , inst ,wit , z )

8 : (ek , ct , inst)

9 : Check VNE.VfEnc(ek , inst , ct)
?
= 1

10 : Y := ek

11 : σ̃A,j ← AS.pSign(skA,j , tx
j
pay,i, Y )

12 : (Y, σ̃A,j)

13 : Check Y
?
= ek and AS.pVf(pkA,j , tx

j
pay,i, σ̃A, Y )

?
= 1

14 : σA,j ← AS.Adapt(σ̃A,j , y), where y = dk

15 : σS,j ← DS.Sign(skS,j , tx
j
aux,i)

16 : σaux,i ← DS.Sign(sk aux,i, tx
j
pay,i)

17 : Publish (tx j
pay,i, σA,j , σaux,i) on the blockchain

18 : dk := y ← AS.Ext(σ̃A,j , σA,j)

19 : vDVTSi ← VNE.Dec(dk , inst , ct)

20 : return vDVTSi return (tx j
pay,i, σA,j , σaux,i)

Figure 8: Description of Γ2PC
DVTS,DS(inpA, inpS,i, cinp)

However, we propose a batching technique for our cut-
and-choose argument inspired by the works of Lindell and
Riva [42] and Madathil et al. [24], to amortize the cost to
2N ·α ciphertexts for some constant α smaller than λs. More
concretely, we will have a total of 2N + 2Nλs

1+logN ciphertexts
which is smaller than 2N · λs whenever logN > 2λs

λ2−2 − 1.
Below will sketch the high-level idea of the batching tech-
nique.

We have N instances (inst1, . . . , instN ), and PKEnc

encryption keys (ek1, . . . , ekN ). We want that the encryption
of VNE encrypt wit i that can be decrypted using dk i. The
high-level idea is to generate a total of 2N · B number
of PKEnc ciphertexts (and corresponding group elements),
where B = 1 + λs

1+logN . Each of these ciphertexts is with
respect to an encryption key ek∗. We apply the hash function
Hc which returns N ·B (exactly half) the number of indices
to be opened and the rest to be left unopened. The unopened
values are randomly mapped into buckets that each can
contain B entries. We have a total of N number of buckets
with the j-th bucket associated with the j-th instance. To
do this, the hash function Hc additionally returns the above
random bucket mapping.

For PKEnc ciphertexts that are mapped to the j-th bucket,

the encryption algorithm generates new PKEnc ciphertexts
encrypting the same message but this time under the en-
cryption key ek j . Additional Z values corresponding to the
unopened indices are generated in such a way that for values
in j-th bucket, the corresponding Z value masks witj . The
guarantee of the cut-and-choose now states that if the all
the opened values and unopened values are correct then
with an overwhelming probability there is at least one well-
formed entry in each bucket. That is, one PKEnc ciphertext
and corresponding Z value in each bucket are well-formed
and correctly decryptable. Given the decrytion key dk j , the
decryption algorithm picks the well-formed PKEnc ciphertext
and masked entry from the j-th bucket, and obtains witj .

8.2.2. Amortize computation in VITĀRIT. Notice that
in step (3) of the payment phase, party A and server Si

execute the interactive sub-protocol Γ2PC
DVTS,DS iteratively

t + 1 times. We can amortize computation costs of these
iterations by letting the server Si execute steps 1-7 and
party A execute steps 8-10 of Γ2PC

DVTS,DS in Figure 8 exactly
once. The only difference between the iterations is the
payment transaction and the adaptor signature generated
on the transaction. Therefore, the steps between 1-10 which
are independent of the transaction and adaptor signature
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We make use of PKEnc scheme from Figure 5. crsL′ is
available as public parameter to all algorithms.
KGen(1λ): The key generation algorithm does the
following:
• Sample (ek , dk)← PKEnc.KGen(1λ)
• Return (ek , dk)

Enc(ek , inst ,wit , z ): The encryption algorithm does the
following:

• Parse inst :=

(
vkDVRF,

(
vkDVRF

ℓ

)
ℓ∈[n]

,m∗
)

,

wit := vDVRFi and z := skDVRF
i

• Initialize Sop := Sunop := ∅
• For j ∈ [2λs]:

– Sample rj ← Zp, aj , bj ← Zq. Compute
Aj := g

aj
q , Bj := g

bj
q

– ctj ← PKEnc.Enc(ek , A
bj
j ; rj)

• Compute J := Hc

(
(Aj , Bj , ctj)j∈[λs]

)
• For j ∈ [2λs] \ J :

– Set Sop := Sop ∪ {(aj , bj , rj)}
• For j ∈ J :

– Compute Zj := A
bj
j · vDVRFi

– Set stmtj :=(
i, Aj , Bj , Zj , vk

DVRF,
(
vkDVRF

ℓ

)
ℓ∈[n]

,m∗
)

– Set witj := (bj , sk
DVRF
i , vDVRFi )

– Generate proof πj ← ProveL′(crsL′ , stmtj ,witj)
– Set Sunop := Sunop ∪ {(Zj , stmtj , πj)}

• Set ct :=
(
(ctj , Aj , Bj)j∈[2λs],Sop,Sunop

)
• Return ct

VfEnc(ek , inst , ct): The verification algorithm does the
following:
• Parse ct :=

(
(ctj , Aj , Bj)j∈[2λs],Sop,Sunop

)
• Compute J := Hc

(
(Aj , Bj , ctj)j∈[2λs]

)
• For j ∈ [2λs] \ J :

– Retrieve (aj , bj , rj) from Sop
– Return 0 if any of the following fail

∗ Check Aj
?
= g

aj
q . Check Bj

?
= g

bj
q

∗ Check ctj
?
= PKEnc.Enc(ek , A

bj
j ; rj)

• For j ∈ J :
– Retrieve (Zj , stmtj , πj) from Sunop
– Return 0 if VfL′(crsL′ , stmtj , πj) = 0

• If 0 was not returned before, return 1

Dec(dk , inst , ct): The decryption algorithm does the
following:
• Parse ct :=

(
(ctj , Aj , Bj)j∈[2λs],Sop,Sunop

)
• Compute J := Hc

(
(Aj , Bj , ctj)j∈[2λs]

)
• By the guarantee of cut-and-choose, there exists k ∈ J ,

such that Ck ← PKEnc.Dec(dk , ctk).
• Compute wit := Zk · C−1

k
• Return wit

Figure 9: Our concrete VNE scheme.

generation can be executed exactly once instead of t + 1
times.

8.3. Discussions

We will now briefly discuss certain interesting extensions
to VITĀRIT.

Output Private DVRF. Notice that in the DVRF threshold
service case, a set of t+ 1 servers can come together and
compute the final VRF value vDVRF that the client obtained.
The client may wish to have added privacy where the final
VRF value is not revealed to the service as studied in [57].
We can extend VITĀRIT DVRF instantiation to realize this
by letting the client reveal a masked / blinded request m̃ =
Hq(m

∗)β , where β ← Zq for some λ bit prime q and Hq

is a hash function. Here the message m∗ is the original
message request on which the client wants a VRF to be
computed. To compute the masked partial evaluation, the i-th
server simply compute ṽDVRFi := (m̃)sk

DVRF
i , and the protocol

follows as before. Once the client obtains the masked partial
evaluation ṽDVRFi , it can unmask and compute the original
partial evaluation as: vDVRFi :=

(
ṽDVRFi

)β−1

. As before, with
t+ 1 partial evaluations, the client obtains the final original
VRF output. However, as shown in [57], the final VRF value
is computationally hidden from the servers.

Threshold Oracle Service. In the case of threshold oracle
service, the client seeks t + 1 attestations on the message
m∗. VITĀRIT can be instantiated for this case as well since
our protocol is described generically (Section 7) for any
threshold service. If the oracles attest the message by signing
the message like in [24], then we require the VNE to be
instantiated with respect to the following relation:

R :=

{((
vkDS,m∗) , σDS

)
: s.t . ,

σDS ← DS.Sign(skDS,m∗)

}
where DS is the signature scheme, vkDS is the signature
verification key, skDS is the corresponding signing key, and
σDS is the signature. If the signature scheme used is BLS
signatures [47], then given the structural similarities between
the signature scheme and the DVRF instantiation [9] we
can use our concrete instantiation from Section 8 with only
minimal changes.

Paper Organization. In Section 2 we discuss some of the
related works in the literature and in Section 4 we briefly
introduce the mathematical notations and required technical
background needed for the paper. We introduce the UC-
based formal model for VITĀRIT in Section 5 followed the
VITĀRIT protocol description in Section 7. In Section 9
we present a practical performance evaluation of VITĀRIT.
Formal proofs of VITĀRIT and its core component are
deferred to Section D and Section C, respectively. Concrete
instantiations of the building blocks used in VITĀRIT are
discussed in Section 8.
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9. Performance Analysis

We implement 6and benchmark the VNE (Figure 9)
and the VITĀRIT protocol using Rust cryptographic li-
braries derek_25519, blst and bls12_381 crates
on MAX OSX with 16GB RAM. All the reported timings
are mean values taken over 50 instances of the protocol run.
Each server uses a BLS signature-based threshold VRF on the
curve BLS12_381 curve to generate a partial VRF output
and participates with the client in a two-party exchange
protocol for the payment information. The proof of correct
evaluation is a Schnorr protocol-based zero-knowledge proof.
In the encryption scheme PKEnc of Figure 5, we choose
p to be a 256 bit value from the Ed25519 curve and the
message length to be 48 byte which is an output of the VRF
function. The hash Hm(·) maps to 384 a bit value. This
optimization reduces the size of the 3-tuple ciphertext in
which, now two elements are 256 bits.

While encrypting the partial VRF output using the VNE
scheme, each server samples 64 random values and uses
them to generate ciphertexts for the PKEnc encryption. Later
we vary the number of values to compare the time taken for
different cut-and-choose parameters. The VRF output is an
element on the BLS12-381 curve, which is the witness for
the VNE encryption. The server VNE-encrypts the partial
output, which also includes proof of the correctness of the
encryption. After verifying the VNE encryption, the client
generates a pre-signature. The server verifies and adapts the
pre-signature to obtain the payment transaction and signature
on the transaction. The timings for each of the steps in the
two-party protocol are provided in Table 1.

The proof of the correctness of the VNE involves a cut-
and-choose method. We choose the security parameter 2λs

to be 64. Half the total number of encryptions are opened
and half of them are masked and forwarded. The indices
of the encryptions that are opened are generated as a hash
output. For the unopened encryptions, the partial evaluation
is masked by the random value; the server proves in zero-
knowledge that the value has been generated correctly, and
the masked value is indeed the partial evaluation of the server.
The server uses a schnorr-protocol-based zero-knowledge
proof (see E for the exact proof) to prove the correctness of
the masked value.
Communication complexity. The VRF computed is a BLS-
signature-based VRF function with an output of size 48
bytes. PKEnc encryption is used to encrypt the VRF output,
and each encryption instance has a ciphertext of 896 bits.
The server VNE encrypts the VRF output, which utilizes the
PKE encryption. In the VNE-based cut-and-choose method,
the server forwards 64 encryptions, of which 32 random
encryptions are opened. Thus, the total ciphertext size is
64 ∗ 896 = 57.3kb; the opened set involves forwarding
three values per PKEnc encryption amounting to 1152 bits
per PKEnc. For the unopened set, the server forwards the
masked value and the proof of correctness, constituting
5 elements, each of size 384 bits, totaling 1.92kb. Upon

6. https://github.com/easwarvivek/vitarit

successful verification, the client forwards a pre-signature
and public key amounting to 512 bits. After adapting the
signature, the server publishes a transaction of size up to
∼ 218 bytes on the blockchain. Refer Table 2 object sizes.

TABLE 1. TIME TAKEN FOR THE CLIENT AND SERVER IN THE
TWO-PARTY PROTOCOL FOR PAYMENT AND PARTIAL VALUE EXCHANGE

Client Time (msec)

PKEnc Decryption 491µ sec
ZKP Verification of unopened PKEnc 1.48 mec

Pre-Signature 187µsec

Server Time (msec)

VRF generation 340µ sec
PKEnc Encryption 1.98 msec

ZKP generation of unopened PKEnc 1.67 msec
Adaptor Verification 179µsec
Signature generation 186µsec

TABLE 2. SIZE OF EACH OF THE ELEMENTS OF THE PROTOCOL

Element Size

Partial VRF output 382 bits
PKEnc ciphertext 896 bits

ZKP of unopened PKEnc 1536 bits
Adaptor Pre-signature 256 bits

Computation complexity. The VRF partial evaluation in-
volves a hash function computation and exponentiation on
the BLS12_381 curve and takes 340µ sec. Each PKEnc

encryption involves sampling two random values, 4 exponen-
tiation on elements of size 256 bits and takes 1.98 msec. The
PKEnc decryption involves one exponentiation along with
other operations and takes 491µ sec. The VNE encryption
involves generating multiple (64) PKEnc ciphertexts and
takes a total of 127 msec. The proof of correctness of Zj

value, a Schnorr based proof, takes 1.98 msec for each
unopened PKEnc. Thus, takes a total of 63.36 msec sec for
the VNE instance. The client encrypts the values for the
opened instances and checks against the ciphertexts. The
client checks the proof of correctness for the unopened
instances, taking 1.48 msec for each.

We vary the cut-and-choose parameter and compute the
time the server takes (see Figure 10).
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Figure 10: Server time in the two-party protocol for varying
cut-and-choose parameter λs

Improving smart contract based schemes. To demonstrate
that VITĀRIT improves even a distributed VRF realized
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through smart contracts (gas cost-wise), we deploy smart
contracts on Ethereum with and without using VITĀRIT and
compare the gas costs. In the traditional approach, each party
submits the partial VRF output to the smart contract which
verifies the correctness of the value. Once the threshold
number of values are verified, they are aggregated and the
final value is verified using a pairing based check (https:
//holesky.etherscan.io/tx/0xd6c9bbce9fbd6c892ef7c52757
b646d860dc67e8e8f131f5c4fc9734cee74d14). Before the
start of the operations, the servers register their public key
with the smart contract. For a fair comparison, we consider
the servers to get paid as soon as the final VRF value is
verified. Since the VRF verification keys need to be stored
in a specific format, it takes 502K gas to store 5 public
keys for a five server system. The deployment of smart
contract takes 1891K gas since it includes storing variables
for BLS verification precompiles etc. It takes 219K gas for
one BLS pairing verification after receiving and checking
the input. This approach also incurs costs to store the proof
of correctness of the values.

To realize VITĀRIT in Ethereum, the simplest way is to
realize the protocol as is. In VITĀRIT , the auxiliary address
allows each server to obtain the payment for the service only
once. The address holds a one-time spendable value; this
is realized in Ethereum using a smart contract with deposit
which can used only once for an input. After the interaction
with the client, each server posts one payment transaction
(https://holesky.etherscan.io/tx/0x1182b91846e465c9dd9a2a
1a9b8d1b2f847b24bc37c2f2e943da99b93f7ef2a4). The gas
cost per server for obtaining the payment is 21K since it is a
simple payment transaction. For registering the public keys
and the auxiliary deposit, it takes 227K gas for deploying
the smart contract and registering the public keys together.
This completely avoids high smart contract deployment cost,
Schnorr verification proofs of partial VRF outputs, pairing-
based verification of the final VRF output and the storage
costs of the proofs and partial values.
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Appendix A.
Extended Preliminaries

Adaptor Signatures. We recall the missing definitions for
adaptor signatures.
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Definition 7 (Adaptor Signatures). An adaptor signa-
ture scheme AS w.r.t. a hard relation R and a sig-
nature scheme DS = (KGen,Sign,Vf) has algorithms
(pSign,Adapt, pVf,Ext) defined as:

• σ̂ ← pSign(sk ,m, Y ): the pre-sign algorithm takes as
input a signing key sk , message m ∈ {0, 1}∗ and statement
Y ∈ LR, outputs a pre-signature σ̂.

• 0/1 ← pVf(vk ,m, Y, σ̂): the pre-verify algorithm takes
as input a verification key vk , message m ∈ {0, 1}∗,
statement Y ∈ LR and pre-signature σ̂, outputs either
1 (for valid) or 0 (for invalid).

• σ/⊥ ← Adapt(σ̂, y): the adapt algorithm takes as input a
pre-signature σ̂ and witness y, outputs a signature σ or ⊥
denoting error.

• y ← Ext(σ, σ̂, Y ): the extract algorithm takes as input
a signature σ, pre-signature σ̂ and statement Y ∈ LR,
outputs a witness y such that (Y, y) ∈ R, or ⊥.

Definition 8 (Pre-signature Correctness). An adaptor
signature scheme AS satisfies pre-signature correctness if
for every λ ∈ N, every message m ∈ {0, 1}∗ and every
statement/witness pair (Y, y) ∈ R, the following holds:

Pr


pVf(vk ,m, Y, σ̂) = 1

∧
Vf(vk ,m, σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣
(sk , vk)← KGen(1λ)
σ̂ ← pSign(sk ,m, Y )
σ := Adapt(σ̂, y)
y′ := Ext(σ, σ̂, Y )

 = 1.

Next, we formally define the security properties of an
adaptor signature scheme.

Definition 9 (Unforgeability). An adaptor signature scheme
AS is aEUF-CMA secure if for every PPT adversary A
there exists a negligible function negl such that:

Pr
[
aSigForgeA,AS(λ) = 1

]
≤ negl(λ)

where the experiment aSigForgeA,AS is defined in Fig-
ure 11.

Definition 10 (Pre-signature Adaptability). An adaptor
signature scheme AS satisfies pre-signature adaptabil-
ity if for any λ ∈ N, any message m ∈ {0, 1}∗,
any statement/witness pair (Y, y) ∈ R, any key pair

aSigForgeA,AS(λ)

Q := ∅
(sk , vk)← KGen(1λ)

m← ASignO(·),pSignO(·,·)(vk)

(Y, y)← GenR(1λ)

σ̂ ← pSign(sk ,m, Y )

σ ← ASignO(·),pSignO(·,·)(σ̂, Y )

return (m ̸∈ Q ∧ Vf(vk ,m, σ))

SignO(m)

σ ← Sign(sk ,m)

Q := Q∪ {m}
return σ

pSignO(m,Y )

σ̂ ← pSign(sk ,m, Y )

Q := Q∪ {m}
return σ̂

Figure 11: Unforgeabiltiy experiment of adaptor signatures

aWitExtA,AS(λ)

Q := ∅
(sk , vk)← KGen(1λ)

(m,Y )← ASignO(·),pSignO(·,·)(vk)

σ̂ ← pSign(sk ,m, Y )

σ ← ASignO(·),pSignO(·,·)(σ̂)

y′ := Ext(vk , σ, σ̂, Y )

return (m ̸∈ Q ∧ (Y, y′) ̸∈ R

∧ Vf(vk ,m, σ))

SignO(m)

σ ← Sign(sk ,m)

Q := Q∪ {m}
return σ

pSignO(m,Y )

σ̂ ← pSign(sk ,m, Y )

Q := Q∪ {m}
return σ̂

Figure 12: Witness extractability experiment for adaptor
signatures

(sk , vk)← KGen(1λ) and any pre-signature σ̂ ← {0, 1}∗
with pVf(vk ,m, Y, σ̂) = 1 we have:

Pr[Vf(vk ,m,Adapt(σ̂, y)) = 1] = 1

Definition 11 (Witness Extractability). An adaptor signature
scheme AS is witness extractable if for every PPT
adversary A, there exists a negligible function negl such
that the following holds:

Pr[aWitExtA,AS(λ) = 1] ≤ negl(λ)

where the experiment aWitExtA,AS is defined in Fig-
ure 12.

Appendix B.
Further definitions related to VNE

Definition 12 (Correctness). A verifiable non-committing
encryption scheme VNE := (KGen,Enc,VfEnc,Dec)
with respect to relation R, is said to be correct if
for all λ ∈ N, all (inst ,wit , z ) ∈ SUPP(GenR), all
(ek , dk) ∈ KGen(1λ), all ct ← Enc(ek , inst ,wit , z ), it
holds that:

• Pr[VfEnc(ek , inst , ct) = 1] = 1.
• Pr[(inst ,Dec(dk , inst , ct)) ∈ R] = 1

Below we state the definition of simulatability of VNE
that captures the non-committing property. On a high level,
we want the adversary not to be able to distinguish two
distributions, one REAL and another IDEAL. The IDEAL
distribution is generated with the aid of a simulator Sim that
generates ciphertexts without access to the encrypted witness
wit , and later gives the adversary the decryption key dk . The
adversary can clearly decrypt the ciphertext, and we want
the view of the adversary to be no different now compared
to when it receives an honestly generated ciphertext as in
REAL.

Definition 13 (Simulatability). A VNE scheme with respect
to NP relation R is said to be simulatable if for all
λ ∈ N, all PPT adversaries A = (A1,A2), there exists

20



a simulator Sim = (Sim1,Sim2), such that the follow-
ing distributions IDEAL and REAL are computationally
indistinguishable to A, where

REAL =

(ek , dk , inst ,wit , ct) :

(ek , dk)← KGen(1λ)
(inst ,wit , z )← GenR(1λ)
ct ← Enc(pk , inst ,wit , z )
(st0,⊤)← A1(ek , ct , inst)

wit ← A2(st0, dk)



IDEAL =


(ek , dk , inst ,wit , ct) :

(ek , dk ′)← KGen(1λ)
(inst ,wit , z )← GenR(1λ)
(st′0, ct)← Sim1(ek , inst)
(st0,⊤)← A1(ek , ct , inst)
dk ← Sim2(st′0, dk

′,wit , z )
wit ← A2(st0, dk)


.

Below we state the definition of soundness for VNE.
Definition 14 (Soundness). A VNE scheme with respect to

NP relation R is sound if for all λ ∈ N, there exists
a negligible function negl, and no PPT adversary A
that A outputs (pk , inst , ct), and the following holds
simultaneously with more than negl(λ) probability:

• VfEnc(pk , inst , ct) = 1
• (inst ,Dec(dk , inst , ct)) /∈ R

Appendix C.
Security Proofs for VNE

Proof: [Proof of Theorem 1] To see why simulatability
holds, we will proceed using hybrid arguments.

Consider a distribution denoted by REAL1, which is the
same as REAL, except that the proof π for language L
is generated using the NIZK simulation SL. We can see
that the distributions REAL and REAL1 are computationally
indistinguishable due to the zero-knowledge property of the
NIZK proof system.

Now consider another distribution denoted by REAL2,
which is the same as REAL1, except that the PKEnc ciphertext
c is generated by encrypting a random value. That is, c is
set as (c1, c2, c3) where c1 := grp, c2 := (ek)r · gsp and c3 ←
{0, 1}|m|. Once the adversary A1 returns ⊤, the random
oracle Hm is programmed at gsp such that Hm(gsp) := c3 ⊕
wit . Since c3 is chosen at random and therefore Hm(gsp) is
also random, the view of the adversary is identical in both
REAL1 and REAL2. We now argue that REAL2 is the same as
IDEAL, as we let Sim1 generate ct exactly as in REAL2 and
Sim2 perform the reprogramming of the random oracle as
done in REAL2. By the standard hybrid argument, we can see
that REAL and IDEAL are computationally indistinguishable.

The soundness of the VNE construction holds directly
from the soundness of the NIZK proof system for L, and
the perfect correctness of the PKEnc encryption scheme. □

Proof: [Proof of Theorem 3]
The VNE scheme presented in Figure 9 is secure if it is

sound and simulatable. We begin the proof by showing the
soundness of the scheme and follow with simulatability.

Soundness. Let A be an adversary against the soundness
experiment of the non-committing public key encryption
scheme PKEnc, i.e., an adversary that outputs a ciphertext
that cannot be decrypted to a valid witness for the relation
Ri.

We will construct a reduction R that uses A as a
sub-procedure and breaks the soundness of the NIZK
proof for language L′. First, the reduction receives
the common reference string crsL′ from the sound-
ness experiment and provides it to the adversary. Af-
ter running the adversary A, the reduction receives
(pk , inst , ct =

(
(ctj , Aj , Bj)j∈[2λs],Sop,Sunop

)
), where

Sunop = {(Zj , stmtj , πj}j∈J . In the next step, it randomly
picks one of the (stmtj , πj) and returns it to its challenger.

We know that with overwhelming probability (1− 1
2λS

),
for at least one j ∈ J , there exists a ciphertext ctj ←
PKEnc.Enc(ek , A

bj
j ; rj), i.e., it is possible to decrypt a valid

A
bj
j where Aj = g

aj
q and Bj = g

bj
q . In other words, at least

one valid key will be used to decrypt Zj to a valid share.
Since the adversary A breaks the soundness experiment for
the non-committing public key encryption scheme, it follows
that Zj does not encrypt a valid partial evaluation of the
threshold service. Thus, the only way for adversary A to
output such ciphertext ct is to create a proof πj for a false
statement stmtj (for the correctness of value Zj).

It follows that since the reduction picks one of the
(stmtj , πj) with j ∈ J at random, with probability at least
1/λS it will output a false statement with a valid proof,
thus breaking the soundness property of the NIZK-proof
system. This ends the proof.

Simulatability. We will show this proof using the game-
based approach, where we make small and indistinguishable
changes.
Hyb0: The original simulatability experiment.
Hyb1: Similar to the previous hybrid but with a slight

change. We use the zero-knowledge property of the
NIZK proof system for language L′ and simulate all
the proofs created as part of ciphertext ct .

Hyb2: Similar to the previous hybrid but with a slight
change. We pick a subset J ′ ⊂ [2λs] and then pro-
gram the random oracle Hc in a way that J ′ =(
(Aj , Bj , ctj)j∈[λs]

)
= J .

Hyb3: In this hybrid for all j ∈ J ′ the ciphertext

ctj ← PKEnc.Enc(ek , A
bj
j ; rj)

is computed as

ctj ← PKEnc.Enc(ek , gcjq ; rj)

for some cj ←$ Zq. Additionally, we compute Zj :=
g
cj
q · vDVRFi .

Hyb4: Similar to the previous hybrid, but we abort the
experiment in case the adversary, before receiving the
decryption key dk , queries the random oracle Hp (see
Fig. Figure 5) for gsp where ctj = (c1, c2, c3), c1 = grp
and c2 = (ek)r · gsp for one j ∈ J ′.
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Let A = (A1,A2) be an adversary distinguishing
the distributions REAL and IDEAL. Moreover, let D =
(ek , dk , inst ,wit , ct) be an instance of one of the distribution
and let us denote advantage of A as:

Advsim = |Pr [A(D)⇒ 1 | D ∈ REAL]

− Pr [A(D)⇒ 1 | D ∈ IDEAL] |

Claim 1. We claim that the changes made in Hyb1 only
increase the adversary’s advantage by a negligible factor.
In particular, it only increases by the advantage on an
adversary breaking the zero-knowledge property of the
NIZK proof system for language L′.

Proof: The proof follows by a straightforward reduction
that replaces all proofs with simulated ones. □
Claim 2. We claim that the changes in Hyb2 do not change

the adversary’s advantage.

Proof: The only change we made is programming the random
oracle to let the reduction foresee the challenged bits in the
cut-and-choose protocol part. □
Claim 3. We claim that the changes made in Hyb3 only

increase the adversary’s advantage by a negligible factor.
In particular, it increases the advantage by the adventage
of an adversary breaking the decisional Diffie-Hellman
assumption in group Gq.

Proof: Let D3 be a distinguisher between Hyb2 and Hyb3.
We will construct a reduction algorithm R3 that breaks the
decisional Diffie-Hellman assumption in group Gq using D3

as a sub procedure. Given an instance of the DDH problem
(gaq , g

b
q, g

c
q) the reduction first uses the self-reducibility of

this instance and computes for each i ∈ J ′:

Ai = (gaq )
ti

Bi = (gbq)
ti

ct i ← PKEnc.Enc(ek , (gcq)
ti ; ri)

for some random ti ←$ Zq . We also compute Zi := (gcq)
ti ·

vDVRFi . The rest of the values are computed as described by
the protocol.It is easy to see if the provided tuple is a DDH
tuple, then the reduction simulated Hyb2, and otherwise it
simulated Hyb3 to the distinguisher D3. □
Claim 4. We claim that the experiment aborts because of

the changes in Hyb4 only with negligible probability. In
particular, with advantage not bigger than the advantage
of the decisional Diffie-Hellman assumption in group
Gp.

Proof: [Sketch.] We construct a reduction R4 breaking the
DDH assumption in Gp using an aborting adversary D4 as
a sub procedure. The idea is that since D4 aborts before
receiving the decryption key, dk cannot compute gsp (see
Fig. Figure 5). Thus, we replace (ek)r with a random element
from Gp for each ct i, where i ∈ J ′. We use a similar self-
reducibility property of DDH tuples. If D4 distinguishes this
change, then R4 breaks the DDH assumption; otherwise,
D4 aborts by guessing gsp, which happens with negligible
probability. □

We will now show how to construct simulators
Sim = (Sim1,Sim2) from the simultability experiment in
Hyb4.

Simulator Sim1:
This simulator gets as input the encryption key ek and

the instance inst and outputs the verifiable non-committing
encryption ciphertext ct . For all opened sessions, i.e., for
j ∈ [2λs]/J

′, the simulator computes the values according
to protocol. It is worth noting that since those sessions are
part of Sop, it follows that the simulator does not have to
compute the value Zj , which includes requires the witness
vDVRFi that is not given to Sim1.

For the rest of the session, i.e., j ∈ J ′, it computes
Aj , Bj and ctj as per the changes in hybrid Hyb4, where
ctj = (c1,j , c2,j , c3,j) and c1,j = g

rj
p , c2,j = (ek)rj · gsjp

and c3,j ←$ Gp. Note that due to the change in Hyb3, there
exists a valid message for c3,j and due to the changes in
Hyb1, the proofs πj are simulated using the ZK property,
and no valid witness is required. The simulator outputs the
state st′0 := ((j, cj , g

sj
p , c3,j)j∈J′).

It is worth noting that because of hybrid Hyb2, the
ciphertext ct will pass the verification VfEnc and, from the
adversary’s perspective, is a valid ciphertext.

Simulator Sim2:
This simulator gets as input, the state st′0, the decryption

key dk , the witness wit , auxilliary information z and outputs
the decryption key dk . Having the witness vDVRFi , the
simulator Sim2 computes the values Cj := vDVRFi · (Zj)

−1

for each j ∈ J ′. The simulator now parses the state
st′0 = ((j, cj , g

sj
p , c3,j)j∈J′) and programs the random oracle

Hp (see Fig. Figure 5) as follows. For each j ∈ J ′ is sets
Hp(g

sj
p ) := c3,j ⊕ Cj . Finally, the simulator outputs the

modified decryption key dk ′ := dk .
□

Appendix D.
Full Proofs of Security

Proof: [Proof of Theorem 2] We now prove that our
protocol in Figure 7 securely UC-realizes the functionality
Fswap. We describe a simulator Sswap that simulates the
real-world execution protocol while interacting with the
ideal functionality Fswap. We allow the PPT adversary to
corrupt at most t servers and the client C. The simulator
will consider two cases separately. In the first case, we
assume that the adversary corrupts the C, while in the
other one, it does not. We consider static corruption,
in which the environment at the beginning of a session
specifies the corrupted and honest parties. The simulator
faithfully impersonates the honest party. The environment
does not expect any interaction with the simulator for
operations exclusively among corrupted users. Similarly,
communications exclusively among honest nodes happen
through secure channels. Therefore, the attacker does not
gather additional information besides the fact that the
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communication took place, and we omit these operations
in the description of our simulator. When describing
the operations of simulator S, we initiate the discussion
with a sequence of hybrids. These hybrids commence
with a real-world execution and progressively modify the
simulation in those hybrids. We then analyze the closeness
between adjacent experiments. The simulator’s execution
for the functionality is defined as the final hybrid execution.
Below, we outline the hybrid executions, followed by a
discussion on their proximity. It is important to note that the
transition between hybrid executions occurs per session, one
at a time. We focus on a single instance in this discussion
for simplicity and readability.

Hyb0: This hybrid is the real world execution of the protocol
in Figure 7.

Hyb1: This is the same as the above execution except now,
if in some session q1 and for some honest server Si, the
adversary published signature σaux,i on the blockchain
for which DS.Vf(pk aux,i, tx

j
pay,i, σaux,i) = 1, where

σaux,i was not created by the simulator. We return abort1
in such a case.

Hyb2: This is the same as the above execution except now,
if in some session q2, for some honest server Si and
malicious client C, the adversary sends an adaptor pre-
signature for which

AS.pVf(pkA,j , tx
j
pay,i, σ̃A, Y ) = 1

but adaptation of the pre-signature to a signature fails.
We return abort2 in such a case.

Hyb3: This is the same as the above execution except
now, if in some session q3 and honest C, the adversary
published signature σA,j in the name of server Sj on
the ledger/blockchain, but the extraction of the witness
for the statement Y fails. We return abort3 in such a
case.

Hyb4: Let Sim = (Sim1,Sim2) be the simulator from the
simulatability property of the VNE scheme. This is
the same as the above execution except now, for all
honest servers, the simulator Sswap uses Sim1(ek , inst)
to generate ct and later (after receiving a valid pre-
signature) uses Sim2 to compute the witness y = dk .

Hyb5: This is the same as the above execution except now
if in some session q5 and corrupted C, the adversary
published a valid evaluation v under message m, to-
gether with a proof of evaluation π before any of the
honest servers responds with its evaluation. We return
abort5 in such a case.

We will describe the inner workings of the simulator
Sswap.
Key Generation. After receiving the set of corrupted servers
C, the simulator aborts if |C| > t. Otherwise, it sends
(keygen, sid,C) to the functionality, initializing the session.
It receives (keygen, sid, vk ′, I, {(sk ′

i, vk
′
i)}i∈CI ) in return

from it. The simulator also prepares receiving keys {rk i}i∈C.
Independently, the simulator executes the threshold key gener-
ation algorithm (vk , (vk j , sk j)j∈[n]/[C])← DKgen(1λ, t, n)

and sends the following information to the adversary (vk ,
(vk j , sk j)j∈C). It also generates the transaction-related key
pairs for all honest parties for the ledger/blockchain.
Honest Client. Upon receiving the message
(swapc, sid, vk , x, (t+ 1)d, pkd,J ) from the functionality,
the simulator knows that the honest client started the
protocol and expects the evaluation on point x. It, therefore,
runs the setup phase of the protocol (i.e., generates and
publishes the setup transaction). Once this setup is done,
Sswap awaits messages from the adversary, the functionality,
and observes the ledger/blockchain.

The adversary initiates the real-world protocol with
Sswap in the name of corrupted server Sj . Both gener-
ate the payment transaction together and execute the sub-
protocol Γ2PC

DVTS,DS, exchanging the non-commiting VNE
ciphertext and adaptor signatures. Once the adversary pub-
lishes (tx i

pay,j , σA,i, σaux,k) on the ledger (for some i),
the simulator uses the key sk ′

j and queries the function-
ality with (swaps, sid, vk

′, j, vk ′
j , rk j , y

′
j), where y′j ←

f.pareval(x, sk′j).
Upon receiving (sid, j) from the functionality, the

simulator runs the real-world protocol in the name of
the honest client and the honest Server Sj . It publishes
(tx i

pay,j , σA,i, σaux,j) on the ledger. It is worth noting that
since the client is honest, the adversary is not receiving the
evaluation for the honest servers and can only rely on the
shares it received for malicious servers. Moreover, the above
steps ensure that the ledger and the state of the functionality
are consistent, i.e., the same parties received payment for
their work.
Corrupted Client. In the first step, the simulator sends
the message (corrupt-client, C) to the functionality,
indicating that the client is corrupted. At some point, the
adversary initiates the exchange by setting up all the trans-
actions on the ledger/blockchain. The simulator prepares
the deposit keypair (skd, pkd) and uses the details from
the adversary (including where point to be evaluated on x)
and sends (swapc, sid, vk , x, (t + 1)d, skd, pkd,J ) to the
functionality. Once the setup is done, Sswap awaits messages
from the adversary from the functionality and observes the
ledger/blockchain.

The adversary initiates the real-world protocol with Sswap
in the name of the corrupted client and an honest server Sj .
Both generate the payment transaction together and execute
the sub-protocol Γ2PC

DVTS,DS, exchanging the non-committing
VNE ciphertext and adaptor signatures as in the previous
hybrid. Once the functionality sends (sid, j) to the simulator,
it signals that the real-world protocol needs to be finished.
In such a case, the simulator publishes (tx i

pay,j , σA,i, σaux,k)
on the ledger (for some i).

At some point, the adversary outputs a valid eval-
uation v and proof of evaluation π for the distributed
verifiable threshold service, the verification key for this
session, and message x. In such a case, the simulator sends
{obtain_vrf, sid, x} to the functionality.
Claim 5. Hybrids Hyb0 and Hyb1 are indistinguishable, if

DS strongly unforgeable under chosen message attacks.
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Proof: If the event abort1 occurs, then the adversary A
can break the unforgeability of the DS scheme. We will
show this by constructing a reduction algorithm R using
the adversary to break the unforgeability of the DS scheme.
The reduction randomly picks one of the honest server i
indices and then sets its transaction public key to the key
the reduction received from its DS challenger. If the honest
server is required to sign during simulation, the reduction
R uses its signing oracle to sign the transaction. At some
point, the adversary A will publish a signature for server
i that the reduction R did not generate (i.e., never asked
for its signing oracle). This signature and transaction are a
valid forgery that the reduction can now return and break
the unforgeability of the DS scheme. □
Claim 6. Hybrids Hyb1 and Hyb2 are indistinguishable, if

AS is pre-signature adaptable.

Proof: In case the event abort2 occurs, then the adversary
can be used to break the pre-signature adaptability of the
AS scheme. □
Claim 7. Hybrids Hyb2 and Hyb3 are indistinguishable, if

AS is witness extractable.

Proof: In case the event abort3 occurs, then the adversary
can be used to break the witness extractability property of
the AS scheme. □
Claim 8. Hybrids Hyb3 and Hyb4 are indistinguishable, if

V NE is simulatable.

Proof: This follows directly from the definition of simulata-
bility of the verifiable non-committing encryption scheme
VNE. □
Claim 9. Hybrids Hyb4 and Hyb5 are indistinguishable, if

distributed verifiable threshold service is unpredictable.

Proof: The proof follows by a reduction to the unpredictabil-
ity property. The idea behind the reduction is to simulate
the protocol to the adversary while simultaneously playing
the adversary’s role in the unpredictability experiment. The
reduction starts by defining the set of corrupted parties based
on the adversary’s choice and receiving the corresponding
secret keys it can share with the adversary. For queries that
require the reduction to use the DVTS primitive, it can query
the OPartEval oracle. Finally, the adversary outputs (m, v, π)
such that Verify(vk , (vk j)j∈[n],m, v, π) = 1 and we return
the abort5 event. The reduction can now return (m, v, π) as
a forgery for the unpredictability property. Note that this is
a valid forgery since it does not use the OPartEval for the
message m. □

□

Appendix E.
Proof of correctness of Zj

The proof of correctness of Zj := A
bj
j · vDVRFi is per-

formed through a Schnorr proof. Here, we show how to prove
the correctness of ga1

1 · g
a2
2 where a1 and a2 are the scalar

witnesses. Here, g1, g2 are the generators of the same cyclic
group. The prover samples two random scalar values r1, r2
and for a random challenge c, computes a1c+r1 and a2c+r2
and forwards to the verifier. The challenge c can either be
randomly chosen by the verifier or, for a non-interactive
version, can be generated as an output of a hash function
through the Fiat-Shamir heuristic. The prover also forwards
the commitments gr11 and gr22 for the random values r1, r2.
The verifier checks if (ga1

1 ·g
a2
2 )c ·gr11 ·g

r2
2 = ga1c+r1

1 ·ga2c+r2
2 .

If yes, the proof is accepted.
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