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Abstract
Private Join and Compute (PJC) is a two-party protocol
recently proposed by Google for various use-cases, includ-
ing ad conversion (Asiacrypt 2021) and which generalizes
their deployed private set intersection sum (PSI-SUM)
protocol (EuroS&P 2020). PJC allows two parties, each
holding a key-value database, to privately evaluate the
inner product of the values whose keys lie in the inter-
section. While the functionality output is not typically
considered in the security model of the MPC literature, it
may pose real-world privacy risks, thus raising concerns
about the potential deployment of protocols like PJC.

In this work, we analyze the risks associated with the
PJC functionality output. We consider an adversary that
is a participating party of PJC and describe four practical
attacks that break the other party’s input privacy, and
which are able to recover both membership of keys in
the intersection and their associated values. Our attacks
consider the privacy threats associated with deployment
and highlight the need to include the functionality output
as part of the MPC security model.

1 Introduction

Private Join and Compute (PJC) is an expressive
functionality proposed by Google for various real-world
use-cases, including ad conversion [29]. PJC enables two
parties to privately carry out data analytics on their
datasets. In particular, it takes as input two databases,
X = {(keyi,vali)}i∈[n] and Y = {(key′

j ,val′j)}j∈[m], from
parties P1 and P2, respectively, and outputs the inner
product of the values whose keys lie in the intersection
i.e.,

∑
i∈[n],j∈[m]1{keyi = key′

j} · vali · val′j , where 1{·}
denotes the indicator function.

While, historically, the functionality output was not
analyzed in the secure multi-party computation (MPC)
literature, the potential deployment of protocols like PJC
make the threat of such an adversary an imminent reality.
For example, the code for the recently deployed Private
Set Intersection Sum (PSI-SUM) protocol warns that
the intersection-sum could reveal something about the

This is the full version of an article to appear at USENIX’25.

intersection [19,20]. Their suggestions for mitigating such
attacks include scrubbing inputs to remove “outliers”,
aborting if the intersection-size is too small, and adding
noise to the output.

We go beyond basic functionalities like PSI-SUM, and
give a series of attacks against the more complex PJC
functionality. As we will see in Section 3, PJC can be
viewed as a generalization of PSI-SUM, which outputs
the sum of one party’s payloads whose keys lie in the
intersection. As such, our attacks apply to all protocols
that realize both functionalities, including the deployed
PSI-SUM protocol of Ion et al. [25]. Our attacks exploit
the functionality as it is meant to be used. They do
not involve deviating from the protocol or breaking the
underlying cryptographic primitives, thus highlighting
an intrinsic vulnerability of the output.

Our attacks adapt a wide range of techniques from the
combinatorics, statistical inference, and signal processing
literature to mount powerful attacks that use the PJC
functionality output to recover not only membership of
the keys in the intersection, but also the associated val-
ues of those keys, a recovery goal we coin key-value
recovery (KVR). We consider both adaptive and non-
adaptive adversarial settings, and show that even an
honest-but-curious user carrying out data analytics over
a prolonged period of time can achieve KVR with a
number of queries linear in the intersection size. Our
attacks further show that the aforementioned mitigation
techniques are not sufficient and we present attacks in
which no outlier values are used and which are robust
to noise.

The deployment of these efficient tailor-made MPC
solutions brings new challenges regarding the design of
end-to-end MPC systems to the forefront. By understand-
ing the extent to which the functionality outputs can be
leveraged to learn about the private inputs, we hope to
provide intuition for their safe and privacy-preserving de-
ployment. We use the attacks we developed to highlight
lessons learned and conclude with recommendations for
potential mitigation techniques and future work.



Srch.
Tree
(§4)

MLE
(§5)

DFT
(§6.2)

Comp.
Sens.
(§6.1)

Adaptive ✓
Non-Adaptive ✓ ✓ ✓

Exact Recovery ✓ ✓ ✓
Approximate Recovery ✓ ✓

Negative Values ✓ ✓ ✓
Robust to Noise ✓

Known Value Distribution ✓

Table 1: Our four attacks (from left to right: the search-
tree attack, the maximum-likelihood estimation attack,
the discrete fourier transform attack, and the compressed
sensing attack) and their assumptions. Adaptive (resp.
Non-Adaptive) means that the adversary can (resp. can-
not) adaptively chose their input sets. Exact Recovery
(resp. Approximate Recovery) means that the adversary
can recover the associated values exactly (resp. approxi-
mately). A check under Negative Values denotes that the
attack can also recover negative values. Known Value
Distribution indicates that the adversary must also have
auxiallary knowledge of the distribution from which the
other party’s values are drawn from. All of our attacks
assume knowledge of the maximum and minimum pos-
sible associated values in the victim’s set and that the
victim’s set is static.

1.1 Our Contributions
We present four attacks, each of which fall into an adap-
tive or non-adaptive adversarial setting. In the former,
the adversary chooses the associated values of the keys
in the target set adaptively. In the latter, the adversarial
input doesn’t depend on the response. The adversary is
a participating member of the PJC protocol (denoted
P̃1) and holds a target set of keys, T = {key}i∈[n]. The
other party, P2, holds the recovery database Y and
P̃1’s goal is to recover the keys in T also contained in Y
and their corresponding associated values. We assume
that P2’s database is static – a reasonable assumption
since data analysis is often carried out on static data or
data that is infrequently updated (e.g., annual statistics).
A base line attack exists in which the adversary brute
force queries each key ∈ T using |T | queries. In contrast,
many of our attacks succeed with a number of queries
logarithmic in |T |.

Our first attack is adaptive and takes a binary-search-
like approach. This attack is highly scalable, efficient,
and works best when the intersection size is small. We
show that an adversary requires at most O(k logℓ |T |)
queries for exact KVR, where k is the intersection size
and ℓ is a tunable parameter.

The remaining attacks are non-adaptive and utilize
the following observation. Multiple queries to PJC allows
one to construct a system of linear equations in which the

unknowns correspond to the associated values in Y con-
tained in the intersection. While one could use Gaussian
elimination when |T | equations are constructed (thus
matching the naive attack), we aim for < |T | queries.
One of our attacks uses maximum likelihood estimation
(MLE) and auxiallary knowledge of the underlying dis-
tribution, to achieve approximate KVR even when the
solution space has high dimension.

Our third attack succeeds when the intersection size,
k, is small or sparse; we adapt compressed-sensing tech-
niques from the signal processing literature to recover
the values exactly using only 2k log2(n/k) queries. This
approach is robust to small-scale noise added to the in-
ner product and we also show how it can be be used to
infer membership from the outputs of PSI-SUM and PSI
Cardinality (PSI-CA).

Our last attack uses the discrete fourier transform
(DFT), assumes knowledge of the intersection size, k,
and requires 2k queries for exact KVR. The DFT mea-
surements identify the indices of the unknowns in the
linear system that correspond to keys in the intersection.
Once these indices are identified, the unknowns can be
recovered.

We support our theoretical work with implementations
and demonstrate our attacks’ efficiency. We then con-
clude with suggested countermeasures and future work.

1.2 Related Work

PSI Protocols for Joins. Ion et al. [20] proposed a
protocol for Private-Set Intersection Sum, and which was
consequently deployed by Google for the purpose of ad
conversion [19] Follow-up work proposed a protocol for
enabling parties to privately compute the inner product
between attribute values associated with items in the
intersection [29]. The Apple PSI System [5] is designed
to compute threshold PSI with associated data. Yang et
al. [36] consider input sets with an associated payload
and introduce the Predicate Private Set Intersection
primitive for evaluating a predicate over the payloads in
the intersection.

The protocol of Mohassel et al. [31] supports SQL-like
join/select queries on secret shared data. Meta proposed
Private-ID and PS3I which compute a full outer join
(union) and an inner join between two databases, respec-
tively [9]. Follow up work extends Private-ID to compute
a full outer join of two multi-key datasets [8]. Meta
also proposed a protocol which enables the delegation
of the join computation to a delegate party [32]. Badri-
narayanan et al. [2] gave two protocols for efficiently
computing join operations on secret shared database
tables with non-unique keys. Recently, Asharov et al. [1]
recently proposed the first join and group-by protocols
that are also secure against malicious adversaries.



Attacks against PSI-like Functionalities. Guo et
al. [24] proposed the first membership-inference attacks
against PSI protocols that reveal the intersection cardi-
nality (PSI-CA). They show how a party participating in
a PSI-CA protocol and who learns the intersection size
can recover the set belonging to the other party. Their
attacks improve the naive attack of submitting one ele-
ment at a time from O(n) to O(logn), where n is the size
of their target set. Jiang et al. [27] further improve the
attacks against PSI-CA through a dynamic programming
approach and additionally propose an attack against pro-
tocols that reveal the sum of the payloads associated
with items in the intersection (PSI-SUM). In a related
line of work, Zinkus et al. [37] automate the maximiaza-
tion of functionality-inherent leakage and derive attacks
from this leakage.
Attacks against Encrypted Databases. A number of
attacks leveraging the inherent leakage stemming from
order-revealing encryption (e.g. [6, 15, 22, 26, 33]) and
searchable symmetric encryption (e.g., [17,21,23,28,34])
have been proposed. Much like our attacks which apply
to a broad range of protocols, many of these attacks are
generic and only use an inherent leakage common to
many ORE/SSE schemes. These attacks, however, are
carried out in different threat models and use techniques
distinct from those presented here.

2 Private Join and Compute

Notation and Convention. For any n ∈ N, we let
[n] denote the discrete range [1,n]. We use y←$ A to
indicate y is generated by some algorithm A using A’s
internal randomness. We use “PPT” as the abbreviation
of “probabilistic polynomial time” when describing an
algorithm or functionality.
Database Abstraction. We abstract the inputs of the
parties as a database (i.e., table), DB. A database of size
n comprises of n rows (i.e., tuples) such that each row
has a unique key (i.e., a primary key) and an associated
value. 1 We denote this as DB = {(keyi,vali)}i∈[n]. For
a key-value pair (key,val) ∈ DB we write DB[key] = val.
Join Logic. In relational databases, a database join
provides a way to compute on the joint data contributed
by multiple databases. In this work, we consider the Pri-
vate Join and Compute (PJC) functionality [25],
which enables two parties – each holding a database –
to privately compute the inner product of the associ-
ated values whose keys are contained in both databases.
Formally, the functionality takes as input two databases

1We use the term “key” following the database literature. Single-
key databases only contain a single column for the key attributes,
and each key attribute uniquely identifies a row.

(i.e., two sets of key-value pairs) X = {(keyi,vali)}i∈[n]
and Y = {(key′

j ,val′j)}j∈[m] from parties P1 and P2, re-
spectively, and outputs the inner product:∑

i∈[n],j∈[m]
1{keyi = key′

j} · vali · val′j . (1)

to party P1. See Figure 4 for details.
For completeness, we describe PSI-SUM and PSI-CA

in Appendix A.1, which can both be viewed as special
cases of PJC. We also formally define the real-ideal world
paradigm in Appendix A.2, which is the security notion
often used in the MPC literature.

3 Technical Background

We now describe specify the threat models considered
and provide an overview for our attacks.

3.1 Recovery Goal and Threat Model
Throughout this work, we assume that P1 is adversarial
(we denote the corrupted party as P̃1) and that P2 is the
party whose database, Y , the adversary wishes to learn
about. We call this database the recovery database.
We focus on a weak form of adversarial control in which
the adversary follows the PJC protocol honestly. We
stress that our attacks do not rely on deviating from the
protocol or breaking any of the underlying primitives.

P̃1 holds a target set T = {keyj}j∈[n] and aims to
learn information about the recovery database. This
information includes the individual membership of each
key ∈ T in Y and, for each member, its associated value.

Definition 3.1. Let T = {keyi}i∈[n] be the target set
and Y = {(key′

j ,val′j)}j∈m be the recovery database. The
goal of key-value recovery (KVR) is to compute the
secret vector s = (s1,s2, . . . ,sn)T , where for all i ∈ [n]

si = 1{keyi in Y } ·Y [keyi]. (2)

Note that if si evaluates to 0, then one of two cases
applies: either keyi not in Y or keyi is in Y and vali = 0.
We do not distinguish between these two cases and later
show that this limitation is inherent if the functionality
does not output the intersection size. In our second and
fourth attacks we also consider a relaxed attack goal,
approximate KVR, which we define below.

Definition 3.2. Let T = {keyi}i∈[n] be the target set and
Y = {(key′

j ,val′j)}j∈m be the recovery database. The goal
of approximate-KVR for some ϵ > 0, is to compute
a vector ŝ = (ŝ1, ŝ2, . . . , ŝn)T , where for all i ∈ [n], ŝi ∈
[si− ϵ,si + ϵ], and si = 1{keyi in Y } ·Y [keyi].



We consider (approximate) KVR in the adaptive and
non-adaptive adversarial settings.
Adaptive Setting. In the adaptive setting, P̃1 selects
their input adaptively from an allowed range. P̃1 can
adaptively update its input to PJC in between queries;
for example, it may choose to query a sequence of distinct
databases containing different subsets of T with different
associated values assigned to those keys.

Our attack based on a binary-search-like approach
(Section 4) is adaptive.
Non-Adaptive Setting. In the non-adaptive setting,
the associated values assigned to the target set are se-
lected independently from the query output.

Our maximum likelihood attack (Section 5), discrete
fourier attack (Section 6.2), and compressed sensing at-
tack (Section 6.1) all fall into the non-adaptive setting.
Assumptions about Data. In all of our attacks, we as-
sume that the victim’s database, Y , remains unchanged
across multiple protocol runs. This is a natural assump-
tion in data analytics. For example, one party (P1) may
need to apply different weights to the same static data
(held by P2) for training a data model. This assump-
tion also represents a worst-case scenario and allows us
to provide a theoretical guideline on rate limiting for
countermeasures.

We additionally assume that the adversary knows the
maximum and minimum possible associated values in
the victim’s database (we denote these as maxval and
minval, respectively). This is a reasonable assumption,
since in many data analytic scenarios, the possible range
of values is public knowledge (e.g., 0−120 for ages, or
0−219×109 USD for net worth).

Theses assumptions are summarized in Table 1.

3.2 Attacks Overview
We now turn our attention to modeling the inner product.
Recall, that for each protocol invocation, the adversary P̃1
knows its input database X and resulting inner product
b, and can thus write the inner product down as a linear
equation with P2’s values as variables which it can solve
for. If the adversary invokes the protocol m times, then
for i ∈ [m] we let X = {(keyi,j ,ai,j)}j∈[n] be the i-th
input database. Since the target set remains consistent
across protocol runs, then we can write keyi,j = keyj

and use ai,j to denote the adversary’s associated values
and distinguish them from the values in the recovery
database. For example, in a data analytics task, ai,j may
represent weight information. The inner product bi can
then be formally represented as follows,

bi =
n∑

j=1
1{keyj in Y } ·ai,j · valj . (3)

For convenience, we model this problem in matrix
form. Let ai = (ai,1,ai,2, . . . ,ai,n) ∈Rn denote the asso-
ciated values from the adversary on the i-th run. After
q runs, the adversary knows A = (ai)i∈[q] ∈ Rq×n and
a vector of inner products b = (b1, b2, . . . , bq)T ∈ Rq (cf.
Equation (3)). These inner products imply that the se-
cret s = (s1,s2, . . . ,sn)T ∈Rn(cf. Equation (2)) from the
victim, must satisfy As = b.

Given n unknowns in s, if we have n linearly inde-
pendent equations in A containing these unknowns (i.e.,
q≥ n queries), we can recover s exactly and efficiently us-
ing Gaussian elimination. Gaussian elimination requires
Õ(n3 log(∥A∥+∥b∥)) computation time. In comparison,
a naive attack requiring n queries involves probing si

for every i ∈ [n] by setting the associated values of the
remaining entries in s to zero, resulting in bi = si and
incurring only constant computation time. Since the
naive attack is significantly more efficient, we focus on
the number of queries as the primary metric for eval-
uating efficiency.

For q < n queries, this problem becomes one of solving
an underdetermined linear system, which has an infinite
number of solutions. To overcome this limitation, we
adopt statistical and algebraic tools in our attacks and
organize them into two categories: non-sparse recovery
and sparse recovery. We demonstrate that we can cir-
cumvent the obstacle of infinite solutions by relaxing our
recovery goal and approximately recovering the associ-
ated values for non-sparse data i.e., when the victim’s
set contains a large intersection with the target set. For
sparse secrets, where the victim’s set has less overlap,
we can, quite surprisingly, achieve exact recovery using
techniques from signal processing.

4 A Combinatorial Attack

In this section, we assume that the associated values are
positive, i.e., that minval = 0 and maxval > 0.

4.1 The Basic Attack
We revisit the following observation from [24]. In their
work, the adversary holds a target set T and P2 holds
a key set Y = {key′

j}j∈[m]. The adversary adaptively
queries a key-value database X = {(keyj ,valj)}j∈[n] and
its goal is to recover Y ∩T . Note that unlike in our setting,
[24] considers a stronger adversary against PSI-SUM
in which the adversary controls the associated values
of the input. Inferring membership of which key ∈ T
is contained in Y is equivalent to solving the subset-
sum problem. While the general subset-sum problem
is NP-Hard, when the sequence of associated values is
superincreasing (i.e., valj+1 >

∑j
i=1 vali for all 1≤ j <



n), the attacker can efficiently recover the values [30].
We sketch this attack in the following example.

Example 4.1. Let X = {(key1,100), (key2,101),(key3,
102)} be the adversary’s input and Y be P2’s key set.
Further suppose that the ouput of PSI-SUM(X,Y ) is 110.
Since (100,101,102) is superincreasing and 110 = 102 +
101, P̃1 learns that key2,key3 ∈ Y and key1 ̸∈ Y .

Since PSI-SUM is a special-case of PJC, we can extend
the above attack to PJC to achieve KVR. We illustrate
this attack with the following example.

Example 4.2. Let minval = 0 and maxval = 100, and
let X = {(key1,100),(key2,103),(key3,106)} be the adver-
sary’s input and Y be P2’s database. Further suppose
that the ouput of PJC(X,Y ) is 4,070,000. Since each
associated value in Y is no more than 100 and

4,070,000 = 4 ·106 +70 ·103 +0 ·100,

P̃1 learns that (key2,70),(key3,4) ∈ Y in a single query.

This approach can be generalized to target sets of
arbitrary size and we call this attack the basic attack.
The pseudocode can be found in Figure 5.

4.2 The Search Tree Attack
While the basic attack works remarkably well, the num-
ber of (base 10) digits of the adversarial input grows
linearly with the size of the target set. This can be imprac-
tical, since there is usually an implementation-dependent
upper-limit on the size of the integers supported. In C,
for example, the int data type is represented using 32
bits, however, some compilers have expanded the long
data type to 64 bits. Even in Python, where the long
data type can handle arbitrarily long integers, the ma-
chine may be limited by memory or compute time. We
thus give a more advanced attack that addresses this
issue. This attack is additionally parameterized by the
maximum supported integer, denoted maxint.

In practice, the key universe may be exponentially
large and the majority of the elements in the tar-
get set may not actually be in the sender’s set. Let
k ≤ min{|T |, |Y |} denote the intersection size, i.e.,
|{(key,val) ∈ Y : key ∈ T}|.

To reduce the number of queries needed for recovery
such that the number only scales with k and not |T | or
|Y |, while also ensuring that the inner product does not
exceed maxint, we propose an attack that takes a gener-
alized binary-search-like approach to quickly eliminate
target elements that are not in P2’s set. We motivate
our approach with an illustrative example.

Example 4.3. Let minval = 0 and maxval = 100. Let T =
{keyi : i ∈ [8]} be the target set and Y be P2’s database.

Further suppose that the adversarial database is

X =
{

(key1,1),(key2,1),(key3,1),(key4,1),
(key5,103),(key6,103),(key7,103),(key8,103)

}
and that the output of PJC(X,Y ) is 150,000. Let sj de-
note the variable for the associated value of keyj in Y
(if keyj is not contained in Y , then we can take sj = 0).
From the output, P̃1 can infer the following 2 equations:

0 =
4∑

j=1
sj and 150 =

8∑
j=5

sj .

Since the values can only take on positive values, then
sj = 0 for j ∈ [4] and thus keyj ̸∈ Y for j ∈ [4]. P̃1 has
learned that half of the elements in the target set are not
in Y with one query and can focus its remaining queries
on the other half of the target set.

The search tree attack leverages the above obser-
vation and partitions the target set into ℓ sets (ℓ = 2
results in a binary-search-like approach). The sets are
then assigned superincreasing values: the keys within a
set are assigned the same associated value, and keys in
different sets are assigned distinct values. The difference
between the assigned values must be sufficiently large
that we obtain a domain separation of the partition and
can derive ℓ inner products. Concretely, if A1∪·· ·∪Aℓ

is a partition of A⊆ [n], then we can construct ℓ inner
products

bi =
∑

j∈Ai

1{keyj in Y } ·sj

for each i ∈ [ℓ], where sj is the secret value of the target
keyj in Y if it exists and 0 otherwise.

The smaller the intersection ratio (and consequently
fewer keys in T are contained in Y ), the more of these
equations equal 0 and the fewer queries need to be made.
The attack recurses on the partitions that correspond to
a non-zero inner product until the individual (non-zero)
values are recovered.

The search can be thought of as traversing an ℓ-ary
search tree whose root corresponds to the set of all in-
dices; the ℓ children of an inner node correspond to a
partition of the parent node’s index set and the leaves
correspond to individual indices. When we issue a query
to PJC using the keys indexed by a node of the search
tree and the partition induced by its children, we learn
the inner product of the target keys indexed by the set
corresponding to the ℓ children. In Figure 2 we depict
such a tree for ℓ = 3 and n = 27. Here, the partitions
are ordered numerically for ease of representation, but
in practice can be sampled randomly.

The pseudocode can be found in Figure 1.



Params: The minimum possible associated value minval = 0;
The maximum associated value maxval in Y ;
The maximum supported integer, maxint;
Partition factor ℓ.
Input: Target set T = {key1, . . . , tn}
Output: Solution S = {(key,val) ∈ Y : key ∈ T}

01 queue←{[n]}
02 S←∅
03
04 while queue ̸= ∅ do
05 A← dequeue.queue
06 Partition A into equal-sized sets A1, . . . ,Aℓ

07 d←#digits(⌈|A|/ℓ⌉ ·maxval)
08
09 // Define adversarial input set and run PJC.
10 X = {(keyj ,10d·(i−1)) : keyj ∈ T ∧ j ∈Ai∧ i ∈ [ℓ]}
11 b← PJC(X,Y )
12
13 // Extract the ℓ inner products.
14 Prepend “0”s to b until #digits(b) = ℓ ·d
15 Parse b into d-digit integers a1, . . . ,aℓ

16
17 // Derive values and add them to solution.
18 for i ∈ [ℓ] do
19 if |Ai|= 1 and ai ̸= 0 then
20 // The target key is in Y .
21 j←Ai[1]
22 S← S∪{(keyj ,ai)}
23 else if |Ai|> 1 and ai ̸= 0 then
24 // Queue set Aj to explore.
25 queue.enqueue(Ai)
26 end if
27 end for
28 end while
29 return S

Figure 1: The Search Tree attack against PJC.

Theorem 4.4. The Search Tree Attack (Figure 1)
achieves associated value recovery, i.e., given a target
set T and a secret database Y , it outputs the database
S = {(key,val) ∈ Y : key ∈ T}.

The proof can be found in Appendix B.3. We describe
how to select the branching factor (ℓ) in Appendix B.2.

4.3 Query Bounds
Interestingly, the number of queries we must make is
independent of |Y | – a property shared by all of our
attacks – as well as of |X|. We formalize this observation
by proving lower and upper bounds on the number of
queries the search tree attack must make to achieve
KVR.

Theorem 4.5. Let T be a target set of size n, Y
be the secret set, and k be their intersection size. The

Search Tree Attack (Figure 1) requires Ω(k/ℓ+logℓ(n/k))
queries to PJC(·,Y ) for associated value recovery, where
ℓ is the partition size.

The proof can be found in Appendix B.4.

Theorem 4.6. Let T be a target set of size n, Y be the
secret set, and k be their intersection size. The Search
Tree Attack (Figure 1) requires O(k logℓ n) queries to
PJC(·,Y ) for associated value recovery, where ℓ is the
partition size.

The upperbound follows from the fact that, in the
worst case, the adversary must make logℓ n queries per
key ∈ T that is also in the recovery set (i.e., it must issue
a query for each inner node in the search tree along the
path from the root to the leaf corresponding to key).

5 The Maximum Likelihood Attack

Each PJC protocol invocation yields an inner product bi,
computed from secret s and row vector ai in query matrix
A. This forms a linear constraint on the secret s. After q
invocations, we have q linear constraints, resulting in an
underdetermined linear system. In an underdetermined
linear system, there are infinite solutions, making exact
recovery impossible. Therefore, we aim for approximate
recovery, which is sufficient to demonstrate the privacy
risks, such as estimating salary or age ranges.

We can achieve approximate recovery using maximum
likelihood estimation (MLE), assuming some prior knowl-
edge of real-world distributions. MLE is a standard tech-
nique in statistical inference. Unlike the typical usage of
estimating distribution parameters, our application of
MLE is to output the most likely guess about s, denoted
as s̃, based on prior information about its distribution.

Maximum Likelihood. We provide a quick recap of
the maximum likelihood method. Consider a vector of
independent random variables X = (X1,X2, . . . ,Xn) over
some probability space. Let vector x denote the observed
outcome of X, and let θ denote the parameter vector
of the distribution, such as the mean and variance. We
now consider the conditional probability p(x|θ). By defi-
nition, it is the probability of observing the outcome x
given the distribution parameter vector θ. In comparison,
MLE considers the reverse: after observing the outcome
x, estimate the parameter vector θ. Since defining the
inverse of probability is not always possible, a likelihood
function L is introduced. It is a function of θ by treating
the outcome x as invariant. In MLE, it suffices to define
L(θ|x) := p(x|θ).2

2In the general case, we define L(θ|x) ∝ p(x|θ).
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a worst-case arrangement requiring 7 queries. Nodes [25], [26], [27] depict a best-case, requiring only 3 queries.

MLE computes an estimate of θ, denoted by θ̂MLE,
which maximizes the likelihood function,

θ̂MLE = argmax
θ̂

L(θ̂|x).

Intuitively, this makes sense, as it also maximizes the
probability of observing x given θ.

Because (Xi)i∈[n] are independent random variables,
we can expand L(θ|x) as follows, L(θ|x) := p(x|θ) =∏n

i=1 p(xi|θ).
Since the likelihood function is monotonically increas-

ing, we can use the log-likelihood function, denoted by
ℓ(θ|x). This simplifies the computation by converting
the product into a summation,

ℓ(θ|x) =
n∑

i=1
ln(p(xi|θ)).

So far, we have described the standard MLE technique
used in statistical inference. We need to adapt it to our
setting for recovering the secret s. Unlike the typical
application, we are not interested in estimating the dis-
tribution parameters θ; we assume they are known as
auxiliary information. Instead, we are given a (poten-
tially infinite) set of solutions to the underdetermined
linear system, and we aim to output s̃ that maximizes the
likelihood. Hence, for a set of solutions {sj}j∈N, we define
the following likelihood function, with the index of the so-
lution as a parameter to estimate, L(j|sj ,θ) := p(sj |j,θ).

Similarly, we define the log-likelihood function,
ℓ(j|sj ,θ) := ln(p(sj |j,θ)). We output the guess s̃ = sj ,
the j-th solution that maximizes the log likelihood,

j = argmax
j

ℓ(j|sj ,θ)

= argmax
j

n∑
i=1

ln(p(si
j |j,θ)), sj = (s1

j , . . . ,sn
j )T . (4)

To help with understanding, let us consider the following
example. Given a set of solution {sj}j∈N, each solution
sj is a random vector consisting of n independent random
variables. Each random variable si

j , for all i ∈ [n], follows
the same Gaussian distribution with mean µ and variance

σ2. This is written as si
j ∼N (µ,σ2). This assumption

aligns with the fact that the values of the secret vector
describe the same attribute.

Example 5.1 (Secret following a multivariate Gaus-
sian distribution). Let the secret vector s be drawn
from a multivariate Gaussian distribution, with inde-
pendent random variable si ∼ N (µ,σ2) for all i ∈ [n].
Let minval and maxval be the lowerbound and upper-
bound for each si, respectively. For convenience, we define
µ = (µ1,µ2, . . . ,µn)T , with µ1 = µ2 = · · · = µn = µ. Af-
ter q queries, we have a coefficient matrix (i.e., query
matrix) A ∈ Rq×n and an inner product vector b ∈ Rq

such that As = b.
We can formalize the approximate recovery of s, de-

noted by s̃, as a linear program,

minimize (s̃−µ)T (s̃−µ) subject to
minval≤ s̃i ≤maxval and

As̃ = b.

The constraints are straightforward. It is left to derive
the objective function: min (s̃−µ)T (s̃−µ). This is the
maximum likelihood part, which aims to find a solution
concentrated around the mean.

Recall the probability density function (pdf) of
N (µ,σ2),3 p(x) = 1√

2πσ2 exp
(
− (x−µ)2

2σ2

)
.

Plugging in the parameter vector θ = (µ,σ2) into
the log-likelihood function in Equation (4), we obtain
ℓ(j|sj ,µ,σ2) =

∑n
i=1 ln(p(si

j |j,µ,σ2)). Expanding its in-
ner term ln(p(si

j |j,µ,σ2)),

ln
(
p(si

j |j,µ,σ2)
)

= ln
(

1√
2πσ2

)
−

(si
j−µ)2

2σ2 .

It follows that, the log-likelihood function is
n∑

i=1
ln(p(si

j |j,µ,σ2)) = n · ln
(

1√
2πσ2

)
−

n∑
i=1

(si
j−µ)2

2σ2 .

Since the term n · ln
(

1√
2πσ2

)
is fixed, to maxi-

mize the log-likelihood function, it suffices to maximize
3We use the continuous version for illustration purposes.



−
∑n

i=1
(si

j−µ)2

2σ2 . Considering σ2 is fixed and the minus
sign, we need to minimize

∑n
i=1(si

j−µ)2. Expressing this
as an objective function in matrix form and substituting
the indexed sj with s̃ gives us min (s̃−µ)T (s̃−µ).

6 Sparse Recovery Attacks

Quite surprisingly, in an underdetermined linear system,
if we assume the secret or solution is sparse4 and the co-
efficient matrix A has a certain property, we can recover
the secret exactly! This problem was first rigorously stud-
ied by Candès and Tao [11], leading to the development
of an area called compressed sensing. These techniques
are exceptionally powerful because they do not require
any prior knowledge about the distribution of the se-
cret s. Additionally, even if the inner products b are
perturbed with noise, these methods remain effective.
To distinguish this problem setting from the previous
discussion on non-sparse recovery using MLE, we will
refer to it as sparse recovery.

6.1 Compressed Sensing (CS)
We now discuss how to adapt compressed sensing tech-
niques to both noiseless and noisy sparse recovery, consid-
ering exact and approximate recovery goals. As this sec-
tion focuses on sparse recovery, we first define k-sparsity.
Defining k-sparsity. A vector of length n is called k-
sparse if it has at most k non-zero coordinates, where
k ∈ [n]. For simplicity, let us assume for now that we
know in advance that the secret is k-sparse. Even if this
condition is not met, the techniques we use can still
ensure approximate recovery. This is captured by the
stability property, which we will discuss later.
Uniqueness of k-sparse solutions. Given As = b, if
s is k-sparse and A satisfies a certain property, then
this k-sparse solution is unique. This property of A was
initially termed the uniform uncertainty principle (UUP)
by Candès and Tao [11], but it is now generally referred
to as the restricted isometry property (RIP).

Because the k-sparse solutions are unique, it suffices
to find the sparsest solution to the linear system. We
can reformulate this as an optimization problem: given
As = b as the constraint on s, the objective is to find
the sparsest solution. This is equivalent to minimizing
the ℓ0 norm, which represents the number of non-zero
coordinates in the solution.
Minimizing the ℓ1 Norm. Unfortunately, minimizing
the ℓ0 norm is an NP-hard problem that requires a brute-

4By a sparse secret, we mean that there are many zeros and at
most k non-zero coordinates in a vector of length n. Here, k is the
sparsity.

force search. Thankfully, the seminal work by Candès and
Tao [11] shows that using the ℓ1 norm for minimization
is sufficient under the restricted isometry property of
A. Since the ℓ1 norm is convex, standard optimization
methods can be applied, allowing the problem to be
solved using linear programming. Candès and Tao [11]
also extend this approach to noisy recovery.

Regarding utilizing compressed sensing techniques in
cryptanalysis, the most relevant work is by Bootle et
al. [7]. They propose side-channel attacks against the
LWE-based signature scheme BLISS by exploiting noisy
inner products without modular operations. Their aim
is to recover the exact secret. If we also assume that A
is sub-Gaussian,5 as in their work, and aim for exact
recovery, their results directly apply. Their approach
relies on an estimator called the Dantzig selector. We
discuss this approach in detail later.

In addition, we consider a different restriction on A,
specifically constraining it to be a binary matrix. This
is to derive a non-adaptive attack against PSI-CA and
PSI-SUM. Since the adversary no longer has access to
the associated values to craft A, we show that we can
transform this binary matrix to determine which ele-
ments to include in each protocol invocation, ensuring
that the compressed sensing techniques still apply.

Due to the binary matrix restriction, we need to resort
to other techniques in compressed sensing, specifically
those based on the ℓ1 norm.

Restricted Isometry Property (RIP). We now de-
scribe the high-level idea of the restricted isometry prop-
erty (RIP) and its use in compressed sensing. Suppose
we have a matrix A of dimension q×n and As = b holds.
Intuitively, if A is an identity matrix with q = n, we can
recover s coordinate by coordinate, as each inner product
with a unit vector gives us a coordinate of s. However,
for an underdetermined system A with fewer rows than
columns (i.e., q < n), if the secret s has only non-zero
coordinates, exact recovery is impossible.

In comparison, we can achieve much better results
with a k-sparse secret s. If we know which coordinates
are non-zero, we can store those values. However, without
such information, we need a condition on A to ensure
that the aforementioned linear program still applies.

To provide some intuition, consider As = b, where A
is a q×n-dimensional matrix. We can think of A as a
projection matrix that maps s from a high-dimensional
space (n-dimensional) to b in a lower-dimensional space
(q-dimensional). At the same time, this projection pre-
serves the ℓp norm, such that ∥b∥p ≈ ∥s∥p. Hence, the
matrix A helps with identifying the non-zero positions
of s, allowing us to recover k non-zero values using only

5This type of probability distributions has a strong tail decay,
with their tails dominated by those of a Gaussian distribution.



q inner products. These desired properties are captured
by restricted isometry property (RIP).

We provide a formal definition (Definition 6.1) under
general p norms. In our use cases, p∈ {1,2} are sufficient;
we refer to the RIP with ℓ1 and ℓ2 norms as RIP-1 and
RIP-2, respectively.

Definition 6.1 (Restricted Isometry Property (RIPp,k,δ)
[4]). A q×n matrix A is said to satisfy RIPp,k,δ if for
all k-sparse vector s, we have

∥s∥p ≤ ∥As∥p ≤ (1+ δ)∥s∥p.

As mentioned earlier, Berinde et al. [4] show that
the adjacency matrix of an unbalanced expander graph
satisfies RIP-1. We provide their theorem here for refer-
ence (cf. Theorem 6.2). In particular, for bipartite graph
G = (U,V,E), we set |U |= n and |V |= q, for q < n.

Theorem 6.2 (Constructing A with RIP1,k,δ using an
unbalanced expander graph [4]). Consider any q×n ma-
trix A that is the adjacency matrix of an (k,ϵ)-unbalanced
expander G = (U,V,E) with left degree d, such that 1/ϵ,d
are smaller than n. Then the scaled matrix A/d satisfies
the RIP1,k,δ property and δ = 2ϵ.

Now it is left to describe the approach for generating an
unbalanced bipartite graph. We use a simple randomized
approach. We provide the pseudocode in Algorithm 1.
This algorithm enables us to generate a high-quality
unbalanced expander graph with left degree d.

We present the Theorem 6.3 for the RIP-1 property
of the generated matrix A using Algorithm 1.

Theorem 6.3 (A is RIP-1 with high probability). The
scaled matrix A/d returned by GenRIPMatrix(n,q,d,ϵ)
in Algorithm 1 satisfies RIP-1 with a high probability.

Theorem 6.3 follows from Lemma 6.4 and Theorem 6.2.

Lemma 6.4 (G = (U,V,E) is a (k,ϵ)-unbalanced ex-
pander graph with a high probability). The adjacency
matrix A of G returned by GenRIPMatrix(n,q,d,ϵ)
in Algorithm 1 satisfies (k,ϵ) with a high probability for
q = dke1/ϵ−1 and d≥ 1

ϵ log1−ϵ( k
10ne ).

We provide the proof for Lemma 6.4 in Appendix C.1.
Consider the case for q = dke1/ϵ−1, we can simplify

the term as ne
k (1−ϵ)ϵd. Ensuring this term ≤ 1

10 implies
d≥ 1

ϵ log1−ϵ( k
10ne ).

Since x
1−x is monotonically increasing for |x|< 1, we

set parameter d to ensure x is within (0, 1
10 ], so that the

failure probability is at most 1
9 . For example, when n =

103,k = 10, ϵ = 0.49, and d = 24, we obtain q≈ 680. In the
experimental evaluation (Section 7.2), we demonstrate
that the parameters can be set more efficiently than the
suggested theoretical values. For instance, with n = 103,

Algorithm 1 Generate RIP1,k,δ matrix A using random-
ized unbalanced expander graph G = (U,V,E).
Input: q,n,d ∈ N and ϵ ∈ (0,1)
Output: A ∈ {0,1}q×n

01 function GenRIPMatrix(n,q,d,ϵ)
02 // G = (U,V,E); adjacency list adj defines E
03 U ←{u1,u2, . . . ,un}
04 V ←{v1,v2, . . . ,vq}
05 // Initialize adjacency list adj.
06 adj←{}
07 for all u ∈ U do
08 adj(u)← []
09 end for
10 for all u ∈ U do
11 // Random sample without replacement
12 nbrs← RandomSample(V,d)
13 adj(u)← nbrs
14 end for
15 // For all i ∈ [q], all j ∈ [n],
16 // ai,j = 1 if vi,uj are neighbors; 0, otherwise.
17 Set A using adj
18 return A
19 end function

Algorithm 2 Compressed sensing under the ℓ1 or ℓ2 norm
for exact recovery from As = b.
Input: A ∈ {0,1}q×n, minval, maxval
Output: s̃
01 Initialize an LP solver with the following,
02 minimize

∑n
i=1 ui subject to

03 −ui ≤ s̃i ≤ ui,
04 minval≤ s̃i ≤maxval, and
05 As̃ = b.
06 LP solver outputs s̃.
07 return s̃

k = 10, and d = 66, setting q = 133 is sufficient for exact
recovery (see Table 2).
Exact / Approximate Recovery with CS-ℓ1. We
provide the recovery theorem [4] for CS-ℓ1 (Algorithm 2)
in Theorem C.1 for completeness. Note that if we know
or can roughly estimate an upper bound for k, exact
recovery can be achieved using this theorem. An asymp-
totic bound on the number of queries needed for CS-ℓ1
to achieve exact (approximate) recovery [4] is as follows.

Theorem 6.5 (Bound on the number of queries). With
a random (scaled) binary matrix that satisfies RIP-1,
using CS-ℓ1 to recover a k-sparse secret of dimension n
exactly requires q = Θ(k log(n/k)) PJC queries.

In our experiments (Section 7.2) we use the concrete
parameter q = 2k log2(n/k), rounded to the nearest inte-
ger.
Against PSI-CA / PSI-SUM. Let us now consider
how to adapt our CS-ℓ1 attack to PSI-CA or PSI-SUM.



In this scenario, the adversary controls only the key set
and no longer has access to the associated values. The
function’s output is either the cardinality or the sum.
However, we can still convert this problem into a special
case of our PJC inner-product problem.

Given a target set T = {keyj}j∈[n] of size n, we can
generate the random binary q×n matrix A that sat-
isfies RIP-1. Scaling is unnecessary, as we can simply
divide b by d to achieve the same effect. For each i-th
query, we use the row ai to decide which keys in T to
include in the input. For example, if ai = (ai,j)j∈[n], then
ai,j = 1 indicates that keyj should be included in the
set, and 0 indicates exclusion. In this way, the output
cardinality or sum behaves the same as the inner product.
Therefore, using CS-ℓ1, we can achieve key recovery (i.e.,
membership recovery) for PSI-CA and PSI-SUM. We
can also achieve KVR with the PSI-SUM. We provide
the pseudocode in Algorithm 4.

On Stability. In practice, it is sometimes impossible to
know the sparsity or the intersection size beforehand. For
example, the intersection size is not revealed by the PJC
with inner products [29], meaning that we can only have
a rough estimate based on some prior knowledge. We
refer to this uncertainty as a sparsity defect. In addition,
each inner product may be added with noise for leakage
mitigation. If the recovery method is robust to both the
sparsity defects and noises, we call it stable recovery.

Compressed sensing is a stable sparse recovery method.
If neither is a concern, then q = 2k protocol runs are
sufficient for exact recovery. This is achieved through
discrete fourier transform we describe in Section 6.2.

6.2 Discrete Fourier Transform (DFT)

Learning k-sparsity from Intersection Size. When
the intersection size k is known, it takes only 2k queries
to exactly recover the secret vector s. This is achieved
using Discrete Fourier Transform (DFT), which also has
a practical recovery method. Specifically, we populate
the entries in matrix A so that each inner product cor-
responds to a discrete Fourier coefficient of the secret s.
Then for exact recovery, only 2k such measurements are
required.

Due to space limit, we provide a high-level overview of
this approach, followed by a theorem that formally states
the main result. For a detailed proof and an in-depth
explanation, we refer readers to an excellent textbook
on compressed sensing [18]. Here is a brief outline of the
approach: the DFT measurements of s help identify the
indices of the secret vector that contain non-zero values,
known as the support. Once the support is identified, the
secret can be recovered by solving a 2k overdetermined
linear system derived from the DFT coefficients. We refer

to Appendix D and book [18] for more details.

6.3 On Robustness to Noise
So far, we have only considered the cases with noiseless
inner product outputs. In a noisy setting, compared with
DFT, compressed sensing methods are also robust to
noise. Specifically, we can achieve approximate recovery
in both CS-ℓ2 and CS-ℓ1; under specific restriction on the
norm difference, we can achieve exact recovery for CS-ℓ2
[7]. We refer to the theorems [4], which are provided in
the Appendix (Theorems C.1 and C.3) for completeness.

Noisy recovery is achieved by introducing a tunable
regularizer λ. We let r denote the residual of the linear
system, where r = b−As̃. In particular, the regularizer
is operated on the infinity norm (i.e., the largest entry)
of AT r.

Algorithm 3 Compressed sensing under the ℓ1 norm for
approximate recovery from As = b + (noise).
Input: A ∈ {0,1}q×n, λ, minval, maxval
Output: s̃
01 Initialize an LP solver with the following,
02 minimize

∑n
i=1 ui subject to

03 −ui ≤ s̃i ≤ ui,
04 minval≤ s̃i ≤maxval, and
05 // [As̃−b]i denotes the i-th entry of the residual vector
06 −λ≤ [As̃−b]i ≤ λ .
07 LP solver outputs s̃.
08 return s̃

Compressed Sensing under ℓ2 Norm with Dantzig
Selector (CS-ℓ2). In addition to the RIP-1, we can also
use other techniques for A satisfying RIP-2. Specifically,
we use the Dantzig selector, proposed by Candès and
Tao [11]. The core idea is to minimize the ℓ1 norm for a
sparse secret with a regularizer λ on the residual term
r. In this case, matrix A is constructed by drawing each
entry from a mean-zero Gaussian distribution.6 We adapt
the result from [7], providing pseudocode in Algorithm 5.
This also assumes the added noise in the inner products
follows a mean-zero Gaussian distribution.

7 Experimental Evaluation

Experimental Setup. We implemented our attacks
using Python 3.12.4 and ran our experiments on a com-
puting cluster with 2U Rackmount Chassis, 64 Core
AMD EPYC 7742 2.25GHz Processor and 512GB Server
Memory. We simulated the output of the PJC function-
ality on the same compute node as the node we ran

6We restrict it to be a mean-zero Gaussian for simplicity. This
approach also applies to sub-Gaussian distributions.
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Figure 3: The number of queries required by our Search
Tree Attack, plotted against the intersection ratio ρ.

the attack on, as such our attack times do not include
network latency. We report the attack times excluding
the time for computing the PJC functionality. In all of
our experiments, we used synthetic data, as most of the
methods, except for MLE, are data-independent.

7.1 Combinatorial Attack

Datasets. For the synthetic data we fixed the size of the
secret set Y to be 100,000 and varied the size of the target
set T across 103, 104, 105 and 106. We first sampled keys
in Y from the universe [|Y |+ |T |] and sampled integral
associated values from the range [0,1000], i.e., minval = 0
and maxval = 1000. Let k be the intersection size and ρ
be the ratio of keys in the intersection with respect to
|T |, i.e., ρn = k. For |T | ∈ {103,104,105}, we considered
ρ ∈ [0.1,1.0] (with a step size of 0.1). For |T | = 106,
we considered ρ ∈ [0.01,0.1] (with a step size of 0.01).
For each value of ρ and |T | = n, we sampled ρn keys
from Ykeys and then sampled the remaining values from
[|Y |+ |T |]\Ykeys, where Ykeys denotes the keys of Y .
Results. We ran the attack for partition sizes ℓ ∈
{21,22,24, 26, 28, 210}. For each combination of |T |, ρ,
and ℓ, we ran the attack 10 times and averaged the num-
ber of queries needed for KVR and the attack time. The
query and timing results can be found in Figures 3 and 7,
respectively. For all datasets, increasing the value of ρ
resulted in more queries needed for recovery. Correspond-
ingly, the increase in the number of queries that had to
be made also resulted in an increase in attack run time.
Run time was overall very efficient, ranging from a few
milliseconds (n = 103) to 90s (n = 106).

In general, increasing the partition size resulted in

n k Type q ℓ1 loss Time (ms)

102 10
DFT 20 0.00 0.94

CS-ℓ1 66 0.00 14.10
CS-ℓ2 66 0.00 13.98

20
DFT 40 0.00 3.30

CS-ℓ1 93 0.00 15.26
CS-ℓ2 93 0.00 15.97

100 MLE 90 101.53 13.21
MLE 95 89.17 13.66

103 10
DFT 20 0.00 0.94

CS-ℓ1 133 0.00 371.89
CS-ℓ2 133 0.00 456.20

100
DFT 200 6.89 757.05

CS-ℓ1 664 0.00 5197.40
CS-ℓ2 664 0.00 3025.00

200
DFT 400 12.74 13095.62

CS-ℓ1 929 0.00 9980.16
CS-ℓ2 929 0.00 6775.83

1000 MLE 900 104.27 715.65
MLE 950 78.31 705.58

104 1000
DFT 2000 10.03 40018.49

CS-ℓ1 6644 0.00 3367613.93
CS-ℓ2 6644 0.00 2995573.02

10000 MLE 9500 73.93 612962.17

Table 2: Value range [−1000,1000].

fewer queries. However, we note some exceptions. For
|T |= 103, ℓ = 26 resulted in fewer queries than ℓ = 28 for
all values of ρ; when ℓ = 210, we have that ℓ≥ |T |, and
so running the search tree attack collapses to the basic
attack, (all values are recovered with exactly one query).

Similar behavior is observed for |T |= 104 and |T |= 105.
This is because increasing the partition size, may result in
a finer partition with more sets that must be consequently
queried. In Figure 6, we give such an example for |T |=
104 and (6a) ℓ = 100 or (6b) ℓ = 1000. Both parameters
result in search trees of height 2; in both cases, since ℓ
is larger than the resulting sets at depth 1 of the search
tree, we can recover any value by querying at most 2
sets containing its corresponding key in the target set.
However, the smaller partition size results in on-average
fewer sets with a non-zero inner product that that must
be queued and later explored (100 sets versus 1000 sets
in the worst-case).

This suggests an alternative strategy in which the
partition size is chosen adaptively. We conjecture that
choosing the partition size adaptively will not result in
a significant improvement.

7.2 MLE, DFT and Compressed Sensing

In this section, we present the experimental evaluation of
noiseless and noisy recovery using maximum likelihood
estimation (MLE), discrete Fourier transform (DFT),
and compressed sensing (CS). We implemented these



recovery methods using the Gurobi optimization tool.7
As discussed in Section 6.1, for compressed sensing under
the ℓ1-norm, we generated the query matrix A using
the unbalanced expander graph approach (Algorithm 1)
and implemented Algorithm 2 for noiseless recovery and
Algorithm 3 for noisy recovery.

For compressed sensing under the ℓ2-norm, we con-
struct the query matrix A by drawing individual entries
from a normal distribution, using the same recovery
procedure as in Algorithm 2. For noisy recovery, we
implemented the recovery procedure with the Dantzig
selector (Algorithm 5).
Datasets. The target set T was selected with sizes
{102,103,104}. Since the keys can be selected arbitrarily
without affecting our evaluation, we set them to [|T |]. To
construct the recovery set Y , we did not restrict its size,
as our focus is on the elements of Y that lie within the
intersection. For simplicity, we defined the key universe
as [|T |], and based on the varying intersection size k,
we select randomly k elements from [|T |] to server as
the keys in Y that lie in the intersection. Their associ-
ated values were selected uniformly at random from the
integer ranges [−100,100] and [−1000,1000].

It is evident that with a uniform random distribu-
tion, MLE cannot perform better than a random guess.
However, in real-world datasets, a normal distribution
(or other non-uniform distributions) is more likely than
a uniform distribution. Therefore, to demonstrate the
effectiveness of MLE, we selected the associated values
from a normal distribution. Specifically, we used N (µ =
0,σ = 50) for the range [−100,100] and N (µ = 0,σ = 500)
for [−1000,1000], both with σ = (maxval−minval)/4 to
ensure a balanced distribution across the value range.
(Adversarial) Input from P̃1. In each protocol run, the
associated values for the target set are adjusted according
to the specific recovery method employed. In particular,
the input is artificially crafted using DFT, simulating an
active but non-adaptive adversarial attack. For MLE and
compressed sensing under the ℓ1 and ℓ2 norms, the input
is randomly drawn from a distribution. This simulates a
non-adaptive adversarial setting, which may be useful
for modeling real-world scenarios. For example, training
a linear model with random (weighted) feature selection
on a data set comprising the associated values of Y that
lie in the intersection. In the case of the ℓ1 norm, P̃1’s
input is a binary selection vector, whereas for the ℓ2 norm,
P̃2’s input can be drawn from a normal distribution. Our
experiments restrict the associated values of T to within
a specific range ([−10,10] for [−100,100] and [−100,100]
for [−1000,1000], with the values being floats). It is
important to note that the effectiveness of compressed
sensing under the ℓ2 norm with the Dantzig selector

7https://www.gurobi.com/

n k Type q ℓ1 loss Time (ms)

102 10
DFT 20 27.31 0.94

CS-ℓ1 66 5.37 17.54
CS-ℓ2 66 0.00 535.44

20
DFT 40 10.80 3.26

CS-ℓ1 93 9.47 21.81
CS-ℓ2 93 0.00 726.85

100 MLE 90 124.70 14.79
MLE 95 63.63 15.21

103 10
DFT 20 4.56 0.93

CS-ℓ1 133 0.56 301.10
CS-ℓ2 133 0.00 94232.49

100
DFT 200 22.38 1855.94

CS-ℓ1 664 1.90 1146.95
CS-ℓ2 664 0.00 515692.35

200
DFT 400 30.68 11418.77

CS-ℓ1 929 2.88 1693.23
CS-ℓ2 929 0.00 738450.12

1000 MLE 900 105.21 904.05
MLE 950 72.58 965.71

104 1000 DFT 2000 23.73 289838.10
CS-ℓ1 6644 0.59 543835.42

10000 MLE 9500 76.79 673098.80

Table 3: Value range [−1000,1000], with noise from
N (µ = 0,σ = 5), clipped at magnitude 100.

requires the mean of the normal distribution to be zero.

Adding Noise. To demonstrate that compressed sens-
ing is robust to noise, we added noise to each inner
product, drawn from a normal distribution with mean
µe = 0 and standard deviations σe in {2.5,5}. Note that
adding noise to the inner products makes the recovery
problem significantly harder. In this case, even if the
number of queries equals the number of targets, Gaussian
elimination cannot produce a solution!

Results and Observations. We present the results
from five runs, with statistics for the value range
[−1000,1000] shown in Tables 2 and 3, and for the value
range [−100,100] in Tables 4 and 5 in the Appendix.
For each value of n and k, we have highlighted the best
performing method to help with interpreting our results.
The best performing method was selected based on the
following criteria in order: average ℓ1 loss, q (the number
of queries needed) and the recovery time.

We now discuss our results for each method.

MLE. We focus on non-sparse recovery using MLE,
by setting the intersection size equal to the target set.
While this approach can be extended to accommodate
sparse cases by modeling a more complex distribution,
our experiments are aimed at evaluating the effective-
ness of MLE. Thus, we concentrate on the simpler case
described in Example 5.1. We observed that even after
0.95n queries, there is still some ℓ1 loss. Specifically, the
ℓ1 loss is around 7 for the value range [−100,100] (Ta-



bles 5 and 4). This loss increases significantly when the
value range is expanded to [−1000,1000] (Tables 2 and 3).
This increase is expected, as the solution space becomes
much larger, making it considerably more challenging
to find a solution close to the true values. Nonetheless,
this still poses a risk if the value range is small and
approximate recovery is a concern, as may be the case
for some database entries.

In the noisy setting, we relax the linear constraints
and bound the residue term by the noise magnitude,
using the same technique as in Line 6 in Algorithm 3.
We found that, adding noise does not make a significant
difference in the losses. This is likely because MLE is a
randomized method that outputs the most likely solution
within a large solution space, making it less sensitive to
small noise perturbations.
DFT. Our results indicate that DFT recovery performs
very well in certain experiments. Since it only requires
solving linear equations, it consumes significantly less
time compared with the other methods. However, it is un-
stable in some cases and not robust to noise. Even small
perturbations from the noise can result in relatively large
losses, which is consistent with the theoretical limitations
of the method.
Compressed Sensing. In the noiseless setting, both
CS-ℓ1 and CS-ℓ2 ensure exact recovery for intersection
ratios up to 0.2 with high probability. CS-ℓ1 is more
scalable than CS-ℓ2; for the latter, we were only able
to scale up to n = 2K using Gurobi. For noisy recovery,
both methods show robustness to noise with σe ∈ {2.5,5}.
While CS-ℓ1 incurs a small loss, exact recovery remains
possible with CS-ℓ2. However, at larger noise scales (e.g.,
σ ≥ 10), we observe minor ℓ1 losses in recovery accuracy
for CS-ℓ2. Compared with DFT, this robustness comes
with a tradeoff in the number of queries q, as indicated
by the bound Θ(k log(n/k)) in Theorem 6.5. It is worth
noting that in our experiments, we use a multiplicative
constant c = 2, resulting in q = 2k log2(n/k), rounded to
the nearest integer. Figure 8 illustrates the number of
queries needed with different parameters.

7.3 Discussion

Attack Comparison. From our experimental evalua-
tion, we found that the search tree attack out-performs
the other attacks with respect to number of queries, at-
tack time, and scalability. For example, we were able
to run it up to n = 106. The other three attacks utilize
solvers and, in particular, MLE and CS rely on solving
an optimization problem which inherently limits their
scalability. We note, however, that the search tree attack
is an adaptive attack that only works in a noiseless set-
ting and when the associated values are non-negative.

The remaining attacks address limitations in the tree
attack, with all three capable of handling negative values,
and CS showing robustness to noise. Moreover, MLE
and CS fall under the non-adaptive adversarial setting.

Google PJC Code Repository. Google acknowledges
in their PJC code repository [20] potential information
leakage from functionality outputs, such as membership
leakage due to large associated values. However, these
privacy risks remain unclear. Our work takes a crucial
step towards analyzing these leakages as suggested and
highlighting real-world risks.

All four attacks operate under honest protocol execu-
tion, with some requiring malicious inputs, and demon-
strate how a weak adversary could infer information
about the other party’s input. Although the “caveats”
listed [20] mention potential risks from malicious in-
puts, they neither quantify the information that could
be inferred nor specify the number of queries or types of
inputs required to extract meaningful information.

Our attacks formalize the extent to which this leakage
can be exploited. We demonstrate that these attacks
are feasible for a more generalized key-value recovery
(KVR), rather than being limited to membership recovery.
Notably, two attacks (MLE, compressed sensing) do not
rely on malicious inputs and align with the security
model outlined outlined in [20].

8 Countermeasures and Future Work

In this section, we discuss the PJC deployment, explore
techniques for mitigating our attacks, and provide av-
enues for future work.

PJC Deployment. Although PJC with inner-product
may be still in its early stages of deployment, PSI-SUM
(a special case of PJC with inner-product) has already
been deployed by Google [25] for ad conversion. In this
scenario, the advertiser inputs a table of (personal id,
spending) pairs, and the ad publisher (e.g., Google) in-
puts a set of personal ids associated with ad clickers.
PSI-SUM allows the advertiser to compute aggregate
conversion revenue and determine the number of shared
personal ids. This application has been analyzed in prior
work [24, 27]. Our compressed-sensing and MLE attacks,
when adapted to PSI-SUM, can recover personal ids and
compromise the anonymity of the ad clickers, aligning
with the adversarial goals in [24,27]. Moreover, our focus
on the generalized PJC with inner-product [29] aims to
identify and address potential risks proactively, such as
the privacy of associated values, ensuring they are either
mitigated or effectively communicated before full-scale
deployment.



Input Validation. Adversarially chosen inputs can be
detrimental to the other party’s privacy and, in fact,
“Scrubbing inputs to remove identifiers with outlier val-
ues” was already recommended by [20] for their PSI-SUM
protocol. One approach for preventing outlier values is
to use zero knowledge proofs (ZKPs). ZKPs enable a
party to commit to their input and later prove that the
committed values satisfy a certain property, e.g., are
within a particular range. For example, Bulletproofs [10]
enables one to prove that a single committed value is
in an n-bit range using a proof of size O(log2 n), with
the possibile optimization of batching m proofs at the
expense of an additive O(log2 m) factor.

Bell et al. [3] presented a protocol for secure aggrega-
tion with input validation by using [10] to prove in ZK
that the input satisfies a given ℓ∞ bound. One of the
challenges of input validation for PSI-like protocols is
designing a protocol whose inputs are compatible with
either existing ZKP systems or tailor-made ones and this
is an interesting line of future work.

Authorized PSI (APSI). Another technique is to
authorize the inputs using a trusted third-party prior to
computating on the intersection. The goal is to only have
approved elements appear in the intersection; elements
that are in the interesection of the partys’ sets but aren’t
authorized will not contribute to the output. Authorized
PSI (e.g., [13,14,35]) and PSI-CA (e.g., [12]) have already
been proposed. Most recently, Falzon and Markatou
presented an APSI scheme based on bilinear pairings [16].
APSI is especially useful in settings such as ad-conversion
where an auditing firm can act as the trusted third-party
and verify the purchases claimed by a company before
the intersection is computed.

Extending authorization to PSI-like functionalities
such as PJC is a non-trivial problem and seeing if the
techniques proposed in [16] can be applied to the Diffie-
Hellman based PSI-SUM protocol of Ion et al. [25] is
an interesting open problem. Scrubbing inputs via au-
thorization or input validation are useful for defending
against our search-tree attack. However they are not
sufficient alone, since our non-adaptive attacks can still
be carried out. We, thus, recommend that the above
approaches be used with other mitigation techniques.

Adding Noise. Our compressed sensing attack (Sec-
tion 6.1) demonstrated that KVR is still feasible when
the noise added to the output is sufficiently small (e.g.,
normally distributed with σe ≤ 5). We conjecture that
adding large-scale noise could limit the ability to infer
associated values precisely. Therefore, if only exact KVR
is a concern, introducing noise may serve as an effective
mitigation strategy.

As we have already pointed out, MLE and DFT are
susceptible to noise for exact recovery, so adding noise

helps mitigate these two attacks. Regarding the search
tree attack, which may adapt to noisy setting, and we
leave this exploration for future work.

For a provable guarantee, one might consider using
differentially-private (DP) noise. However, we conjecture
that DP may not necessarily be suitable in this context,
as it is most effective with large datasets for aggregate
statistics, whereas PJC may operate on single records.
Considering the inner-product functionality, the chal-
lenge is to add noise in a way that preserves utility while
mitigating our attacks. This remains an intersting open
problem for future investigation.
Rate Limiting and Query Budgets. Rate limiting
is a technique that restricts the frequency of protocol
invocations. Similarly, a query budget is a parameter
that specifies how many queries can be issued.

Our theoretical results demonstrate that our attacks’
success hinges on a certain number of queries being made
For example our search tree attack requires a number of
queries linear in k (Theorem 4.5), and our compressed
sensing attack with the ℓ1 norm requires Θ(k log(n/k))
queries (Theorem 6.5). Stronger lower bounds on the
queries needed for any attack against PJC to succeed
could provide a guideline for the maximum allowed num-
ber of queries. One interesting future direction would be
to investigate the trade-off between number of queries
issued and the minimum loss for any KVR attack.
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A PJC Supplementary Content

We use c≡ to denote the relation between two distribu-
tions that are computationally indistinguishable. Let f
be a PPT functionality computed by parties P1 and P2,
defined as f : {0,1}∗×{0,1}∗→{0,1}∗×{0,1}∗, and we
can write f = (f1,f2). Each of the parties, P1 and P2, has
respective input x,y ∈ {0,1}∗. P1 and P2 compute f on
(x,y), and f outputs a random variable (f1(x,y),f2(x,y))
over the pairs of strings. Let π be a two-party protocol
that computes f . Let κ ∈ N denote the security parame-
ter.

A.1 PSI-SUM and PSI-CA
The Private Set Intersection Sum (PSI-SUM) func-
tionality takes as input a set, X = {keyi}i∈[n], from P1
and a database, Y = {(key′

j ,val′j)}j∈[m], from P2. It out-
puts the sum of values whose keys lie in the intersection:∑

i∈[n],j∈[m]
1{keyi = key′

j} · val′j . (5)

PSI-SUM is equivalent to running PJC when the associ-
ated values in X equal to 1.

The Private Set Intersection Cardinality (PSI-
CA) functionality takes as input two sets of keys,
X = {keyi}i∈[n] and Y = {key′

j}j∈[m], from P1 and P2,
respectively. It outputs the intersection size:∑

i∈[n],j∈[m]
1{keyi = key′

j}. (6)

PSI-CA is equivalent to running PJC when all associated
values in the two databases equal 1.

A.2 Security
MPC functionalities such as PJC are often proven secure
using simulation based security. This approach considers
two worlds: (1) a real world in which the actual protocol
is executed and the parties interact directly with each
other, and (2) an ideal world in which the computation is
mediated by a trusted third party. An protocol is secure
if the two worlds are indistinguishable. In the case of
PJC, this means that P1 should only learn the inner
product (Equation 3) and P2 should learn nothing.

For party Pi, where i ∈ {1,2}, let viewπ
i (x,y,κ) denote

the view of Pi during the execution of two-party protocol
π computing on (x,y,κ). Specifically, viewπ

i (x,y,κ) :=
(w,ri;mi

1,mi
2, . . . ,mi

t), where w ∈ {x,y} depending on
the index i; ri equals the contents of Pi’s internal ran-
dom tape; mi

1,mi
2, . . . ,mi

t are the messages Pi received.
The output, outputπ

i , is what Pi can compute based on
its own view. The joint output, outputπ is defined as
(outputπ

1 (x,y,κ),outputπ
2 (x,y,κ)).

Definition A.1 (Static Semi-Honest Security). Let
f = (f1,f2) be a functionality. We say that π securely
computes f in the presence of static semi-honest adver-
saries if there exist PPT algorithms S1 and S2 s.t.

{(S1(1κ,x,f1(x,y)),f(x,y))}x,y,κ

c≡ {(viewπ
1 (x,y,κ),outputπ(x,y,κ))}x,y,κ, and

{(S2(1κ,y,f2(x,y)),f(x,y))}x,y,κ

c≡ {(viewπ
2 (x,y,κ),outputπ(x,y,κ))}x,y,κ,

where x,y ∈ {0,1}∗ such that |x|= |y|, and κ ∈ N.

https://eprint.iacr.org/2023/012
https://eprint.iacr.org/2023/012
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1007/978-3-642-30057-8_25
https://doi.org/10.1007/978-3-642-30057-8_25
https://doi.org/10.1007/978-3-031-33491-7_6


Parameters: Set sizes n = |X| and m = |Y |.
Functionality:

• Wait for input X = {(keyi,vali)}i∈[n] from receiver P1.

• Wait for input Y = {(key′
j ,val′j ,)}j∈[m] from sender P2.

• Give P1 the inner product
∑

i∈[n],j∈[m]
keyi=key′

j

vali · val′j .

Figure 4: The PJC ideal functionality.

B Search Tree Attack Appendix

B.1 Basic Attack Pseudocode
The pseudocode for the basic attack can be found in
Figure 5.

Params: The Minimum possible associated value minval = 0
and the maximum possible associated value maxval > 0.
Input: Target set T = {key1, . . . ,keyn}.
Output: Solution S = {(key,val) ∈ Y : key ∈ T}.
01 d←#digits(maxval)
02
03 // Compute adversarial database.
04 X←{(keyj ,10d·(j−1)) : j ∈ [n]}
05 b← PJC(X,Y )
06
07 // Recover secret values of keys in the intersection.
08 Prepend “0”s to b until #digits(b)n ·d
09 Parse b into d digit integers ans1, . . . ,ansn

10 S←{(keyj ,ansj) : j ∈ [n]∧ansj ̸= 0}
11 return S

Figure 5: The basic attack against PJC.

B.2 Selecting the Partition Factor
The primary criteria we require ℓ to satisfy is that the
resulting inner-product does not exceed maxint. This
should hold regardless of how the target set is partitioned
into ℓ equal-sized sets. For a given partition factor ℓ̂∈ [n],
we would have ℓ̂ index sets each with ⌈n

ℓ̂
⌉ items. The

maximum possible associated value in Y is maxval and,
so, in order to obtain a domain separation and construct
the ℓ inner products, the associated values assigned to
the sets in the partition must be of the form 10d(i−1) for
i∈ [ℓ] and d = #digits(⌈n

ℓ̂
⌉ ·maxval). If d was any smaller

than this, than we would risk not being able to separate
the resulting inner product into the ℓ distinct ones.

As a strict upper bound, we thus require that

ℓ≤max

ℓ̂ ∈ [n]

∣∣∣∣∣∣∣∣∣
d = #digits(⌈n

ℓ̂
⌉ ·maxval) ∧

maxint≥maxval · ⌈n
ℓ̂
⌉ ·

ℓ̂∑
i=1

10d·(i−1)

 .

In our implementation (Section 7), we demonstrate
our attack for a several partition factors ranging from
ℓ = 2 to ℓ = 210.

B.3 Proof of Theorem 4.4

We first introduce the following generalization of
superincreasing. Let X = {(keyj ,valj)}j∈[n] and Y =
{(key′

j ,val′j)}j∈[m] be databases. Let A = [n] and
A1, . . . ,Aℓ be a partition of A. The inner product
of X and Y is superincreasing with respect to
A1, . . . ,Aℓ, if for all 1 < i ≤ ℓ such that Ai contains an
index of a key in Y , we have∑

j∈Ai

1{keyj in Y } · valj ·Y [keyj ]

>
∑

j∈Ak
1≤k<i

1{keyj in Y } · valj ·Y [keyj ].

Proof. Let keyj ∈T be any key in the intersection and j ∈
[n] be its index. To show that (keyj ,valj) ∈ S such that
(keyj ,valj) ∈ Y , we must prove two things: (1) for any
enqueued set containing j, either we enqueue a strictly
smaller set containing j or we stop and (2) the stopping
condition within the if clause on line 19 is correct.

The attack starts by enqueuing the set [n] (line 1),
and thus queue ̸= ∅ and the while loop is executed.

To see (1), let A be a dequeued set containing j (line 5)
and P = {A1, . . . ,Aℓ} be its partition (line 6). Then there
exists some i∗ ∈ [ℓ] such that j ∈Ai∗ . Let X be defined as
in line 10, and d = #digits(⌈|A|/ℓ⌉ ·maxval), and observe
that the inner product of X and Y is superincreasing
with respect to P. In particular,

• The output of PJC(X ′,Y ) is strictly larger than that
of PJC(X ′′,Y ) where

X ′{(keyj ,10d·(i−1)) : keyj ∈ T ∧ j ∈Ai∗} and

X ′′ = {(keyj ,10d·(i−1)) : keyj ∈ T ∧j ∈Ai∧ i ∈ [i∗−1]}.

Moreover, the first d · (i∗−1) least-significant digits
of the output of PJC(X ′,Y ) are 0.

• The output of PJC(X ′,Y ) is strictly smaller than
that of PJC(X ′′′,Y ) where

X ′′′ = {(keyj ,10d·(i−1)) : keyj ∈T ∧j ∈Ai∧i∈ [i∗ +1, ℓ]}

or PJC(X ′′′,Y ) = 0. Moreover, if PJC(X ′′′,Y ) ̸= 0,
then the first d ·i∗ least-significant digits of the inner
product are 0.



Thus the value ai∗ (defined on line 15) precisely equals
the output of PJC(X̂,Y ), where

X̂ = {(keyj ,1) : keyj ∈ T ∧ j ∈Ai∗}.

By assumption, keyj is in Y and so ai∗ ̸= 0. If |Ai∗ |> 1,
then the else if clause (line 23) is executed and Ai∗ ,
which is strictly smaller than A and contains j is en-
queued. If |Ai∗ | = 1, then a key-value pair is added S
(we prove the correctness of this key-value pair below).

We now show (2). Since [n] is finite and the invariant
(1) holds, then we know that for some dequeued set A
and its partition P = {A1, . . . ,Aℓ} (line 6) there exists
some i∗ ∈ [ℓ] such that |Ai∗ |= 1 and j ∈Ai∗ . By virtue
of the fact that Ai∗ is a singleton and that the inner
product of X and Y is superincreasing with respect to
P, then ai∗ is inner product of {(keyj ,1)} and Y . This
implies that (keyj ,ai∗) ∈ Y . By assumption, keyj is in
Y and so ai∗ ̸= 0. The if clause is executed, thus adding
(keyj ,ai∗) to S.

Since [n] is finite and, in each iteration, the sets en-
queued are strictly smaller than the set whose partition
it comprises, there is a finite number of sets enqueued/d-
equeued. Thus, the while loop must be exited and the
attack terminates.

Now suppose that keyj ∈ T is not in the intersection.
Due to invariant (1) above, there exists a set A whose
partition comprises of a set Ai∗ such that for all i ∈Ai∗ ,
keyi is not in Y . So none of its keys are in the intersection,
then its corresponding inner product is ai∗ = 0. Ai∗ is
never added to the queue (none of its descendents in the
search tree are explored). Moreover, if |Ai∗ | = 1, then
keyj is not added to the solution.

Corollary B.1. Let T be the target set, Y be the secret
set, and k be their intersection size. Let T be the ℓ-
ary search tree resulting from running the Search Tree
Attack (Figure 1). Let vkey denote the leaf associated with
key. For every key ∈ T contained in the intersection, the
adversary must issue the query corresponding to each
node from the root to the parent of vkey in T .

B.4 Proof of Theorem 4.5
We first prove the following lemma.

Lemma B.2. Let T be a target set of size n, Y be the
secret set, and k be their intersection size. Let T be the
ℓ-ary search tree resulting from running the Search Tree
Attack (Figure 1). Let vkey denote the leaf associated with
key. For every key ∈ T contained in the intersection, the
adversary must issue the query corresponding to each
node from the root to the parent of vkey in T .

Each inner node node in T corresponds to a subset
A⊆ [n], and the ℓ children of that node correspond to a

partition of A. Let keyj ∈ T be in the intersection and
j ∈ [n] be its index. Since T induces a partition on [n],
then there exists a path in T whose nodes correspond
to the sequence of sets A

(j)
i , i ∈ [logℓ n], each containing

the index j.
Each set in the queue results in exactly one query. We

proceed by induction on i. For i = 1, we have A
(j)
i = [n],

which corresponds to the root of T . A
(j)
i is enqueued in

line 1 and thus results in a query.
Suppose now that for i = m < logℓ n, it holds that

A
(j)
m is enqueued. We want to show that A

(j)
m+1 must

also be enqueued. Since A = A
(j)
m was enqueued then, by

correctness of the attack, A must be dequeued. When
dequeued, A is then partitioned into ℓ sets (line 6), one
of which contains j, i.e., A

(j)
m+1 ⊊ A. Let a(j) denote

the inner product of keys indexed by A
(j)
m+1 (line 15).

Since keyj is in Y and has a non-zero associated value,
then any database containing keyj that is queried results
in a non-zero inner product. In particular, a(j) ≠ 0. If
|A(j)

m+1| then the value is recovered. Otherwise, |A(j)
m+1|

is enqueued (line 23) and thus results in a query.

Proof. The optimal scenario is that for each PJC query
issued, the maximum possible number of sets in the
partition (the Ai’s line 6) result in an inner product (the
ai’s in line 15) of 0. This corresponds to minimizing the
number of sets that are enqueued (lines 23–25). This
occurs when the keys in the intersection are indexed by
the fewest possible sets of the partition, i.e., the leaves
of the search tree that index the keys in the intersection
lie in the smallest possible subtree.

Let T denote the ℓ-ary search tree for T . The fewest
queries are needed when all k indices of the intersection
lie in the smallest possible subtree. Let v denote the
lowest common ancestor of the k intersection indices. By
Corollary B.2, to achieve KVR, the adversary must issue
all queries corresponding to the nodes from the root of
the search tree to v and the queries corresponding to the
inner-nodes of the sub-tree rooted at v.

Let ⌈x⌉ℓ denote rounding x to the next power of ℓ.
There are ℓ·⌈k⌉ℓ−1

ℓ−1 nodes in the subtree of T induced by
v and its descendents , and ℓ·⌈k⌉ℓ−1

ℓ−1 −⌈k⌉ℓ inner nodes.
There are an additional logℓ n− logℓ⌈k⌉ℓ = logℓ(n/⌈k⌉ℓ)
nodes in the path from the root to v.

In the worst case, when k = ⌈k⌉ℓ, the adversary must
issue every query associated with the inner nodes of
the subtree induced by v and its descendents. Thus the
adversary must issue at least

Ω
(

k

ℓ
+logℓ

n

k

)
= ℓk−1

ℓ−1 −k +logℓ
n

k

queries to exactly recover the associated values.



C Compressed Sensing Appendix

C.1 Proof of Lemma 6.4
Proof. Let X be an arbitrary subset of U , X ⊆ U with
size |X|= s≤ k. Let M be an arbitrary subset of V of size
|M |. There are at most d ·s vertices in the neighbor set
N(X). For the case N(X)⊆M , if we consider each vertex
selection is independent, then we have that Pr(N(X)⊆
M) =

(
|M |
m

)ds
. Because we require random sampling

without replacement, then the vertex selection is no
longer independent, and thus gives us an upper bound.

Pr(N(X)⊆M)≤
(
|M |
m

)ds

.

We now upperbound the probability that the event
G is not a (k,ϵ) expander. Applying the union bound
yields

Pr(G is not a (k,ϵ)-expander)

≤
∑

X⊆U
|X|=s≤k

∑
M⊆V

|M |<αs

Pr(N(X)⊆M) let α = (1− ϵ)d

≤
∑

X⊆U
|X|=s≤k

∑
M⊆V

|M |=αs

Pr(N(X)⊆M)

=
k∑

s=1

∑
X⊆U
|X|=s

∑
M⊆V

|M |=αs

Pr(N(X)⊆M)

≤
k∑

s=1

(
n

s

)(
m

αs

)(αs

m

)ds

≤
k∑

s=1

(ne

s

)s(me

αs

)αs(αs

m

)ds

≤
k∑

s=1

[(ne

s

)(me

αs

)α(αs

m

)d
]s

≤
k∑

s=1
xs, where x =

(ne

s

)(me

αs

)α(αs

m

)d

= x

1−x
for |x|< 1.

To bound x,

x =
(ne

s

)(me

αs

)α(αs

m

)d

=
(ne

s

)(me

αs

)(1−ϵ)d(αs

m

)d
since α = (1− ϵ)d

=
(ne

s

)(me

αs
· αs

m

)d( αs

me

)ϵd

=
(ne

s

)
ed
( αs

me

)ϵd

=
(ne

s

)(αse1/ϵ−1

m

)ϵd

≤
(ne

k

)( (1− ϵ)dke1/ϵ−1

m

)ϵd

s≤ k,α = (1− ϵ)d.

Algorithm 4 CS-ℓ1 attack against PSI-CA or PSI-SUM.
Input: T = (t1, t2, . . . , tn), type ∈ {PSI-CA,PSI-SUM}, minval,

maxval
Output: s̃
01 function RunPSI(type,X,Y )
02 if PSI = PSI-CA then
03 ca← PSI-CA(X,Y )
04 return (ca,⊥)
05 else
06 (ca,sum)← PSI-SUM(X,Y )
07 return (ca,sum)
08 end if
09 end function
10 X← T
11 (ca,resp)← RunPSI(type,X,Y )
12 k← ca
13 Set q,d,ϵ based on n and k.
14 A← GenRIPMatrix(n,q,d,ϵ) (cf. Algorithm 1)
15 for i from 1 to q do
16 X←∅
17 for j from 1 to n do
18 if ai,j = 1 then
19 X←X ∪{tj}
20 (ca,resp)← RunPSI(type,X,Y )
21 end if
22 end for
23 end for
24 Run LP solver on (cf. Algorithm 1)
25 return s̃

The following definition and remark is to demonstrate
exact recovery for CS-ℓ2.

Theorem C.1 ((Approx.) sparse recovery [4]). Let A
be a q×n matrix of an unbalanced (2k,ϵ)-expander and
α(ϵ) = (2ϵ)/(1−2ϵ). Let s, s̃ be any two vectors such that
for y = s− s̃ we have Ay = 0, and ∥s̃∥1 ≤ ∥s∥1. Let S be
the set of k largest (in magnitude) coefficients of s, then

∥s̃− s∥1 ≤ 2/(1−2α(ϵ)) · ∥s− sS∥1.

The following definition and remark is to demonstrate
exact recovery for CS-ℓ2.

Definition C.2 (Alternative Definition for Restricted
Isometry Property (RIP-2) [11]). A q×n matrix A is



said to satisfy RIP-2 if there exists a constant δk ∈ (0,1)
such that for all k-sparse vector x,

(1− δk)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ δk)∥x∥22.

Remark 1 (Exact recovery). Exact recovery is guaranteed
provided δ2k < 1.

The following theorem is to demonstrate robustness
to noise for CS-ℓ1.

Theorem C.3 (Approx. sparse recovery [4]). Let A be
a q×n matrix of an unbalanced (2k,ϵ)-expander. Let
α(ϵ) = (2ϵ)/(1−2ϵ). Consider any two vectors s, s̃, such
that for y = s− s̃ we have ∥Ay∥1 = β≥ 0, and ∥s̃∥1≤∥s∥1.
Let S be the set of k largest (in magnitude) coefficients
of s. Let Sc denote the complement of S. Then

∥s̃− sS∥1 ≤ 2/(1−2α(ϵ)) · ∥sSc∥1 + 2β

d(1−2ϵ)(1−2α) .

Algorithm 5 Compressed sensing under the ℓ2 norm for
exact (approximate) recovery from As = b + (noise).
Input: A ∈ {0,1}q×n, minval, maxval, σa, σe

Output: s̃
01 λ← σeσa

√
2q logn

02 Initialize an LP solver with the following,
03 minimize

∑n
i=1 ui subject to

04 −ui ≤ s̃i ≤ ui,
05 minval≤ s̃i ≤maxval, and
06 −λ≤ [As̃−b]i ≤ λ.
07 LP solver outputs s̃.
08 return s̃

The parameters σa and σe denote the standard devia-
tion of the distribution determining the entries of A of
the noise, respectively.

D DFT

To avoid confusion with s, we introduce x as its function
representation, mapping [n] to a complex set C or integer
set
DFT. To avoid confusion with s, we introduce x as
its function representation, mapping the index set [n]
to a complex set C or integer set N (depending on the
values). Each entry sj can thus be represented by x(j).
The function x is supported on a set of size k (i.e., the
sparsity), which we denote as S.

We now compute the first 2k Fourier coefficients of
the sparse vector. To determine the support, we use a
helper polynomial p(t) of degree k, defined as follows.

p(t) := 1
N

∏
s∈S

(1−e−2πis/N e2πit/N ).

This polynomial has a special property: it evaluates to
0 for all s ∈ S. This allows us to identify the support
by computing its roots. We use the first 2k Fourier
coefficients of x to construct a system of linear equations
derived from the inner products. This is complemented
by the following observation: the x function evaluates to
0 in the complementary set S̄. Therefore, the product
p(t) ·x(t) = 0 for all t ∈ [0,n−1]. We can then solve the
roots of polynomial p (i.e., the support) for t ∈ [0,n−1]
using discrete revolution. After identifying the support,
since we have 2k DFT measurements for k variables, we
can recover the secret by solving an overdetermined linear
system. For more details, refer to [18] (pages 51-52).

The exact recovery of DFT for k-sparse secret is sup-
ported by the following theorem.

Theorem D.1 (Exact Recovery with DFT [18]). For
any n ≥ 2k, there exists a practical procedure for the
reconstruction of every k-sparse vector from its first m =
2k discrete Fourier measurements.

x̂(j) :=
n−1∑
s=0

x(u)e−2πijs/n, 0≤ j ≤ n−1.

E More Experimental Results

[1,104]

[1,100]

[1] . . . [100]

. . . . . . [9901,104]

[9901] . . . [104]

100 sets

(a) ℓ = 100

[1,104]

[1,10]

[1] . . . [10]

. . . . . . [9991,104]

[9991] . . . [104]

10 sets

(b) ℓ = 1000

Figure 6: An example demonstrating why larger partition
sizes (ℓ) may require more queries.
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Figure 7: The time required by our Search Tree Attack, plotted against the intersection ratio ρ.

n k Type q ℓ1 loss Time (ms)

102 10
DFT 20 0.00 1.25

CS-ℓ1 66 0.00 14.31
CS-ℓ2 66 0.00 14.54

20
DFT 40 0.00 4.02

CS-ℓ1 93 0.00 15.30
CS-ℓ2 93 0.00 16.76

100 MLE 90 9.67 20.04
MLE 95 6.26 13.77

103 10
DFT 20 0.00 0.94

CS-ℓ1 133 0.00 447.48
CS-ℓ2 133 0.00 424.43

100
DFT 200 0.58 4855.06

CS-ℓ1 664 0.00 5487.19
CS-ℓ2 664 0.00 2962.98

200
DFT 400 0.92 16591.96

CS-ℓ1 929 0.00 10454.34
CS-ℓ2 929 0.00 6434.73

1000 MLE 900 11.12 608.58
MLE 950 7.46 754.37

Table 4: Value range [−100,100].

n k Type q ℓ1 loss Time (ms)

102 10
DFT 20 2.95 1.05

CS-ℓ1 66 0.61 17.80
CS-ℓ2 66 0.06 538.24

20
DFT 40 3.30 3.60

CS-ℓ1 93 0.90 22.85
CS-ℓ2 93 0.13 741.40

100 MLE 90 10.27 14.38
MLE 95 7.51 14.81

103 10
DFT 20 0.54 0.93

CS-ℓ1 133 0.05 269.91
CS-ℓ2 133 0.00 95802.05

100
DFT 200 2.76 1537.81

CS-ℓ1 664 0.18 1188.24
CS-ℓ2 664 0.00 520225.09

200
DFT 400 3.90 9333.13

CS-ℓ1 929 0.27 1856.18
CS-ℓ2 929 0.00 742324.14

1000 MLE 900 10.89 835.96
MLE 950 6.88 894.05

Table 5: Value range [−100,100], with noise from N (µ =
0,σ = 2.5), clipped at magnitude 10.
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Figure 8: Number of protocol invocations (q) for c = 2.
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