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ABSTRACT
Anonymous Attribute-Based Credentials (ABCs) allow users to

prove possession of attributes while adhering to various authen-

tication policies and without revealing unnecessary information.

Single-use ABCs are particularly appealing for their lightweight

nature and practical efficiency. These credentials are typically built

using blind signatures, with Anonymous Credentials Light (ACL)

being one of the most prominent schemes in the literature. However,

the security properties of single-use ABCs, especially their secure

showing property, have not been fully explored, and prior defini-

tions and corresponding security proofs fail to address scenarios

involving partial attribute disclosure effectively. In this work, we

propose a stronger secure showing definition that ensures robust

security even under selective attribute revelation. Our definition

extends the winning condition of the existing secure showing ex-

periment by adding various constraints on the subsets of opened

attributes. We show how to represent this winning condition as a

matching problem in a suitable bipartite graph, thus allowing for

it to be verified efficiently. We then prove that ACL satisfies our

strong secure showing notion without any modification. Finally,

we define double-spending prevention for single-use ABCs, and

show how ACL satisfies the definition.
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1 INTRODUCTION
Anonymous Credentials (ACs)

1
, are a fundamental cryptographic

primitive that enable a user𝑈 to authenticate anonymously to a ver-

ifier𝑉 . In AC systems, when𝑈 subscribes to some service, an issuer

𝑆 blindly issues a token to𝑈 as proof of subscription. Subsequently,

𝑈 can redeem this token without linking itself to a particular prior

session with 𝑆 (even if 𝑆 and 𝑉 are the same party or collude with

each other) in a way that might give away additional unwanted

metadata about𝑈 . Beyond enabling basic privacy-preserving au-

thentication, ACs can be augmented to include additional user data

for𝑈 such as age, location, and other attributes, collectively referred

to as attributes. Anonymous Attribute-Based Credentials (ABCs) ex-

tend ACs by incorporating a more sophisticated showing procedure,
which allows users to selectively present subsets of these attributes

along with the credential (partial reveal). This makes it possible to

1
Also referred to as anonymous tokens in some cases.

implement fine-grained authentication policies without compro-

mising 𝑈 ’s privacy. Numerous ABC protocols have been proposed

in the literature [3, 5, 7–10, 13, 16, 17, 19, 22, 24, 31, 41, 44] and

related systems have been adopted practice (i.e. in Signal [20], or in

the context of Direct Anonymous Attestation (DAA) and Enhanced

Privacy ID (EPID)).

While some ABCs allow for a high degree of reusability of an

issued token across multiple authentications, they often rely on

expensive pairing operations or computationally intensive zero-

knowledge machinery. In contrast, single-use ABCs provide a light-
weight alternative that ensures anonymity for a single use while still

supporting important applications. A simplified variant of single-

use ABCs, which does not support attributes, is referred to as anony-

mous tokens. These tokens have gathered growing interest both in

the academic literature [6, 18, 25, 38, 40, 45] but also among major

companies such as Cloudfare,
2
Apple,

3
, Google,

4
and Facebook

5
.

They are also being standardized in an IETF draft
6
.

Despite the growing interest in single-use token protocols, pro-

posed schemes are designed as basic, one-time-use tokens that

prioritize simplicity and efficiency but do not incorporate user at-

tributes into the issued tokens. This limitation is significant, as the

ability to include attributes—and to selectively reveal only the nec-

essary ones—is crucial for applications where users require precise

control over the specific data they wish to disclose. One notable

exception is the construction by Baldimtsi and Lysyanskaya of

Anonymous Credentials Light (ACL) [3], which effectively serves

as a single-use token with attributes. However, as we detail below,

the security of ACL remains poorly understood, particularly in sce-

narios where users need to selectively reveal attributes embedded in

the token. This gap highlights an interesting research question: do

efficient, and provably secure single-use tokens with attributes and

support for partial attribute reveal exist? We answer this question

in the affirmative by introducing a rigorous security definition for

single-use tokens with attributes and partial reveal, and by proving

that the existing ACL scheme satisfies this definition.

2
https://blog.cloudflare.com/privacy-pass-standard

3
https://developer.apple.com/news/?id=huqjyh7k

4
https://github.com/google/anonymous-tokens,

https://developers.google.com/privacy-sandbox/protections/private-state-tokens

5
https://research.fb.com/privatestats

6
https://datatracker.ietf.org/wg/privacypass/about/
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Blind Signatures with Attributes and the ACL Scheme.Anony-
mous Credentials Light (ACL)[3] is one of the most popular single-

use ABC systems. ACL provides a single-use anonymous credential

systemwith attributes from basic group-based cryptography (in par-

ticular without the use of pairings). Although the ACL construction

was first published over a decade ago, its delicate security properties

have only recently begun to be understood. In their original work,

Baldimtsi and Lysyanskaya presented a useful abstraction of ABCs

called Blind Signatures with Attributes (BSAs) which captures the

essential properties of single-use ABCs with minimal syntactical

overhead. In a BSA, 𝑆 is abstracted as a signer 𝑆 which holds a secret
key sk for which the user U holds a corresponding public key pk.
During a registration phase, 𝑆 checks𝑈 ’s attributes, and𝑈 commits

to them using a commitment 𝐶 . In the subsequent singing phase,

𝑆 blindly issues to 𝑈 a credential in the form of a signature 𝜎 on

a rerandomization of 𝐶 , which can be verified against pk at the

time of showing. Baldimtsi and Lysyanskaya also introduced an

appropriate security notion to capture the properties of BSAs. They

defined it through an experiment which on one hand, encompasses

the standard one-more unforgeability property (which states that

𝑈 should not be able to obtain a valid signature without interacting

with 𝑆) and on the other hand, it also ensures that 𝑈 cannot alter

the attributes that it committed to during the registration phase.

Revisiting the Security Properties of ACL. Unfortunately, the
original security proof of ACL falls short of achieving this security

property in two aspects. First, the proof guarantees security only as

long as 𝑆 issues signatures in a sequential fashion. Second, Baldimtsi

and Lysyanskaya do not formally prove the security properties re-

lated to the secure showing aspects of their definition. In very recent

work, Kastner et al. [35] resolve both of these issues by giving the

first proof of security (unforgeability) for ACL under concurrent

issuing sessions and formally proving its secure showing property.

In the process, they also provide a new, modular security definition

which separates the security of ACL’s showing procedure from its

unforgeability. In doing so, however, their work also uncovers a

subtlety with the original showing security definition of Baldimtsi

and Lysyanskaya. In their security experiment, the adversary in-

teracts with the signer and obtains a set of ℓ signatures 𝜎1, . . . , 𝜎ℓ

with corresponding attribute vectors ®𝐿′
1
, . . . , ®𝐿′

ℓ
. The adversary is

considered successful in breaking the secure showing property if,

at the end of the experiment, it can produce an alternative multiset

of vectors ®𝐿1, . . . , ®𝐿ℓ which differs from the original one in at least

one component, yet still verifies against 𝜎1, . . . , 𝜎ℓ . (We consider

multisets as the same attribute vector may appear multiple times

among ®𝐿′
1
, . . . , ®𝐿′

ℓ
.) While this intuitively ensures that the adversary

cannot alter its attributes post-facto, closer scrutiny reveals that

this definition does not cover the natural scenario in which the

user only reveals a subset of its attributes in the showing procedure

(partial reveal). This option of partial attribute showing is indeed

provided by the syntax of the showing procedure. However, the

security experiment corresponding to the showing definition only

allows for the full set of attributes to be shown.

A Strong Secure Showing Definition. As the main contribution

of this work, we formalize a stronger secure showing definition for

blind signatures with attributes which remedies the aforementioned

shortcomings by supporting partial showing of attributes and prove

that ACL satisfies it without modification. As we will now discuss,

this presents several unexpected subleties both at a definitional and

technical level.

In the new notion, the adversary can again query the chal-

lenger of the security experiment for signatures corresponding

to attribute vectors ®𝐿′
1
, . . . , ®𝐿′

𝑘
. Similar to the original definition, the

adversary has to provide, at the end of the experiment, a set of

vectors ®𝐿1, . . . , ®𝐿ℓ which each verify against at least one of the sig-

natures 𝜎𝑖 . However, different from before, ®𝐿𝑖 may now be partial
vectors, that is some entries can be replaced by a special empty

symbol ⊥ (for honest users, these partial vectors would be subvec-

tors of the previously signed vectors ®𝐿′
𝑖
, i.e. they would agree on

the non-⊥ entries).

The winning condition of our modified experiment intuitively

has to check whether the set of opened partial vectors cannot be

explained by a set of honest users opening their signatures. For

such an honest set of users, there would be an explanation for each

of the opened vectors ®𝐿𝑖 by a signing session with a vector ®𝐿′
𝑗
such

that ®𝐿𝑖 is a subvector of ®𝐿′𝑗 and no signing session is used to explain

more than one opened signature. More formally, the game checks

if there is an injective mapping from the opened (partial) vectors

®𝐿1, . . . , ®𝐿ℓ to the signed vectors ®𝐿′
1
, . . . , ®𝐿′

𝑘
(multiply signed vectors

appear multiple times) such that the opened vectors are subvectors

of the corresponding signed vectors. If no such mapping exists,

the adversary has won the game, as it must have altered at least

one of the signed vectors post-facto. Alternatively, this means for

any attempt at explaining the opened partial vectors through the

signatures issued, there is at least one signature with opened vector

®𝐿𝑖 that cannot be explained by a signing session.

For example, consider an adversary that queried the challenger

for one signature corresponding to ®𝐿′
1
= (𝑎, 𝑏) and two signatures

corresponding to ®𝐿′
2
= ®𝐿′

3
= (𝑎, 𝑐). If it outputs three signatures

𝜎1, 𝜎2, 𝜎3 with (verifying) corresponding partial openings to at-

tributes (𝑎, 𝑐), (⊥, 𝑐), (⊥, 𝑐), it wins this game. Namely, since both

(𝑎, 𝑐) and (·, 𝑐) are subvectors only to ®𝐿′
2
= ®𝐿′

3
, but not ®𝐿′

1
, it is

impossible to assign the three openings as subvectors injectively

to the (multi-)set of previously signed attribute vectors {®𝐿′
1
, ®𝐿′

2
, ®𝐿′

3
}.

On the other hand, an adversary that opens the signatures to

(𝑎,⊥), (⊥, 𝑐), (⊥, 𝑐) would not win the game, as the (𝑎,⊥) now con-

stitutes a subvector to any of ®𝐿′
1
, ®𝐿2 and ®𝐿′

3
, and the opened vectors

can be explained by (𝑎,⊥) ↦→ ®𝐿′
1
, (⊥, 𝑐) ↦→ ®𝐿′

2
, (⊥, 𝑐) ↦→ ®𝐿′

3
.

Unfortunately, this new notion introduces an entirely different

issue: it is unclear whether this new secure showing definition is

satisfiable at all, as it seemingly asks the challenger to check an

exponentially complex set of constraints related to the winning

condition of the security experiment.

Strong Secure Showing for ACL. To overcome this technical

difficulty, we propose the following generic blueprint. First, one ab-

stracts the secure showing experiment as a bipartite graph𝐺 where

the sets of nodes correspond to the attribute vectors ®𝐿1, . . . , ®𝐿ℓ and
®𝐿′

1
, . . . , ®𝐿′

ℓ
and an edge between ®𝐿𝑖 and ®𝐿′𝑗 indicates that ®𝐿

′
𝑗
is a sub-

vector of ®𝐿𝑖 . We observe that we can view the winning condition

as the non-existence of a matching between the node sets in 𝐺 .
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Thus, in the second step one can leverage the Hopcroft-Karp al-

gorithm [33] to efficiently find such a maximal matching in 𝐺 . If

the algorithm comes up short, i.e., leaves one of the nodes corre-

sponding to ®𝐿1, . . . , ®𝐿ℓ unmatched, the adversary wins the game.

Unfortunately, it is unclear how to proceed from here for the gen-

eral case. In more detail, the simple fact that the we can detect when
an adversary wins the the security experiment does not mean that

we can turn such an adversary into an efficient routine for breaking

the hardness assumption underlying the schemes’ security.

Thus, for ACL, we take a slightly different route. An ACL-Sign

ature contains a component that is a “blinded” version of the regis-

tered commitment. We first argue in the Algebraic Group Model

(AGM), using similar techniques as [35], that there exists an in-

jective mapping from message-signature pairs to signing sessions.

We then use this mapping as the base for our matching of partial

opening vectors to full registered vectors. For this, we provide an

extraction algorithm for the blinding factors of the commitments

in the AGM. If the adversary wins the game, there must be a vector

that cannot be matched using matching algorithms, and thus there

must be at least one message-signature pair where the partially

opened vector is not a subvector of the corresponding full registered

vector used in the signing session. We use further AGM-based ex-

traction to extract a second opening of the registered commitment,

thus breaking the binding property of the commitment scheme.

Add-On: Double-Spending Detection When using single-use

ABCs one should be particularly careful on how to enforce the

single-use property. The simplest solution is to require the veri-

fication phase to be “online”, i.e., assuming multiple verification

services, there exists a centralized authority that tracks previously

used/redeemed tokens and during verification the receiver checks

with the authority whether the token is new. However, this is of-

ten not possible in constrained environments which might require

fast verification while suffering from poor connectivity (e.g. in the

setting of public transportation payments). In such scenarios, a

double-spending detection mechanism is preferred where verifi-

cation can happen offline but later it can be checked whether the

same token was used and identify the misbehaving user.

We extend the blind signature with attributes definition to also

support properties for double-spending protection enabling it to

more naturally address all the requirements of single-use anony-

mous credentials or tokens. Specifically, we first define a security

property that ensures a misbehaving user who presents the same

token more than once can be identified. Second, we define an excul-

pability property that guarantees a malicious signer cannot falsely

accuse an honest user of double spending.

Then, we provide a simple modification of the ACL scheme

to satisfy our definitions. The modification is based on a similar

protocol proposed by Abe [1] for the blind signature scheme ACL is

based on. This same scheme was also implemented for ACL in [32]

but without defining or proving its security. The key idea is to add

the first flow of a sigma-protocol to be used in signature showing to

the signature in such a way that it cannot be removed/exchanged,

namely by appending it in the string that is hashed at signature

generation time. Then, the showing protocol also involves proving

knowledge of the user’s attributes using this first flow contained

in the signature. We implement this using the Fiat-Shamir (FS)

heuristic.We note that both the user and the signer include a current

timestamp to derive their FS challenge. This is important in order

to ensure that if the user shows the same signature twice with

different timestamps, the challenge from the hash function will be

different. As the user has to always use the same first flow contained

in the signature, the two different transcripts reveal his identity.

1.1 Related Work
Anonymous Credentials (ACs) were originally proposed by David

Chaum [22] and later significantly improved by Camenisch and

Lysyanskaya [16, 17]. Since then, they have been the focus of ex-

tensive research, have seen adoption in industrial applications,

and align well with governmental policies emphasizing privacy-

preserving digital identity frameworks and data minimization prin-

ciples.

As noted, a variety of constructions have been proposed in the

literature, each secure under different cryptographic assumptions

and designed to address a distinct set of properties tailored to spe-

cific use cases. Two important axes of distinction are whether they

support multi-use or single-use showing and whether they include

support for attributes.

Typically, multi-use credentials support attributes due to their

more permanent nature and richer set of capabilities. A variety

of such protocols exist in the literature, the most popular being

based on discrete log and bilinear pairings and/or variations of the

RSA problem [7–9, 13, 16, 17, 31, 44] and more recently on lattice

assumptions [10]. There have also been proposals on extensions that

support credential delegation [5, 19, 24], decentralized issuance [26,

30, 46] and revocation [2, 12, 15, 16].

On the single-use tokens side, most of the proposals do not

support user attributes [6, 18, 25, 38, 40, 45]. In this category, can

we also include anonymous e-cash schemes [11, 14, 21, 29, 39, 43]

(where one can treat every digital coin as a single-use token). Ex-

tensions on decentralized issuance were also proposed [34, 47].

Existing works on single-use credentials with attributes that do

support attributes [3, 11, 41] lack proper security proofs
7
.

2 PRELIMINARIES AND DEFINITIONS
Notation. For a natural number 𝑛, we denote by [𝑛] the set of

numbers {1, . . . , 𝑛} and by [𝑛]0 the set {0} ∪ [𝑛]. Throughout the
paper, we fix a group G of prime order 𝑝 with generator 𝑔 and

assume that all algorithms have access to this group’s parameters

evenwhen not given as an explicit input.We useB for deterministic

assignments and←
$
to denote that a value is sampled at random

from a set or the output of a randomized algorithm. We denote

vectors ®𝐿 and by 𝐿𝑖 the 𝑖𝑡ℎ entry of ®𝐿. We say a vector ®𝐿′ is a partial
vector if for some indices 𝑖 , 𝐿′

𝑖
= ⊥ where ⊥ is a special empty

symbol. For a vector ®𝐿 of length 𝑛 and a (partial) vector ®𝐿′, we say
®𝐿′ is a subvector of ®𝐿, denoted by ®𝐿′ ⊆ 𝐿, if for each index 𝑖 ∈ [𝑛] it
holds that either 𝐿′

𝑖
= 𝐿𝑖 or 𝐿

′
𝑖
= ⊥. A multiset is a generalization

of a set where each element can appear multiple times. We call

the number of times an element 𝑥 appears in a multiset 𝑀 the

multiplicity of 𝑥 . For multisets𝑀,𝑀′ we say that𝑀′ is a subset of

7
The case of why ACL lacks the required formal proofs was extensively discussed

above. The issues with the security of the schemes based on Brands’[11, 41] were

previously discussed in [4].
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𝑀 , denoted by𝑀′ ⊆ 𝑀 , if each element in𝑀′ is also contained in

𝑀 where the multiplicity of each element contained in both sets is

lower or equal for𝑀′ than for𝑀 .

In the following sections, we assume that there exist public

parameters pp that are known to all algorithms even when not

explicitly given as an input.

2.1 Cryptographic Background
Definition 2.1 (AGM/algebraic algorithms [28]). We say that an

algorithm is algebraic with respect to a group G if it takes as input

a set of group elements 𝑔1, . . . , 𝑔𝑛 (w.l.o.g. we assume that one of

them is the generator 𝑔 and in case of interactive algorithms group

elements in the output of any potential oracles are added to the set)

along with a bit string input 𝑠 and for every group element 𝑦 that it

outputs it also outputs an explanation vector (sometimes also called

the representation) ®𝑧 such that

𝑦 =

𝑛∏
𝑖=1

𝑔
𝑧𝑖
𝑖
.

In the algebraic group model (AGM) it is assumed that every algo-

rithm is algebraic.

Definition 2.2 (Discrete Logarithm Problem (DLP)). We define the

discrete logarithm game DLPG for the group G with generator 𝑔

and prime order 𝑝 as follows:

Setup. Sample 𝑥 ←
$
Z𝑝 . Invoke the adversary on input 𝑔,𝑔𝑥 .

Output Determination. The adversary outputs a candidate

solution 𝑥 ′ ∈ Z𝑝 , the game outputs 1 if 𝑔𝑥
′
= 𝑦, 0 otherwise.

We define the advantage of an adversary A in the game DLP as

AdvDLPG (A) B Pr[DLPA
G

= 1]

and say that DLP is (𝑡, 𝜀)-hard in the group G if for any adversary

A that runs in time at most 𝑡 , it holds that AdvDLP
G
(A) ≤ 𝜀

2.2 Commitment Schemes
Definition 2.3 (Commitment Scheme). A commitment scheme

CS = (PG, C,V) consists of the following algorithms:

• The parameter generation algorithm PG takes as input pub-

lic parameters pp and outputs commitment parameters

ppCS.
• The commit algorithm C takes as input commitment param-

eters ppCS and a value 𝑣 outputs a commitment 𝐶 and an

opening 𝑟 .

• The verification algorithm CV takes as input commitment

parameters ppCS, a commitment𝐶 , a value 𝑣 and an opening

𝑟 outputs either 1 (Accept) or 0 (Reject).

Definition 2.4 (Hiding). We define the HIDING game for a com-

mitment scheme CS and an adversary A as follows:

Setup: Run CS.PG(pp) to obtain ppCS, output CS to the ad-

versary. Sample a bit 𝑏 uniformly at random.

Online Phase: The adversary outputs two values 𝑣0, 𝑣1. The

game computes (𝐶, 𝑟 ) ←
$
CS.C(ppCS, 𝑣𝑏 ) and outputs 𝐶

to the adversary.

Output Determination: The adversary outputs a bit 𝑏′.

We define the advantage of the adversary A as

AdvHIDINGCS (A) B 2 ·
����Pr[𝑏 = 𝑏′] − 1

2

����
We say that CS is (𝜀, 𝑡)-hiding if for any adversary A that runs in

time at most 𝑡 , it holds that AdvHIDINGCS (A) ≤ 𝜀. We say that CS is

perfectly hiding if for any adversary the advantage is 0.

Definition 2.5 (Binding). We define the BINDING game for a

commitment scheme CS and an adversary A as follows:

Setup: Run CS.PG to obtain ppCS, output CS to the adver-

sary.

Output Determination: The adversary outputs a commit-

ment𝐶 , two values 𝑣1, 𝑣2 and two openings 𝑟1, 𝑟2. The game

outputs 1 if 𝑣1 ≠ 𝑣2 and CV(ppCS, 𝑣1, 𝑟1) = CV(ppCS, 𝑣2,

𝑟2) = 1.

We define the advantage of the adversary A as

AdvBINDINGCS (A) B Pr

[
BINDINGACS = 1

]
and we say that CS is (𝑡, 𝜀)-binding if for any adversary A that

runs in time at most 𝑡 it holds that AdvBINDINGCS (A) ≤ 𝜀. We say

that CS is perfectly binding if for any adversary the advantage is 0.

Definition 2.6 (Generalized Pedersen Commitment [42]). We de-

scribe the generalized Pedersen Commitment Scheme GPC over a

group G described by group parameters ppG (which take the role

of the public parameters pp) for vectors of length 𝑛 below:

PG(ppG) : sample 𝑛 + 1 group elements ℎ0, . . . , ℎ𝑛 ←$
G.

Output those group elements as the commitment parame-

ters pp
GPC

= (ℎ0, . . . , ℎ𝑛).
C(pp

GPC
, ®𝑣): Given commitment parameters as above and a

vector ®𝑣 ∈ Z𝑛𝑝 with 𝑛 entries, sample an exponent 𝑟 ←
$
Z𝑝

and output 𝐶 = ℎ𝑟
0

∏𝑛
𝑖=1

ℎ
𝑣𝑖
𝑖
and 𝑟 .

CV(pp
GPC

, 𝑣,𝐶, 𝑟 ): Given the commitment parameters as

above, a value 𝑣 , a commitment𝐶 , and an opening 𝑟 , output

1 iff 𝐶 = ℎ𝑟
0

∏𝑛
𝑖=1

ℎ
𝑣𝑖
𝑖
.

Definition 2.7 (PoK for Opening of a Generalized Pedersen Com-
mitment). We describe a protocol for proving knowledge of a full

opening of GPC as described in definition 2.6, i.e. for the relation

R ®ℎ = {(𝐶, (𝑟, ®𝑣)) : ℎ𝑟
0
·∏𝑛

𝑖=1
ℎ
𝑣𝑖
𝑖

= 𝐶},
• The prover algorithm P is split into two algorithms P1 and

P2.

– P1 ( ®ℎ,𝐶, (𝑟, ®𝑣)): Sample values 𝑟0, . . . , 𝑟𝑛 ←$
Z𝑝 . Com-

pute 𝑅 =
∏𝑛

𝑖=0
ℎ
𝑟𝑖
𝑖
. Output the first flow 𝑅 and keep

the local state 𝑟0, . . . , 𝑟𝑛 .

– P2 (𝑟0, . . . , 𝑟𝑛, 𝑐, ®𝑣): Compute 𝑠0 = 𝑟0 − 𝑐 · 𝑟 , for 𝑖 =

1, . . . , 𝑛 compute 𝑠𝑖 = 𝑟𝑖 − 𝑐 · 𝑣𝑖 . Output 𝑠0, . . . , 𝑠𝑛 .

• The verifier algorithmV is split into two algorithmsV1 and

V2:

– V1 ( ®ℎ,𝐶, 𝑅): Sample a random challenge 𝑐 ←
$
Z𝑝 , out-

put 𝑐 , keep local state
®ℎ,𝐶, 𝑅.

– V2 ( ®ℎ,𝐶, 𝑅, 𝑐, ®𝑠): Output 1 if 𝑅 = 𝐶𝑐 ·∏𝑛
𝑖=0

ℎ
𝑠𝑖
𝑖
, 0 other-

wise.

We prove the following two lemmas in appendix A.1.
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Lemma 2.8 (Pedersen Commitments are perfectly hiding).

The commitment scheme GPC from definition 2.6 is perfectly hiding.

Lemma 2.9 (Pedersen Commitments are binding under DL).

If the DLP is (𝑡, 𝜀)-hard in the group G, GPC from definition 2.6 is
(𝑡 ′, 𝜀′)-binding with 𝑡 ′ ≈ 𝑡 and 𝜀′ ≤ 𝑛 · 𝜀.

2.3 Blind Signature with Attributes
Blind signatures with attributes were first defined in [3] and the

definition was later refined in [35]. Here, we recall the definition

as presented in [35].

Definition 2.10. A blind signature with attributes is a tuple of algo-
rithms BSA B (G,R,S,U,V,SH), with the following properties.

• The key generation algorithm G takes as input public param-

eters pp and outputs a pair of keys (pk, sk) for the signer. In
the rest of the paper we assume that pk implicitly contains

a copy of pp and sk implicitly contains a copy of pk.
• The registration protocol R between the signer and the user

consists of two algorithms RU and RS :

– RU takes as input a vector of attributes ®𝐿 and outputs

a commitment 𝐶 to ®𝐿, a registration state 𝑠𝑡R , and a

proof 𝜋 .

– RS is deterministic and takes as input a commitment

𝐶 , and a proof 𝜋 . It outputs 1 (Accept) or 0 (Reject).

• The signer algorithm S is split into two algorithms S1 and

S2:

– S1 takes as input a secret key sk and a commitment 𝐶 .

It returns a commitment 𝑅 and a signer state 𝑠𝑡S .
– S2 is deterministic and takes as input a secret key sk,

a singer state 𝑠𝑡S , a commitment 𝑅, and a challenge 𝑒 .

It returns a response 𝑆 .

• The user algorithmU is split into two algorithmsU1 and

U2:

– U1 takes as input a public key pk, commitments 𝑅 and

𝐶 , a message𝑚, and a registration state 𝑠𝑡R . It returns
a challenge 𝑒 and a user state 𝑠𝑡U .

– U2 is deterministic and takes as input a public key

pk, a user state 𝑠𝑡U , a commitment 𝑅, a challenge 𝑒 , a

response 𝑆 , and a message𝑚. It returns a signature �̂�

and a user opening state 𝑠𝑡O
• The show algorithm SH is split into two algorithms SH𝑈

and SH𝑉 :

– The show generation algorithm SH𝑈 takes as input a

public key pk, a registration state 𝑠𝑡R (which includes

the attribute vector of the user), a message𝑚, signature

�̂� , a user’s signer session state 𝑠𝑡O and an index set

𝐼𝑜𝑝 . It outputs a partial vector ®𝐿′ and a proof 𝜋 .

– The show verification algorithm SH𝑉 is deterministic

and takes as input a public key pk, a message 𝑚, a

signature �̂� , a (partial) attribute vector ®𝐿′, an index set

𝐼𝑜𝑝 corresponding to the non-⊥ indices in ®𝐿′, and a

proof 𝜋 . It outputs 1 (Accept) or 0 (Reject).

• The verification algorithmV is deterministic and takes as

input a public key pk, a signature �̂� , and a message𝑚. It

outputs 1 (Accept) or 0 (Reject).

Definition 2.11 (Correctness of Blind Signatures with Attributes).
We say that a blind signature scheme with attributes BSA =(G, R,
S,U,V, SH ) is perfectly correct if for all public parameters 𝑝𝑝 ,

all vectors of attributes ®𝐿, all index sets 𝐼𝑜𝑝 ⊂ [𝑛] , and all messages

𝑚, it holds that

Pr


V(pk, �̂�,𝑚) = 1 ∧

SH𝑉 (pk,𝑚, �̂�, ®𝐿′, 𝐼𝑜𝑝 , 𝜋 ) = 1

:

(pk, sk) ←
$
G(pp)

(𝐶, 𝑠𝑡R , 𝜋 ) ←$
RU ( ®𝐿)

1←
$
RS (𝐶, 𝜋 )

(𝑅, 𝑠𝑡S ) ←$
S1 (sk,𝐶 )

(𝑒, 𝑠𝑡U ) ←$
U1 (pk, 𝑅,𝐶,𝑚, 𝑠𝑡R )

𝑆 ← S2 (sk, 𝑠𝑡S , 𝑅, 𝑒 )
(�̂�, 𝑠𝑡O ) ← U2 (pk, 𝑠𝑡U , 𝑅, 𝑒, 𝑆,𝑚)

( ®𝐿′, 𝜋 ) ← SH𝑈 (pk, 𝑠𝑡R ,𝑚, 𝜎, 𝑠𝑡O , 𝐼𝑜𝑝 )


= 1.

Definition 2.12 (Blindness). For the blindness definition we refer

the reader to the original work of Baldimtsi and Lysyanskaya [3].

We recall the definition of strong One-More Unforgeability,

where an adversary wins if it is able to output ℓ + 1 valid message-

signature pairs after completing only ℓ signing sessions. In the

setting of blind signatures with attributes, this game is augmented

with a registration oracle. The registration oracle R allows the ad-

versary to register users with attributes of its choice. The game

keeps the internal state the signer would keep regarding registered

users which includes a list of the registered attribute commitments.

It responds with 1 or 0 like the signer side registration algorithm.

The signing oracle S(sk, ·) is split into two oracles S1 and S2 that

share session identifiers and state such that each session opened

with a call to S1 can be closed with exactly one call to S2. It al-

lows the adversary to request signatures for previously registered

users of its choice by receiving first-round and second-round signer

messages. The users can be identified by their commitments to at-

tributes. The adversary may arbitrarily interleave signing sessions

(i.e. make many calls to S1 before making the call with the same

session identifier to S2) and also leave signing sessions open at

the end of the game. The game maintains a counter for how many

signing sessions were closed. It is not possible to close the same

signing session twice.

Definition 2.13 (Strong One-More Unforgeability (OMUF)). For a
blind signature with attributes BSA = (G,R,S,V,SH), a positive
integer ℓ ∈ Z+, and an adversary A, we define the game ℓ-OMUF
as follow:

• Setup. Generate a pair of keys (pk, sk) ←
$
G(pp), and

invoke AR(.),S(sk,.) .
• Online Phase. A may query its oracles R(.),S(sk, .) arbi-

trarily and in an interleaved fashion as long as it completes

at most ℓ sessions with S.
• Output Determination. The game outputs 1 iffA outputs

𝑘 ≥ ℓ + 1 pairwise-distinct tuples (�̂�1,𝑚1), . . . , (�̂�𝑘 ,𝑚𝑘 )
such that for all 𝑖 ∈ [𝑘],V(𝑝𝑘, 𝜎𝑖 ,𝑚𝑖 ) = 1.

We define A’s advantage in winning the game ℓ-OMUF against a

blind signature scheme with attributes BSA as

Advℓ-OMUF
BSA (A) B Pr[ℓ-OMUFABSA = 1] .

We say that BSA is (𝑡, 𝜀, ℓ)-OMUF-secure if for all adversaries
A that run in time at most 𝑡 , Advℓ-OMUF

BSA (A) ≤ 𝜀.

We present the definition of secure showing. Intuitively, this se-

curity definition captures that the adversary cannot re-link received

signatures to other attribute vectors.
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Definition 2.14 (Secure Showing (from [35]))). For a blind signa-

ture with attributes BSA = (G,R,S,V,SH), a positive integer

ℓ ∈ Z+, and an adversary A, we define the game ℓ-SH as follows.

• Setup. Generate key pair (pk, sk) ←
$
G(pp) and invoke

AR(·),S(sk,· ) .
• Online Phase. The adversary may query its oracles arbi-

trarily and in an interleaved fashion as long as it completes

at most ℓ sessions with S. For 𝑖 ∈ [ℓ], let 𝐶′
𝑖
denote the

registered commitment corresponding to the 𝑖𝑡ℎ session

with S(sk, ·). We define𝐶′
𝑖
= ⊥ if there is no session 𝑖 (this

occurs if A makes fewer than ℓ signing queries).

• Output Determination. The adversary outputs up to ℓ

pairwise distinct tuples of the form (𝑚𝑖 , 𝜎𝑖 ,𝐶𝑖 , ®𝐿𝑖 , 𝑟𝑖 , 𝜋𝑖 ) as
well as ℓ pairs ( ®𝐿′

𝑖
, 𝑟 ′
𝑖
). The game outputs 1 if all of the

following hold and 0 otherwise:

– For all 𝑖 ∈ [ℓ], either 𝑟 ′
𝑖
is a valid opening of𝐶′

𝑖
to ®𝐿′

𝑖
or

𝐶′
𝑖
= ⊥ (recall that 𝐶′

𝑖
= ⊥ when the adversary chose

to open less than ℓ signing sessions).

– For all tuples (𝑚𝑖 , 𝜎𝑖 ,𝐶𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) in the adversary’s out-

put, it holds that SH𝑉 (pk, 𝜎𝑖 ,𝐶𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) = 1.

– For all tuples (𝑚𝑖 , 𝜎𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) in the adversary’s output,

it holds thatV(pk,𝑚𝑖 , 𝜎𝑖 ) = 1.

– All ®𝐿𝑖 , ®𝐿′𝑖 contain an entry for each attribute, i.e., they

do not contain the ⊥ symbol anywhere.

– The multiset of all attribute vectors {®𝐿𝑖 } ⊈ {®𝐿′𝑖 : 𝐶′
𝑖
≠

⊥}.
We defineA’s advantage in winning the game ℓ-SH against a blind

signature scheme with attributes BSA as

Advℓ−SHBSA (A) B Pr[ℓ-SHABSA = 1] .

We say that BSA is (𝑡, 𝜀, ℓ)-SH secure if for all adversaries that

run in time at most 𝑡 , Advℓ−SHBSA (A) ≤ 𝜀.

2.4 A Stronger Secure Showing Definition
The secure showing property as defined in [35] and presented above

as definition 2.14, does not cover all possible attacks on the Secure

Showing algorithm that one might consider.

In the real world, users typically do not reveal all their attributes

but instead disclose only those necessary to access a specific service.

For instance, a movie streaming platform might require users to

present message-signature pairs (as proof of purchase) along with

an opening of their age attribute to access age-restricted movies.

However, users would not want to, nor are they likely required to,

reveal their full attribute vector, which might include details such

as their place of residence, name, or nationality.

To use signatures as tokens securely, it must not be possible to

show more signatures for a given vector of attributes than were

originally requested for the corresponding commitment. Consider

the following example: two colluding users, one aged 18 and the

other 15, request two signatures (i.e., purchase two movies) tied

to a commitment containing the 18-year-old’s attribute vector and

one signature tied to a commitment containing the 15-year-old’s

attribute vector. These users should not be able to present three

signatures with the age attribute set to 18—effectively allowing the

15-year-old to access age-restricted content—while still withholding

other attributes, such as their names or places of residence.

This scenario is not addressed by the one-more unforgeability

property, as the users output exactly as many signatures as they

requested. It is also not covered by the previous definition of se-

cure showing, since the users in that case do not reveal their full

attribute vectors. To address this gap, we extend the secure show-

ing definition to what we term strong secure showing. This new
definition models a game where users are permitted to partially

open attribute vectors using the scheme’s showing algorithm and

are considered successful if they execute an attack similar to the

one described above.

One concern raised in [35] was that the winning criterion might

be inefficient to check because the challenger would have to check

that there exists no mapping from the “showed” partial vectors

to the full vectors that the adversary requested signatures for. In

particular, we cannot trust the adversary to output a “witness” for

winning the game (i.e. a bad mapping that leaves at least one vector

unmapped), as a better mapping might exist.

We resolve this through the observation that this mapping can be

expressed as a matching in a bipartite graph and describe a graph-

based approach for efficiently checking the winning condition in

remark 2.16.

Definition 2.15 (Strong Secure Showing). For a blind signature

with attributes BSA = (G,R,S,V,SH), a positive integer ℓ ∈ Z+,
and an adversary A, we define the game ℓ-SH as follows.

• Setup. Generate key pair (pk, sk) ←
$
G(pp) and invoke

AR(.),S(sk,.) . Oracles R(.) and S(sk, .) share state and we

require that session 𝑖 with S(sk, .) uniquely identifies some

prior session 𝑗 with R(.).
• Online Phase. The adversary may query its oracles arbi-

trarily and in an interleaved fashion as long as it completes

at most ℓ sessions with S. For 𝑖 ∈ [ℓ], let 𝐶′
𝑖
denote the

commitment corresponding to the 𝑖𝑡ℎ session with S(sk, .).
We define 𝐶′

𝑖
= ⊥ if there is no session 𝑖 .

• Output Determination. The adversary outputs up to ℓ

tuples of the form (𝑚𝑖 , 𝜎𝑖 ,𝐶𝑖 , ®𝐿𝑖 , 𝑟𝑖 , 𝜋𝑖 ) such that the (𝑚𝑖 , 𝜎𝑖 ,

𝐶𝑖 ) parts are pairwise distinct as well as ℓ pairs ( ®𝐿′𝑖 , 𝑟
′
𝑖
). The

game outputs 1 if all of the following hold and 0 otherwise:

– For all 𝑖 ∈ [ℓ], either 𝑟 ′
𝑖
is a valid opening of 𝐶′

𝑖
to ®𝐿′

𝑖
or 𝐶′

𝑖
= ⊥.

– For all tuples (𝑚𝑖 , 𝜎𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) in the adversary’s output,

it holds that SH𝑉 (pk, 𝜎𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) = 1.

– For all tuples (𝑚𝑖 , 𝜎𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) in the adversary’s output,

it holds thatV(pk,𝑚𝑖 , 𝜎𝑖 ) = 1.

– There exists no injective mapping

𝜇 : {®𝐿𝑖 }ℓ𝑖=1
→ {®𝐿′𝑖 }

ℓ
𝑖=1

such that for all 𝑖 , it holds that ®𝐿𝑖 ⊆ 𝜇 ( ®𝐿𝑖 ).
We defineA’s advantage in winning the game ℓ-SH against a blind

signature scheme with attributes BSA as

Advℓ−SHBSA (A) B Pr[ℓ − SHABSA = 1] .

We say that BSA is (𝑡, 𝜀, ℓ)-SH secure if for all adversaries that run

in time at most 𝑡 , Advℓ−SHBSA (A) ≤ 𝜀.
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Remark 2.16. It is possible to check the winning condition of

the above game in time 𝑂 (ℓ2.5) by using the Hopcroft-Karp[33]

algorithm to find a maximum cardinality matching. To apply the

algorithm, we briefly explain how to view the sets of vectors {®𝐿𝑖 }ℓ𝑖=1

and {®𝐿′
𝑖
}ℓ
𝑖=1

as a graph: Each vector from the multiset {®𝐿𝑖 }ℓ𝑖=1
cor-

responds to a vertex 𝑣𝑖 and each vector from the multiset {®𝐿′
𝑖
}ℓ
𝑖=1

corresponds to a vertex 𝑤𝑖 in the graph, There exists an edge be-

tween 𝑣𝑖 and𝑤 𝑗 if and only if ®𝐿𝑖 ⊂ ®𝐿′𝑗 .
It is easy to see that this graph is bipartite as there are only edges

between 𝑣𝑖 ’s and 𝑤 𝑗 ’s but not within the set of the 𝑣𝑖 ’s or within

the set of the𝑤 𝑗 ’s.

The running time of the Hopcroft-Karp algorithm is 𝑛2.5
where

𝑛 is the number of vertices - in our case the number of vertices is

2ℓ , thus the running time of the algorithm lies in 𝑂 (ℓ2.5).

2.5 Double-Spending Definition
In the following, extend the definition of blind signature with at-

tributes (Def. 2.10) to also support double-spend protection, by
modifying the user side registration algorithm, RU , and defining

additional algorithms for double-spending detection, resulting in a

type of scheme called BSADS = (G,R,S,U,V,SH ,DSI,DSV).
Unless stated otherwise below, the algorithms of a BSADS have the
same input and output behaviour, correctness, and security notions

as BSA.

• RU takes as input a vector of attributes ®𝐿 where the first

attribute, denoted by 𝐼𝐷 , is a unique identifier of the user. It

outputs a commitment 𝐶 to ®𝐿, a registration state 𝑠𝑡R , and
a proof 𝜋 where we use the proof of knowledge of a partial

opening as described in definition B.6 to reveal 𝐼𝐷 .

• DSI the double-spend identification algorithm takes as

input the issuer’s public key pk, a signature 𝜎 , the signer’s
internal state 𝑠𝑡S , and two different presentation proofs

𝜋1, 𝜋2 and it either outputs a user 𝐼𝐷 and a proof of guilt

𝜋𝑄 , or ⊥.
• DSV the double-spend verification algorithm takes as

input a user 𝐼𝐷 and a proof of guilt 𝜋𝑄 and it outputs 1

(Accept) or 0 (Reject).

Discussion. The specifics of the registration protocol will depend on

the exact policy of each application scenario. For simplicity, in our

definition above, we assume that the first attribute of the vector ®𝐿 is

a unique identifier of the user, denoted as 𝐼𝐷 , and this uniqueness

is guaranteed by the attached proof 𝜋 . For example, in certain cases,

during the registration process, the user might present a physical

document, such as a passport, and prove (e.g., by partially opening

the commitment𝐶) that the encoded attributes match those in their

passport. In such scenarios, 𝐼𝐷 could be the unique passport num-

ber. Regardless of the specific implementation, 𝐼𝐷 must be unique

for each user and should be a value that cannot be duplicated or

obtained by another user to prevent framing attacks where a mali-

cious user attempts to impersonate another by registering under

their identity and engaging in fraudulent activities.

A blind signature with attributes and double-spend protection

BSADS needs satisfy two additional security properties: double-

spending identification and exculpability.

Double-spending identification guarantees that no adversary is

able to present the same token twice without having their public

key revealed.

Definition 2.17 (Double-spending Identification). For a blind sig-

nature with attributes and double-spending protection BSADS =

(G,R,S,U,V,SH ,DSI,DSV), and an adversary A, we define

the game DSP as follows.

• Setup. Generate a pair of keys (pk, sk) ←
$
G(pp), and

invoke AR(.),S(sk,.) .
• Online Phase. A may query its oracles R(.),S(sk, .) arbi-

trarily and in an interleaved fashion.

• Output Determination. The game outputs 1 iff A out-

puts: (𝜎, ®𝐿′
1
, 𝜋1) and (𝜎, ®𝐿′

2
, 𝜋2) such that

®𝐿′
1
≠ ®𝐿′

2
∨ 𝜋1 ≠ 𝜋2

SH𝑉 (𝜎, ®𝐿′
1
, 𝜋1) = 1 andSH𝑉 (𝜎, ®𝐿′

2
, 𝜋2) = 1 andDSI(𝜎, 𝜋1, 𝜋2) =

⊥
We define A’s advantage in winning the game DSP against a

blind signature scheme with attributes BSADS as

AdvDSPBSADS (A) B Pr[DSPABSADS = 1] .
We say that BSADS is (𝑡, 𝜀)-DSP-secure if for all adversaries

A that run in time at most 𝑡 , AdvDSPBSADS (A) ≤ 𝜀.

Finally, we also define exculpability which guarantees that a

malicious signer cannot wrongly accuse an honest user of double-

spending.

Definition 2.18 (Exculpability). For a blind signature with at-

tributes and double-spending protection BSADS = (G,R,S,U,V,
SH ,DSI,DSV), and an adversary A, we define the game Exc
as follows.

Setup. A outputs pk and is given access to honest user oracles
ARU (.),U(.),SH𝑈 (.)

. Initialize𝑄𝑈 to hold the set of honest

user 𝐼𝐷’s generated by the oracle calls.

Online Phase. A is may query the following oracles in an

interleaved fashion.

Registration Oracle RU (.) It takes as input an attributes

vector ®𝐿 with a unique first attribute (recall that 𝐼𝐷

is the first attribute) and runs the user’s attributes

registration algorithm RU on it to obtain 𝐶, 𝜋, 𝑠𝑡R . It
outputs 𝐶, 𝜋 to the malicious signer.

User OraclesU(.) For the first round, it takes as input

a commitment 𝐶 that was an output of a previous

registration query, a first signer commitment 𝑅, and

a message𝑚. It runs theU1 algorithm and returns a

challenge 𝑒 . For the second round, it takes as input a

signer response 𝑆 , runs theU2 algorithm, and returns

the resulting signature 𝜎 on the message (or ⊥ ifU2

did not result in a signature). It keeps the showing

state 𝑠𝑡O .
Showing Oracle SH𝑈 (.) It takes as input a signature

𝜎 from the outputs of the user oracles and a set 𝐼𝑜𝑝 of

indices to open. If the signature has never been queried

to the showing oracle before, it runs the showing algo-

rithm SH𝑈 for this signature using the internal states

𝑠𝑡R and 𝑠𝑡O it kept from registration and signature

generation.
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Output Determination. The game outputs 1 iff A outputs:

(𝐼𝐷, 𝜋𝑄 ) such that 𝐼𝐷 ∈ 𝑄𝑈 and DSV(𝐼𝐷, 𝜋𝑄 ) = 1.

We define A’s advantage in winning the game Exc against a
blind signature scheme with attributes BSADS as

AdvExcBSADS (A) B Pr[ExcABSADS = 1] .

We say that BSADS is (𝑡, 𝜀)-Exc-secure if for all adversaries

A that run in time at most 𝑡 , AdvExcBSADS (A) ≤ 𝜀.

3 ANONYMOUS CREDENTIALS LIGHT
We now present Anonymous Credentials light scheme of [3] along

with protocols for partial attribute showing and double spending

detection.

3.1 The Main ACL Construction
We first recall the Anonymous Credentials Light scheme from [3].

For the reader’s convenience, we have included a figure of the

signing interaction in fig. 3 in appendix D.

For a group G with generator 𝑔 and prime order 𝑝 described

by parameters ppG and hash functions Hpp,H1 : {0, 1}∗ → G,
Hreg,Hsh,H3 : {0, 1}∗ → Z𝑝 modeled as randomoracles, the scheme

ACL = (G, R, S,U,V) is defined as follows:

• G(ppG): Sample 𝑥 ←
$
Z𝑝 , ℎ ←$

G, compute 𝑦 ≔ 𝑔𝑥 ,

generate 𝑧 ≔ H1 (𝑔, ℎ,𝑦), set sk ≔ 𝑥 and pk ≔ (𝑔, ℎ,𝑦, 𝑧),
and output (pk, sk).

• RU ( ®𝐿): Parse (𝐿1, . . . , 𝐿𝑛) = ®𝐿, obtain ℎ0, . . . , ℎ𝑛 by query-

ing 0, . . . , 𝑛 to Hpp, sample 𝑟𝑐𝑜𝑚 ←
$
Z𝑝 and compute

𝐶 ≔ ℎ
𝑟𝑐𝑜𝑚
0
· ℎ𝐿1

1
· . . . · ℎ𝐿𝑛𝑛 . Compute a proof of knowledge

𝜋 of an opening of 𝐶 , using the Fiat-Shamir transform of

the protocol described in definition 2.7 with random oracle

Hreg and output (𝐶, 𝑠𝑡R , 𝜋).
• RS (𝐶, 𝜋): Verify that 𝜋 is a proof of knowledge of an open-

ing of 𝐶 using the verification of the protocol described in

definition 2.7. Output 1 (Accept) if yes, 0 (Reject) other-

wise.

• S: The signer algorithm. It consists of S1 and S2:

– S1 (sk,𝐶): Sample 𝑑, 𝑠1, 𝑠2, 𝑢, rnd ←$
Z𝑝 , generate 𝑧1

≔ 𝑔rnd ·𝐶, 𝑧2 ≔ 𝑧/𝑧1, compute 𝑎 ≔ 𝑔𝑢 , 𝑏1 ≔ 𝑔𝑠1 · 𝑧𝑑
1
,

𝑏2 ≔ ℎ𝑠2 · 𝑧𝑑
2
, set 𝑠𝑡S ≔ (𝑑, 𝑠1, 𝑠2, 𝑢), 𝑅 ≔ (rnd, 𝑎, 𝑏1

, 𝑏2), and output (𝑅, 𝑠𝑡S).
– S2 (sk, 𝑠𝑡S, 𝑅, 𝑒): Parse 𝑑, 𝑠1, 𝑠2, 𝑢 = 𝑠𝑡S, 𝑥 ≔ 𝑠𝑘 , com-

pute 𝑐 ≔ 𝑒 − 𝑑 mod 𝑞 and 𝑟 ≔ 𝑢 − 𝑐 · 𝑥 mod 𝑞, and

return 𝑆 ≔ (𝑐, 𝑑, 𝑟, 𝑠1, 𝑠2).
• U: The user algorithm consists of two algorithmsU1 and

U2:

– U1 (pk, 𝑅,𝑚,𝐶): Parse (rnd, 𝑎, 𝑏1, 𝑏2) ← 𝑅, sample 𝛾

←
$
Z∗𝑝 , 𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 ←$

Z𝑝 , generate 𝑧1 ≔ 𝑔rnd ·𝐶,
𝜁 ≔ 𝑧𝛾 , 𝜁1 ≔ 𝑧

𝛾

1
, 𝜁2 ≔ 𝜁 /𝜁1, compute 𝛼 ≔ 𝑎 · 𝑔𝑡1 ·

𝑦𝑡2 , 𝛽1 ≔ 𝑏
𝛾

1
·𝑔𝑡3 ·𝜁 𝑡4

1
, 𝛽2 ≔ 𝑏

𝛾

2
·ℎ𝑡5 ·𝜁 𝑡4

2
, 𝜂 ≔ 𝑧𝜏 , generate

𝜀 ≔ H3 (𝜁 , 𝜁1, 𝛼 ,𝛽1, 𝛽2, 𝜂,𝑚), compute 𝑒 ≔ 𝜀 − 𝑡2 − 𝑡4
mod 𝑞, set 𝑠𝑡U ≔ (𝛾, 𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, rnd), and return

(𝑒, 𝑠𝑡U ).
– U2 (pk, 𝑠𝑡U , 𝑅, 𝑒, 𝑆,𝑚): Parse (𝛾, 𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5) =

𝑠𝑡U , and (𝑐, 𝑑, 𝑟, 𝑠1, 𝑠2, rnd1, rnd2) = 𝑆 , compute 𝜌 ≔

𝑟 + 𝑡1, 𝜔 ≔ 𝑐 + 𝑡2, 𝜎1 ≔ 𝛾 · 𝑠1 + 𝑡3,𝜎2 ≔ 𝛾 · 𝑠2 +

𝑡5, 𝛿 ≔ 𝑑 + 𝑡4, 𝜇 ≔ 𝜏 − 𝛿 · 𝛾 , and return the signature

�̂� ≔ (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝛿, 𝜇) if 𝜔 + 𝛿 ≡ H3 (𝜁 , 𝜁1, 𝑔
𝜌 ·

𝑦𝜔 ,𝑔𝜎1 · 𝜁𝛿
1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚), ⊥ otherwise. Output

𝑠𝑡O = (𝛾, rnd).
• V(pk,𝑚, �̂�): Parse �̂� as (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝛿, 𝜇), and output 1

if 𝜁 . 1 and𝜔+𝛿 ≡ H3 (𝜁 , 𝜁1, 𝑔
𝜌 ·𝑦𝜔 ,𝑔𝜎1 ·𝜁𝛿

1
, ℎ𝜎2 ·(𝜁 /𝜁1)𝛿 , 𝑧𝜇 ·

𝜁𝛿 ), 0 otherwise.

3.2 ACL Showing of Partial Attributes
Showing and verification of showing is depicted in fig. 1. We note

that it is also possible to “show” a signature without revealing any

attributes, i.e. when 𝐼𝑜𝑝 is empty. In this case, the user can run a

proof of same discrete logarithm (see definition B.1) for the blinded

commitment parameters, as well as a proof of knowledge of an

opening of a Pedersen commitment to the blinded parameters like

the one used at registration.

The procedure described in fig. 1 allows for extraction in the

AGM:

Theorem 3.1 (Extractor for Showing Procedure). For any
algebraic adversary U that, on input of commitment parameters
pp

GPC
= ®ℎ, it outputs an ACL public key pk along with a tuple

(𝑚,𝜎, ®𝐿′, 𝐼𝑜𝑝 , 𝜋) such that SH𝑉 (pk,𝑚, 𝜎, ®𝐿′, 𝐼𝑜𝑝 , 𝜋) = 1, there exists
an extractor E that takes U’s output (pk, (𝑚,𝜎, ®𝐿′, 𝐼𝑜𝑝 , 𝜋)) along
with all algebraic representationsU outputs as input, and it outputs
a witness 𝛾 of the proof of same discrete logarithm with probability
1 −𝑄ℎ

1+𝑛
𝑝 (over the choice of the random oracle) and (if the former

happens) additionally either a witness ®𝐿 which is a partial opening
to the commitment 𝜁1 on the indices 𝑖 ∉ 𝐼 , or a solution 𝑅, ®𝑧, ®𝑧′ to the
BINDING game of Pedersen commitments with probability 1 − 2

𝑝

over the choice of the random oracle.

We prove this in appendix B.

3.3 Secure Showing of ACL
Theorem 3.2. If the discrete logarithm problem is (𝑡, 𝜀)-hard in

the group G, then ACL is (𝑡 ′, 𝜀′)-SSsecure in the AGM + ROM with
𝑡 ′ ≈ 𝑡 and

𝜀′ ≤ (𝑛 + 21) · 𝜀 + (𝑛 + 3) · ℓ ·𝑄𝐻 + 52 + 4 ·𝑄𝐶

𝑝
+ 1

𝑛
,

where ℓ is the number of signing sessions closed, 𝑄𝐻 is the number
of hash queries the adversary made to Hsh, 𝑄𝐶 is the number of
commitmentsA registers, and 𝑛 is the maximal number of attributes
contained in each attribute vector.

Proof. We work in the AGM and show that an adversary that

breaks the secure showing property can be used to break the discrete

logarithm assumption in the underlying group. Our proof technique

varies depending on the adversary’s strategy for breaking the secure

showing property - namely it can either provide a set of signatures

where for some signatures, the blinded 𝜁1 components do not match

the 𝐶 · 𝑔rnd components of the signing sessions. This can happen

either in the form of one “odd one out” signature that matches no

session (we rule this out in G2), or in two signatures that match

the same signing session (we rule this out in G3). The last possible

strategy is for the adversary to break the binding property of the
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�
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SH𝑈 (pk, 𝑠𝑡R = (𝑟𝑐𝑜𝑚, ®𝐿),𝑚, 𝜎, 𝑠𝑡O = (rnd, 𝛾), 𝐼𝑜𝑝 , )

Γ B 𝑔𝛾

®Ψ ≔ {𝜓𝑘 ≔ ℎ
𝛾

𝑘
}𝑘∈⟦𝑛⟧

𝑟𝑠𝑑𝑙 ←$
Z𝑝

®ℎ𝑠𝑑𝑙 ≔ {ℎ𝑠𝑑𝑙,𝑘 ≔ ℎ
𝑟𝑠𝑑𝑙
𝑘
}𝑘∈⟦𝑛⟧

𝑧𝑠𝑑𝑙 ≔ 𝑧𝑟𝑠𝑑𝑙

𝑔𝑠𝑑𝑙 ≔ 𝑔𝑟𝑠𝑑𝑙

𝑟𝑔, {𝑟𝑖 }𝑖∈[𝑛]0,\𝐼𝑜𝑝 ←$
Z𝑝

𝑅 ≔ 𝑔𝑟𝑔 ·∏𝑖∈[𝑛]0\𝐼𝑜𝑝 𝜓
𝑟𝑖
𝑖

for 𝑖 ∈ [𝑛] \ 𝐼𝑜𝑝 : 𝐿′
𝑖
B ⊥

for 𝑖 ∈ 𝐼𝑜𝑝 : 𝐿′
𝑖
B 𝐿𝑖

𝑐 ←
$
Hsh (pk, 𝜎, 𝜎 .𝜁1,𝑚, ®Ψ, Γ, 𝑔𝑠𝑑𝑙 , 𝑧𝑠𝑑𝑙 , ®ℎ𝑠𝑑𝑙 , 𝑅, ®𝐿′)

𝑠𝑠𝑑𝑙 ≔ 𝑟𝑠𝑑𝑙 − 𝑐 · 𝛾
𝑠0 B 𝑟0 − 𝑐 · 𝑟𝑐𝑜𝑚
{𝑠𝑖 ≔ 𝑟𝑖 − 𝐿𝑖 · 𝑐}𝑖∈[𝑛]0\𝐼𝑜𝑝
𝑠Γ ≔ 𝑟𝑔 − rnd · 𝑐
𝑆 ≔ {𝑠𝑖 }𝑘∈𝐼𝑜𝑝 ∪ {𝑠Γ}
𝜋𝑠𝑑𝑙 ≔ (Ψ, Γ, 𝑔𝑠𝑑𝑙 , 𝑧𝑠𝑑𝑙 , 𝑠𝑠𝑑𝑙 , ℎ𝑠𝑑𝑙 )

𝜋𝑜𝑝 ≔ (𝑅, 𝑆)
Output ®𝐿′, (𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 )

SH𝑉 (pk, 𝜎,𝑚, ®𝐿′, 𝐼𝑜𝑝 , 𝜋 = (𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 ))
IfV(pk, 𝜎, 𝜁1,𝑚) = 0

or ∃𝑖 ∈ 𝐼𝑜𝑝 : 𝐿′
𝑖
= ⊥ ∨ ∃𝑖 ∉ 𝐼𝑜𝑝 : 𝐿′

𝑖
≠ ⊥

Return 0

(Ψ, Γ, 𝑔𝑠𝑑𝑙 , 𝑧𝑠𝑑𝑙 , 𝑠𝑠𝑑𝑙 , ℎ𝑠𝑑𝑙 ) ← 𝜋𝑠𝑑𝑙
(𝜓1, . . . ,𝜓𝑛) ← Ψ
(ℎ𝑠𝑑𝑙,1, . . . , ℎ𝑠𝑑𝑙,𝑛) ← ℎ𝑠𝑑𝑙

𝑐 ←
$
Hsh (pk, 𝜎, 𝜁1,𝑚,Ψ, Γ, 𝑔𝑠𝑑𝑙 , 𝑧𝑠𝑑𝑙 , ®ℎ𝑠𝑑𝑙 , 𝑅, ®𝐿′)

If Γ𝑐 · 𝑔𝑠𝑠𝑑𝑙 ≠ 𝑔𝑠𝑑𝑙 or 𝜁
𝑐 · 𝑧𝑠𝑠𝑑𝑙 ≠ 𝑧𝑠𝑑𝑙

or

∨
𝑖∈⟦𝑛⟧𝜓

𝑐
𝑖
· ℎ𝑠𝑠𝑑𝑙

𝑖
≠ ℎ𝑠𝑑𝑙,𝑖

Return 0

(𝑅, 𝑆) ← 𝜋𝑜𝑝

𝜁 ′
1
B 𝜁1/

∏
𝑖∈𝐼𝑜𝑝 𝜓

𝐿′𝑖
𝑖

If 𝜁 ′𝑐
1
· Γ𝑠Γ ·∏𝑖∈[𝑛]0\𝐼𝑜𝑝 𝜓

𝑠𝑖
𝑖

≠ 𝑅

Return 0

Return 1

Figure 1: The Showing procedure. The 𝜁1 component of the signature 𝜎 , denoted here by 𝜎.𝜁1 is a blinded commitment𝐶, for each
a signature 𝜎 was issued via an interaction with an honest signer. (𝛾, rnd) is the blinding factor such that 𝜁1 = (𝑔rnd ·𝐶)𝛾 . The
proof consists of a part that proves the correct blinding of the commitment parameters via a proof of same discrete logarithm
and of a part that proves knowledge of an opening for the remaining part of the commitment that is not revealed by the set of
opened indices 𝐼𝑜𝑝 .

underlying Pedersen commitment scheme which we rule out in

lemma 3.9.

Game G1. This is the secure showing game for ACL.

Game G2. This game aborts if the following happens: The adver-

sary outputs at least one signature 𝜎∗ such that the commitment

𝜁 ∗, 𝜁 ∗
1
does not “match” any of the session tags on the signer’s side.

This means, there exists no 𝑧1,𝑖 such that dlog𝑧𝜁
∗ = dlog𝑧1,𝑖

𝜁 ∗
1
.

We will show that this contradicts the so-called restrictive blind-
ing lemma, see lemma 3.4. We prove this lemma using mostly tech-

niques from [35] to show that an adversary can be used to break

DLP if it wins this game.

First, we describe the restrictive blinding game:

Definition 3.3 (Restrictive Blinding Game). We describe the re-
strictive blinding game for an adversary A:

Setup: The challenger samples a key pair (pk, sk) according
to G(ppG). This uses the random oracle H1 which allows

the challenger to keep track of the discrete logarithms of

its outputs. It outputs pk to the adversary.

Online Phase: The adversary gets access to the following

oracles

Oracle H1: lazily samples𝑤 ←
$
Z𝑝 and returns 𝑔𝑤 . Keeps a

list of the hash inputs,𝑤 , and the output 𝑔𝑤 .

Oracle Hpp: lazily samples 𝑣 ←
$
Z𝑝 and returns 𝑔𝑣 . Keeps a

list of the hash inputs 𝑣 , and the output 𝑔𝑣 .

Oracle H3: lazily samples 𝜀 ←
$
Z𝑝 and returns 𝜀

RS : Register new commitments and store them in list to en-

sure all commitments coming in S1 queries were already

registered.

S1: runs the signing procedure S1 of ACL and returns its

output along with a fresh session ID. Keeps a list of the

commitment 𝐶 and the random value rnd.

S2: takes as input a session ID and a challenge 𝑒 . If the session

ID has never been used before in a S2 query, it runs the

S2 procedure of ACL using the internal signer state corre-

sponding to the session ID with 𝑒 and returns its output.

Output Determination: A submits a list of message-sign

ature pairs (𝑚𝑖 , 𝜎𝑖 ) for 𝑖 = 1..ℓ . The game outputs 1 if

there is a pair (𝑚,𝜎 = (𝜁 , 𝜁1, . . .)) in the list such that the

signature is valid on the message𝑚 under the public key

pk and it holds that there exists no closed signing session

sid such that dlog𝑧𝜁 = dlog𝑧1,sid
𝜁1.

We define the advantage of the adversary in the game RB as

AdvRBACL (A) B Pr[RBAACL = 1] .

Lemma 3.4 (Restrictive Blinding). In the ROM and AGM, if
DLP is (𝑡, 𝜀)-hard in G, it holds that for any adversary running in
time at most 𝑡 , the advantage is at most

AdvRBACL (A) ≤ 13 · 𝜀 + 4 ·𝑄𝐶 + 31

𝑝
+ 1

𝑛
.

where𝑄𝐶 is the number of registration queries made by the adversary.

The proof can be found in appendix C

Corollary 3.5.

Pr[G1 = 1] ≥ Pr[G2 = 1] + 13 · 𝜀 + 4 ·𝑄𝐶 + 31

𝑝
+ 1

𝑛
.

Proof. We provide a reduction: The reduction simulates the

secure showing game to the adversary by forwarding its queries to
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all oracles and their responses. The reduction then checks whether

the adversary has won the secure showing game. If yes, it outputs

the messages and signatures from the adversary’s output to the RB
game. It thus wins whenever the abort condition of G2 occurs. □

GameG3. In this game, we abort if the adversary does the follow-

ing: The adversary outputs at least two signatures 𝜎′, 𝜎′′ such that

the commitments 𝜁 ′, 𝜁 ′
1
and 𝜁 ′′, 𝜁 ′′

1
map to the same signing session,

i.e. there exists a single 𝑧1,𝑖 such that both dlog𝑧𝜁
′ = dlog𝑧1,𝑖

𝜁 ′
1
and

dlog𝑧𝜁
′′ = dlog𝑧1,𝑖

𝜁 ′′
1
. We will show that this contradicts what we

call the 2-to-1-lemma, see lemma 3.7 - this lemma can be derived

from techniques used in the OMUF-proof of [35].
We begin by describing a game that formalizes the above crite-

rion more:

Definition 3.6 (2-to-1 Game). We describe the 2-to-1 game ℓ-TTO
for an adversary A:

Setup: The challenger samples a key pair (pk, sk) according
to G(ppG). This uses the random oracle H1 which allows

the challenger to keep track of the discrete logarithms of

its outputs. It outputs pk to the adversary.

Online Phase: The adversary gets access to the following

oracles

Oracle H1: lazily samples𝑤 ←
$
Z𝑝 and returns 𝑔𝑤 . Keeps a

list of the hash inputs,𝑤 , and the output 𝑔𝑤 .

Oracle Hpp: lazily samples 𝑣 ←
$
Z𝑝 and returns 𝑔𝑣 . Keeps a

list of the hash inputs 𝑣 , and the output 𝑔𝑣 .

Oracle H3 lazily samples 𝜀 ←
$
Z𝑝 and returns 𝜀

S1: runs the signing procedure S1 of ACL and returns its

output along with a fresh session ID. Keeps a list of the

commitment 𝐶 and the

S2: takes as input a session ID and a challenge 𝑒 . If the session

ID has never been used before in a S2 query, it runs the

S2 procedure of ACL using the internal signer state corre-

sponding to the session ID with 𝑒 and returns its output.

Output Determination: The adversary submits a list of mes-

sage-signature pairs (𝑚𝑖 , 𝜎𝑖 ) for 𝑖 = 1..ℓ . The game outputs

1 if there are two messages 𝑚1, 𝑚2 and two signatures

(𝜁 (1) , 𝜁 (1)
1

, 𝜌 (1) , 𝜔 (1) , 𝜎 (1)
1

, 𝜎
(1)
2

, 𝜇 (1) , 𝛿 (1) ) and (𝜁 (2) , 𝜁 (2)
1

,

𝜌 (2) , 𝜔 (2) , 𝜎 (2)
1

, 𝜎
(2)
2

, 𝜇 (2) , 𝛿 (2) ) im the list such that the sig-

natures are valid on the respective messages under the

public key pk and it holds that there exists a single closed

signing session such that dlog𝑧𝜁
(1) = dlog𝐶 ·𝑔rnd𝜁

(1)
1

and

dlog𝑧𝜁
(2) = dlog𝐶 ·𝑔rnd𝜁

(2)
1

.

We define the advantage of the adversary in the game ℓ-TTO as

Advℓ-TTOACL (A) B Pr[ℓ-TTOAACL = 1] .

We show that this game is hard to win for an adversary:

Lemma 3.7 (2-to-1 blinding). In the ROM and AGM, if DLP is
(𝑡, 𝜀)-hard in G, it holds that for any adversary running in time at
most 𝑡 , the advantage is at most

Advℓ-TTOACL (A) ≤ 7 · 𝜀 + 20

𝑝
.

The proof can be found in appendix C

We now apply this to the current game hop.

Corollary 3.8.

Pr[G2 = 1] ≤ Pr[G3 = 1] + (7𝜀 + 20

𝑝
).

Proof. Again, the reduction forwards all queries from the ad-

versary to the ℓ-TTO and also forwards the responses. When the

adversary outputs a solution, it checks that the adversary has won

the secure showing game, and then outputs the messages and sig-

natures from the adversary’s output to the ℓ-TTO game. It thus

wins whenever the abort condition of G3 occurs. □

Lemma 3.9 (Partial Opening). In the ROM and AGM, if DLP is
(𝑡, 𝜀)-hard in G, it holds that for any adversary A that runs in time
at most 𝑡 , the probability of winning G3 is at most:

Pr[GA
3
] ≤ (𝑛 + 1) · 𝜀 +

(𝑛 + 3) · ℓ ·𝑄Hsh + 1

𝑝

where ℓ is the number of signing sessions closed by the adversary A
and 𝑄Hsh is the number of hash queries the adversary makes to the
random oracle Hsh

Proof. We construct an adversary R0 against the binding prop-

erty of the Pedersen commitment 𝐶 . The adversary simulates the

signing procedure to the adversary using the 𝑦-side key like an

honest signer would, and extracts openings for the commitments

made by the adversary. We describe this below in more details.

First of all, the reduction constructs a wrapper B around the

adversary which takes as input the commitment parameters and

has access to the random oracle Hsh.

Setup. The wrapper B takes as input the commitment param-

eters 𝑔, ®ℎ for the Pedersen commitment. It samples a key

for ACL using the G(ppG) algorithm while programming

the RO H1 so that it knows the discrete logarithms of its

outputs (i.e. including 𝑧). It outputs the key to the adversary

A and programs the random oracle Hpp to output ℎ𝑖 when

queried on 𝑖 for 𝑖 ∈ [𝑛].
Online Phase The wrapper simulates the secure showing

game to the adversary by lazy-sampling all random oracles

(in case of group elements with known discrete logarithm

to base 𝑔) and by using the secret key to answer signing

queries like an honest signer would. Whenever the adver-

sary makes a query to a random oracle that contains a

group element, the wrapper B takes a note of the alge-

braic representations submitted for that group element. It

computes a reduced representation where it replaces all

occurrences of 𝑦, 𝑧, ℎ, 𝑎𝑖 , 𝑏1,𝑖 , 𝑏2,𝑖 with their respective dis-

crete logarithms to base 𝑔, ®ℎ, concretely, replace 𝑦 by 𝑔𝑥 , 𝑧

by 𝑔dlog𝑧
(known from programming H1), ℎ by dlogℎ, 𝑎𝑖 by

𝑔𝑢𝑖 ,𝑏1,𝑖 by𝑔
𝑠1,𝑖+𝑑𝑖 ·rnd𝑖 ·𝐶𝑑𝑖

𝑖
,𝑏2,𝑖 by𝑔

𝑠2,𝑖 ·dlogℎ · (𝑔dlog𝑧/(𝑔rnd𝑖 ·
𝐶𝑖 ))𝑑𝑖 where𝐶𝑖 is recursively replaced by replacing the val-
ues in its representation. Note that by the time 𝑏1,𝑖 , 𝑏2,𝑖 is

output, the representation of 𝐶𝑖 is already fixed and thus

there exist no circular dependencies.

Output determination The wrapper outputs whatever the

adversary outputs, that is the public key pk, a list of tuples
{(𝑚𝑖 , 𝜎𝑖 , 𝜁1,𝑖 , 𝐿𝑖 , 𝜋𝑖 )}𝑖∈𝑘 and tuples {(𝐿′𝑖 , 𝑟𝑖 )}𝑖∈[ℓ ] , alongside
the algebraic representations that the adversary output the
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first time it output a specific group element (i.e. if the group

element was queried to a random oracle before, the wrap-

per B outputs the representation that was submitted along

with the RO query).

The reduction now employs the extractor E from theorem 3.1

of Π for each of the proofs 𝜋𝑖 = (𝜋𝑖,𝑠𝑑𝑙 , 𝜋𝑖,𝑜𝑝 ) along with the com-

mitments and algebraic representations that B has output. Note

that B is a valid adversary that behaves like required in theo-

rem 3.1. With probability at least (1−
ℓ ·𝑄Hsh

· (𝑛+1)
𝑝 ) (1− ℓ ·𝑄Hsh ·2

𝑝 ) ≥

1 − (𝑛+3) ·ℓ ·𝑄Hsh+1
𝑝 , the extractor outputs witnesses of the form 𝛾𝑖 ,

and either a commitment 𝑅 with two openings ®𝑍, ®𝑍 ′, or partial
openings of the commitments 𝜁1,𝑖 of the form rnd𝑖 , 𝑟𝑖,0, 𝑟𝑖, 𝑗∀𝑗 s.t.
𝐿𝑖, 𝑗 = ⊥.

If there is one proof that yielded a commitment 𝑅 and two open-

ings ®𝑍, ®𝑍 ′, the reduction outputs these as its solution to the binding

game. Otherwise, the reduction proceeds as follows.

As part of the output of the adversary, the reduction obtains the

(full) opening vectors ®𝐿′
𝑖
for each commitment 𝐶𝑖 that was used

during registration.

The reduction now picks a session-signature-pair (rnd,𝐶), (𝑚, �̂�,

𝛾) with the following property:

dlog𝐶 ·𝑔rnd𝜁1 = dlog𝑧𝜁

and ®𝐿 ⊈ ®𝐿′ where ®𝐿 is the vector that A partially opened in the

showing algorithm, and ®𝐿′ is the vector of the signing session that

is matched through 𝛾 .

It unites the partial vector ®𝐿 with the corresponding partial

opening rnd𝑖 , 𝑟𝑖,0, 𝑟𝑖, 𝑗∀𝑗 s.t. 𝐿𝑖, 𝑗 = ⊥ obtained from the extractor

into an opening ®𝐿′′
𝑖
.

The reduction now outputs the commitment 𝐶 along with the

two openings ®𝐿′
𝑖
and ®𝐿′′

𝑖
to the challenger.

Thus, the reduction wins the binding game for the Pedersen

commitment scheme with probability of at least Pr[GA
3

= 1] ·
(1 − (𝑛+3) ·ℓ ·𝑄Hsh+1

𝑝 ) ≥ Pr[GA
3

= 1] − (𝑛+3) ·ℓ ·𝑄Hsh+1
𝑝 . Putting this

together with lemma 2.9 yields the statement. □

Putting everything together we get that

𝜀′ ≤ (𝑛 + 21) · 𝜀 + (𝑛 + 3) · ℓ ·𝑄𝐻 + 52 + 4 ·𝑄𝐶

𝑝
+ 1

𝑛
.

□

3.4 ACL Double-Spending Detection
We now explain how the ACL protocol can also support Double-

Spending detection. We require the following modifications:

• In the main protocol, as described in Fig. 3, we add the

following additional steps to the User side of the protocol:

(1) Pick 𝜏2 ←$
Z𝑝 , (2) compute 𝜂2 ≔ 𝑧𝜏2

, (3) include 𝜂2

in the hash computation of 𝜀. The signature verification

algorithm can either be modified to include the element 𝜂2

in the hash computation, or one can treat 𝜂2 as if it was part

of the message when verifying signatures which enables

using the verification algorithm of the plain scheme.

• In the showing protocol, as described in Fig. 1, we add the

following steps: (1) The user includes𝑉name and timestamp

as part of the hash computation in 𝑐 . (2) The user computes

𝜇2 = 𝜏2 − 𝑐𝛾 and outputs 𝜇2 along with (𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 ). (3) The
verifier runs an updated signature verification algorithm

which also includes 𝑧𝜇2 · 𝜁𝑐 as part of H3 (which verifies

with 𝜂2 part of 𝜀 in the signature).

• DSI: If a user double spends the same signature 𝜎 using

showings 𝜋1, 𝜋2, it results into two different values 𝑐, 𝑐
′
and

𝜇2, 𝜇
′
2
from which one can extract 𝛾 =

𝜇′
2
−𝜇2

𝑐−𝑐′ and thus 𝜁1

which uniquely identifies the issuing session. This is then

used by the signer to identify the signing session. It outputs

the proof of double spending as the user’s commitment

𝐶 , the user’s proof of partial opening to 𝐼𝐷 , the signer’s

randomization factor rnd, and the user’s blinding factor 𝛾 ,

along with the signature 𝜎 and the two showings 𝜋1, 𝜋2.

• DSV: On input of an ID and a double spending proof,

the DSV algorithm outputs 1 iff both showings of the

signature are valid, the proof of partial opening of 𝐶 to 𝐼𝐷

is valid, and it holds that (𝐶 · 𝑔rnd)𝛾 = 𝜁1.

Discussion.We note that double-spending detection for ACL was

already discussed in [32] (a work that implements [3] as an e-cash

scheme), but it was done in a slightly different way and without a

formal security proof. Namely, in [32] the value 𝜇 is omitted from

the signature
8
instead of adding the additional 𝜏2, 𝜂2 as we did above.

Then, the showing protocol uses 𝜏 to compute 𝜇2. It is critical that

𝜇 is removed from the signature, since otherwise a single credential

showing already links it to a signing session because the signer can

use
𝜇2−𝜇
𝛿−𝑐 to compute 𝛾 and then check which 𝑧

𝛾

1
= 𝜁1.

While this double-spending protocol for ACL is correct, it does

not compose well with the existing security proofs for ACL. Namely,

removing 𝜇 from the ACL signature removes the guarantees pro-

vided by existing proofs of one-more unforgeability [3, 35] as the

signatures can no longer be verified on their own. Thus, we went

for a modular approach, that does not affect the ACL proof, by

computing additional elements (𝜏2, 𝜂2) of the same form as (𝜏, 𝜂)
and adding 𝜂2 to the hash during the signature generation in order

to use this for the double spending detection. As noted above, this

modification does not affect the ACL verification algorithm and

thus the ACL security proofs still hold.

Lemma 3.10. With the modification described above, for any ad-
versaryA that makes at most𝑄Hsh queries to the random oracle Hsh,
it holds that

AdvDSPBSADS (A) ≤
𝑄2

Hsh

𝑝
.

Proof. Intuitively, the only way for the adversary to avoid being

identified when double spending is to provoke a hash collision such

that 𝑐 ≠ 𝑐′. We show this formally below using some game hops

Game G1. This is the original DSP-game.

Game G2. This game is identical to G1 except that it aborts if

there is a hash collision in the random oracle 𝐻 , i.e. two different

queries by the adversary that lead to different outcomes.

8
This approach was also used by Abe for its blind signature scheme [1], on which ACL

was based.
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It is easy to see that

���Pr[GA
2

= 1] − Pr[GA
1

= 1]
��� ≤ 𝑄2

𝐻

𝑝 .

We now show that the adversary A has success probability 0 in

G2.

Since there is no hash collision, the two hashes 𝑐 and 𝑐′ are
different. It thus holds that the DSI algorithm can compute 𝛾 =
𝜇′

2
−𝜇2

𝑐−𝑐′ and thus, using the internal state of the signer, produce the

rest of the proof. □

Lemma 3.11. If the discrete logarithm problem is (𝑡, 𝜀)-hard in the
group G, then ACL is (𝑡 ′, 𝜀′)-Exc secure in the AGM + ROM with
𝑡 ′ ≈ 𝑡 and

𝜀′ = 𝜀 +
2𝑄Hsh + 𝜅 +𝑄Hreg + ℓ

𝑝
,

where 𝑄Hsh is the number of queries the adversary makes to Hsh,
𝑄Hreg is the number if queries the adversary makes to Hreg, ℓ is the
number of signing sessions closed with the user oracles,𝜅 is the number
of registered users through the registration oracle.

Proof Idea. In order to successfully frame a user, the adversary

needs to output a signature along with two showing proofs 𝜋1, 𝜋2

as theDSI algorithm and provide values 𝛾 and rnd that blinds the

user’s commitment into 𝜁1. As the signer can interact with itself

to issue a signature, thus knowing 𝛾 and rnd, we show that it is

hard for the signer to provide the partial proofs of opening of the

commitment by extracting a discrete logarithm solution from a

signer that does so.

Proof. We do a quick game hop to exclude some situations

where the reduction cannot win related to RO queries.

Game G1. This is the original DSP-game.

GameG2. This game aborts whenever the challenger queries the

hash oracles Hreg and Hsh during computation of a proof 𝜋 or 𝜋 ,

and the hash oracle has been queried on the same value before. As

the challenger’s queries to its own oracle contain first flows of the

proofs 𝜋, 𝜋 , the probability for each first flow to have been queried

before is at most

𝑄Hreg+𝜅
𝑝 for Hreg and

𝑄Hsh+ℓ
𝑝 for Hsh.

Game G3. This game introduces an additional abort condition

related to the representations submitted by the adversary to the

oracle. When the adversary outputs a proof of double spending

(𝐶, 𝐼𝐷, 𝜋, rnd, 𝛾,𝑚, 𝜎, 𝜋1, 𝜋2), at least one of 𝜋1 and 𝜋2 was not gen-

erated by the showing oracle. Let 𝜋 = (𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 ) be the showing
proof that was not an output of the showing oracle. We consider

the 𝜋𝑜𝑝 = (𝑅𝑜𝑝 , 𝑐, ®𝑆𝑜𝑝 ) component.

We denote by 𝐺 [𝑅 ] the exponent of a group element 𝐺 in the

representation of 𝑅, where 𝐺 can be any group element that was

output by the challenger to the adversary through one of the oracles.

The game aborts if

𝑐 =

𝜅∑︁
𝑗=1

𝐶 𝑗 [𝑅 ] + 𝜋.𝑐 · 𝜋.𝑅 𝑗 [𝑅 ] +
ℓ∑︁
𝑗=1

𝛾 𝑗 · 𝜁1, 𝑗 [𝑅 ] +
ℓ∑︁
𝑗=1

𝜋𝑜𝑝 .𝑐 𝑗 · 𝑅 𝑗 [𝑅 ] ,

where 𝜋𝑜𝑝 .𝑐 𝑗 is the value 𝑐 computed as part of the showing, 𝛾 𝑗 is

the 𝛾 value chosen in the 𝑗𝑡ℎ signing session, 𝜅 is the number of

registered users, and 𝐶 𝑗 is the commitment of the 𝑗𝑡ℎ registered

user, 𝜋.𝑅 𝑗 is the first flow of the proof of (partial) opening of the

registration commitment of the 𝑗𝑡ℎ registered user, and 𝑐 is the

hash output used in 𝜋𝑜𝑝 . As the representations of 𝛾 𝑗 and 𝜋.𝑐 are

already fixed by the time the adversary receives the hash output,

the probability of the above event happening is at most

𝑄Hsh
𝑝 .

We describe a reduction that breaks the discrete logarithm prob-

lem if the adversary wins G3.

The reduction simulates theG3 game as follows to the adversary:

Setup. The reduction takes as input a discrete logarithm chal-

lenge 𝑔,𝑋 . It invokes the adversary A with the oracles

described below. Keep a list of all group elements submitted

by the adversary to the oracles along with their algebraic

representations.

Online Phase. The reduction simulates the oracles as follows

to the adversary:

Hash oracles Hpp,Hreg,H1,H3,Hsh lazy sampling from

the appropriate image spaces, in case of group element

image spaces, sample the discrete logarithm to base

𝑔 of the group element from Z𝑝 and keep the list of

discrete logarithms along with the inputs and group

element oracle outputs.

Registration queries Takes as input the vector to be

registered ®𝐿. Sample 𝑟𝑐𝑜𝑚
′ ←

$
Z𝑝 . Compute the com-

mitment𝐶 B ℎ
𝑟𝑐𝑜𝑚

′

0
𝑋 ·∏𝑛

𝑖=1
ℎ
𝐿𝑖
𝑖

which implicitly sets

𝑟𝑐𝑜𝑚 B 𝑟𝑐𝑜𝑚
′ · dlog𝑋 . Simulate the proof 𝜋 by pro-

gramming the RO Hreg.

User queries participate in the signing protocol like an

honest user would and output the resulting signatures

to the signer.

Showing queries On input of a signature previously

output by the user oracle and an opening set 𝐼𝑜𝑝 , pro-

duce an opening 𝜋 to this opening index set by simu-

lating the proof by programming the random oracle

Hsh.

Output Determination. The reduction retrieves the alge-

braic representation of𝑅 that the adversary submitted when

querying the random oracle Hsh to generate 𝜋 . It computes

a so-called reduced representation9 of𝑅 to the base ®𝐼 = (𝑔,𝑋 )
as follows: We write

𝑅 = 𝑋𝑋 [𝑅 ] ®𝐼 · 𝑔𝑔 [𝑅 ] ®𝐼 ,

where

𝑋 [𝑅 ] ®𝐼 B
𝜅∑︁
𝑗=1

𝐶 𝑗 [𝑅 ] +𝜋.𝑐 ·𝜋.𝑅 𝑗 [𝑅 ] +
ℓ∑︁
𝑗=1

𝛾 𝑗 ·𝜁1, 𝑗 [𝑅 ] +
ℓ∑︁
𝑗=1

𝜋𝑜𝑝 .𝑐 𝑗 ·𝑅 𝑗 [𝑅 ]

and

𝑔[𝑋 ] ®𝐼 B dlog𝑔 (𝑅 · 𝑋 −𝑋 [𝑅 ] ®𝐼 ).
The reduction can compute 𝑔[𝑋 ] ®𝐼 using the discrete loga-
rithms of all group elements in its output to the base 𝑔, as

any 𝑋 components have been removed from this equation.

If 𝑐 = 𝑋 [𝑅 ] ®𝐼 , the reduction aborts as this corresponds to the

abort condition introduced in G3. Otherwise, it computes

dlog𝑔𝑋 =
𝑔[𝑅 ] ®𝐼 −

(∑𝑛
𝑖=0

𝑠𝑖 + 𝑠Γ + 𝑐 ·
(
𝑟𝑐𝑜𝑚

′ +∑𝑛
𝑖=1

𝐿𝑖 + rnd
) )

𝑐 − 𝑋 [𝑅 ] ®𝐼
.

9
This strategy has been used before in [35, 37].
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The reduction outputs a validDLP solution whenever the adversary

wins G3. Thus, putting together the probabilities from the game

hops yields

AdvDLPG (R) = AdvExcACL (A) −
𝑄Hsh

𝑝
−
𝑄Hreg + 𝜅

𝑝
−
𝑄Hsh + ℓ

𝑝

which yields the claim. □
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A ADDITIONAL PRELIMINARIES
A.1 Proofs for Pedersen Commitments

Lemma 2.8 (Pedersen Commitments are perfectly hiding).

The commitment scheme GPC from definition 2.6 is perfectly hiding.

Proof. Information-theoretically, for each vector of commit-

ment parameters
®ℎ ∈ G𝑛+1, each commitment𝐶 ∈ G and each value

vector 𝑣 ∈ Z𝑛𝑝 , there exists exactly one opening 𝑟 = dlogℎ0

𝐶∏𝑛
𝑖=1

ℎ
𝑣𝑖
𝑖

.

The commitment thus perfectly hides the vector 𝑣 and even an

unbounded adversary cannot do better than guessing. □

Lemma 2.9 (Pedersen Commitments are binding under DL).

If the DLP is (𝑡, 𝜀)-hard in the group G, GPC from definition 2.6 is
(𝑡 ′, 𝜀′)-binding with 𝑡 ′ ≈ 𝑡 and 𝜀′ ≤ 𝑛 · 𝜀.

Proof. We provide a reduction B against DLP that uses a bind-

ing adversaryA to break DLP. The reduction takes as input the dis-

crete logarithm challenge𝑔,𝑌 . It samples 𝑗 ←
$
[𝑛] and setsℎ 𝑗 B 𝑌 .

For each 𝑖 ≠ 𝑗 ∈ [𝑛]0 it samples 𝑎𝑖 ←$
Z𝑝 and sets ℎ𝑖 B 𝑔𝑎𝑖 .

It outputs the commitment parameters pp
GPC

= (ℎ0, . . . , ℎ𝑛) to
the adversary A. When the adversary outputs a commitment 𝐶

and two vectors ®𝑣1, ®𝑣2 along with openings 𝑟1, 𝑟2, the reduction

aborts if 𝑣1, 𝑗 = 𝑣2, 𝑗 . As ®𝑣1 ≠ ®𝑣2, there must be at least one in-

dex 𝑖∗ where 𝑣1,𝑖∗ ≠ 𝑣2,𝑖∗ and 𝑗 = 𝑖∗ happens with probabil-

ity
1

𝑛 . Thus, the reduction aborts with probability at most 1 − 1

𝑛 .

If the reduction did not abort in the previous step, it computes

dlog𝑌 =
𝑟1 ·𝑎0+

∑
𝑖≠𝑗 𝑎𝑖 ·𝑣1,𝑖−(𝑟2 ·𝑎0+

∑
𝑖≠𝑗 𝑎𝑖 ·𝑣2,𝑖 )

𝑣2, 𝑗−𝑣1, 𝑗
and outputs the solu-

tion. □

A.2 Sigma-Protocols and Proofs
We recall definition of Σ-protocols and some of their security prop-

erties, see also for example [23]

Definition A.1 (Σ-Protocol). A Σ-Protocol for a relationR consists

of the following algorithms P = (P1,P2),V = (V1,V2).
P1 (𝑥,𝑤) Outputs a message 𝑅 and saves an internal state 𝑠P
V1 (𝑥, 𝑅) Takes as input the statement and the prover’s first

message and outputs a challenge 𝑐 ←
$
C.

P2 (𝑥,𝑤, 𝑠P, 𝑐) Outputs a response 𝑆 .

V2 (𝑥, 𝑅, 𝑐, 𝑆) Outputs a bit 𝑏 indicating acceptance or rejec-

tion.

Definition A.2 (Σ-Protocol Correctness). A Σ-Protocol is correct
if for all (𝑥,𝑤) ∈ R, all (𝑅, 𝑠P) ←$

P1 (𝑥,𝑤), all 𝑐 ∈ C, and all

𝑆 ←
$
P2 (𝑥,𝑤, 𝑠P, 𝑐) , it holds thatV2 (𝑥, 𝑅, 𝑐, 𝑆) = 1

Definition A.3. (HVZK) A Σ-Protocol is honest-verifier
zero-knowledge (HVZK) if there exists a simulator S such that for

all 𝑥 ∈ L and all 𝑐 ∈ C, the distributions of (𝑅, 𝑐, 𝑆) ←
$
S(𝑥, 𝑐)

are indistinguishable from 𝑅′ ←
$
P1 (𝑥,𝑤), 𝑐, 𝑆 ←$

P2 (𝑥,𝑤, 𝑠P, 𝑐)
conditioned on 𝑐 being used as the challenge.

Definition A.4 (k-Special-Soundness). A Σ-Protocol is k-special
sound if there exists a deterministic extractor E such that given

𝑘 valid transcripts {(𝑅, 𝑐𝑖 , 𝑆𝑖 )}𝑖∈[𝑘 ] for statement 𝑥 with pairwise

distinct challenges 𝑐𝑖 , outputs a witness𝑤 such that (𝑥,𝑤) ∈ R.

Definition A.5 (𝜀-Soundness). A Σ-Protocol is 𝜀-sound if for any

𝑥 ∉ L, any adversary P∗ it holds that the probability that

V2 (𝑥, 𝑅, 𝑐, 𝑆) = 1 is at most 𝜀. Where (𝑅, 𝑠P) ←$
P∗

1
(𝑥), 𝑐 ←

$

V1 (𝑥, 𝑅), and 𝑆 ←
$
P2 (𝑥,𝑤, 𝑠P, 𝑐) and the probability is taken

over the random coins of the P∗ andV1 (𝑥, 𝑅).

Definition A.6 (Fiat Shamir Transform [27]). The Fiat-Shamir

transform of a Σ-protocol Σ = (P = (P1,P2),V = (V1,V2)) with
challenge space C and a hash function H : {0, 1}∗ → C and some

auxiliary information that might be used in surrounding protocols

is described below.

P(𝑥,𝑤) Compute (𝑅, 𝑠P) ←$
P1 (𝑥,𝑤). Compute 𝑐 B H(𝑥, 𝑅,

𝑎𝑢𝑥) for potential auxiliary information 𝑎𝑢𝑥 . Compute

𝑆 ←
$
P2 (𝑥,𝑤, 𝑠P, 𝑐). Output 𝜋 = (𝑅, 𝑆)

V(𝑥, 𝜋 = (𝑅, 𝑆), 𝑎𝑢𝑥) Compute 𝑐 = H(𝑥, 𝑅, 𝑎𝑢𝑥), outputV2 (𝑥,
𝑅, 𝑐, 𝑆).
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Secure Showing of Partial Attributes

Lemma A.7. Let Σ1 be a Σ-protocol for language L1 with rela-
tion R1 and Σ2 be a Σ-protocol for language L2 with relation R2

where Σ1 and Σ2 have the same challenge space C and both fulfill
𝑘-Special-Soundness and HVZK as above. Then, the following pro-
tocol is a Σ-protocol for the language L1 × L2 with relation R =

{((𝑥1, 𝑥2, ), (𝑤1,𝑤2)) : (𝑥1,𝑤1) ∈ R1, (𝑥2,𝑤2) ∈ R2} which fulfills
𝑘-Special-Soundness and HVZK.

P1 compute (𝑅1, 𝑠1) ←$
Σ1 .P1 (𝑥1,𝑤1), (𝑅2, 𝑠2) ←$

Σ2 .P2

V1 sample 𝑐 ←
$
C

P2 compute 𝑆1 ←$
Σ1 .P2 (𝑥1,𝑤1, 𝑠1, 𝑐), 𝑆2 ←$

Σ2 .P2 (𝑥2,𝑤2,

𝑠2, 𝑐)
V2 (𝑥1, 𝑥2, 𝑅1, 𝑅2, 𝑐, 𝑆1, 𝑆2) runs Σ1 .V2 (𝑥1, 𝑅1, 𝑐, 𝑆1) and

Σ2 .V2 (𝑥2, 𝑅2, 𝑐, 𝑆2) and output 1 iff both output 1.

Proof. For HVZK, given 𝑐, 𝑥1, 𝑥2 run (𝑅1, 𝑆1) ←$
S1 (𝑥1, 𝑐) and

(𝑅2, 𝑆2) ←$
S2 (𝑥2, 𝑐) where S1 and S2 are the HVZK simulators

for Σ1 and Σ2, respectively.

For 𝑘-special soundness, given 𝑘 transcripts with the same first

flow 𝑅1, 𝑅2 and 𝑘 different challenges 𝑐𝑖 and corresponding re-

sponses 𝑆1,𝑖 , 𝑆2,𝑖 , run E1 on {(𝑅1, 𝑐𝑖 , 𝑆1,𝑖 ) : 𝑖 ∈ [𝑘]} and E2 on

{(𝑅2, 𝑐𝑖 , 𝑆2,𝑖 ) : 𝑖 ∈ [𝑘]} to obtain the witnesses 𝑤1 and 𝑤2 respec-

tively. □

A.3 Identification Scheme from ACL (IDACL)
In the following, we describe the identification scheme IDACL,

which was proposed by [35]. The scheme is defined as tuple (G,P,
V), where

• G(pp): Parse pp to obtain G, 𝑝, 𝑔, sample ℎ ←
$
G and

𝑥, 𝑣0,1, 𝑣0,2 ←$
Z𝑝 , compute 𝑦 = 𝑔𝑥 , 𝑧 := 𝑔𝑣0,1 · ℎ𝑣0,2

, set

sk = 𝑥 and pk = (ℎ, 𝑧,𝑦), and output (pk, sk).
• The prover algorithms P=(P1, P2) are defined as follows:

– P1 (sk): Sample 𝑑, 𝑠1, 𝑠2, 𝑢, rnd←$
Z𝑝 , compute 𝑧1 :=

𝑔rnd, 𝑧2 := 𝑧/𝑧1, 𝑎 := 𝑔𝑢 , 𝑏1 := 𝑔𝑠1 · 𝑧𝑑
1
, 𝑏2 := ℎ𝑠2 · 𝑧𝑑

2
,

set 𝑅 := (𝑎, 𝑏1, 𝑏2, rnd), 𝑠𝑡𝑝 := (𝑑, 𝑠1, 𝑠2, 𝑢) and output

(𝑅, 𝑠𝑡𝑝 ).
– P2 (sk, 𝑠𝑡𝑝 , 𝑅, 𝜀): Parse 𝑠𝑡𝑝 as (𝑑, 𝑠1, 𝑠2, 𝑢), compute 𝑐 :=

𝜀 − 𝑑, 𝑟 := 𝑢 − 𝑐 · sk, set and output 𝑆 := (𝑐, 𝑑, 𝑟, 𝑠1, 𝑠2).
• The verifier algorithmsV=(V1,V2) are defined as follows:

– V1 (pk, 𝑅): Parse pk, and 𝑅 = (𝑎, 𝑏1, 𝑏2, rnd). Output ⊥
if rnd = 0. Sample 𝜀 ←

$
Z𝑝 , set 𝑠𝑡𝑣 := (𝑎, 𝑏1, 𝑏2, 𝑧1 ≔

𝑔rnd, 𝑧2 ≔ 𝑧/𝑧1), and output (𝜀, 𝑠𝑡𝑣).
– V2 (pk, 𝑠𝑡𝑣, 𝑅, 𝜀, 𝑆): Parse 𝑆 and 𝑠𝑡𝑣 , and output 1 if the

following condition holds: 𝜀 = 𝑐 +𝑑 ∧𝑎 = 𝑔𝑟 ·𝑦𝑐 ∧𝑏1 =

𝑔𝑠1 · 𝑧𝑑
1
∧𝑏2 = ℎ𝑠2 · 𝑧𝑑

2
. Otherwise, output 0.

B PARTIALLY OPENING BLINDED PEDERSEN
COMMITMENTS

B.1 Proof of Same Discrete Logarithm
Definition B.1 (Sigma Protocol for Proof of Same Discrete Loga-

rithm). We describe how a prover P can prove in zero knowledge

that the elements of a vector of group elements
®ℎ = (ℎ1, . . . , ℎ𝑛)

have the same discrete logarithms to the bases of another vector

of group elements
®ℎ′ = (ℎ′

1
, . . . , ℎ′𝑛). That is dlogℎ1

ℎ′
1
= . . . =

dlogℎ𝑛
ℎ′𝑛 .

P1 (𝑥 = ( ®ℎ, ®ℎ′),𝑤 = 𝛾) The prover takes as input two vectors

of the same length and a witness 𝛾 which is the discrete

logarithm relation between them. It samples 𝑟𝑠𝑑𝑙 ←$
Z𝑝

and sets
®ℎ𝑠𝑑𝑙 = ®ℎ𝑟𝑠𝑑𝑙 , i.e. the component wise exponentia-

tion of
®ℎ with 𝑟𝑠𝑑𝑙 . It outputs the commitment vector

®ℎ𝑠𝑑𝑙
to the verifier.

V1 (𝑥 = ( ®ℎ, ®ℎ′), ®ℎ𝑠𝑑𝑙 ) The verifier takes as input the statement

and the prover’s first message. It samples a random value

𝑐 ←
$
Z𝑝 and outputs it to P.

P2 (𝑥 = ( ®ℎ, ®ℎ′),𝑤 = 𝛾, 𝑟𝑠𝑑𝑙 , 𝑐) The prover takes as input the

statement
®ℎ, ®ℎ′, the witness 𝛾 , its internal state 𝑟𝑠𝑑𝑙 and the

verifier’s challenge 𝑐 . It computes 𝑠𝑠𝑑𝑙 = 𝑟𝑠𝑑𝑙 − 𝑐 · 𝛾 .
V2 (𝑥 = ( ®ℎ, ®ℎ′), ®ℎ𝑠𝑑𝑙 , 𝑐, 𝑠𝑠𝑑𝑙 ) The verifier checks that

®ℎ𝑠𝑑𝑙 =

®ℎ𝑠𝑠𝑑𝑙 · ®ℎ′𝑐 where exponentiation is taken component wise.

It returns 1 if the above equation holds and 0 otherwise.

Lemma B.2 (Soundness of definition B.1). The protocol from
definition B.1 is 1

𝑝 -sound.

Proof. Let
®ℎ, ®ℎ′ be two vectors such that there exists indices 𝑖, 𝑗

such that 𝛾𝑖 = dlogℎ𝑖
ℎ′
𝑖
≠ dlogℎ 𝑗

ℎ′
𝑗
= 𝛾 𝑗 . Let ®ℎ∗𝑠𝑑𝑙 be an adversarial

prover’s first message. Let 𝑟𝑖 = dlogℎ𝑖
ℎ∗
𝑠𝑑𝑙,𝑖

and 𝑟 𝑗 = dlogℎ 𝑗
ℎ∗
𝑠𝑑𝑙, 𝑗

.

Then, there exists at most one 𝑐∗ ∈ Z𝑝 such that there exists a 𝑠𝑠𝑑𝑙
such that 𝑟𝑖 = 𝑠𝑠𝑑𝑙 + 𝛾𝑖 · 𝑐∗ and 𝑟 𝑗 = 𝑠𝑠𝑑𝑙 + 𝛾 𝑗 · 𝑐∗. The probability
that the hones verifier samples 𝑐 = 𝑐∗ is 1

𝑝 .

□

Lemma B.3 (Special Knowledge Soundness of definition B.1).

The protocol from definition B.1 is 2-special sound.

Proof. Given two transcripts
®ℎ𝑠𝑑𝑙 , 𝑐1, 𝑠1 and

®ℎ𝑠𝑑𝑙 , 𝑐2, 𝑠2 with the

same initial message
®ℎ𝑠𝑑𝑙 , the extractor computes 𝛾 =

𝑠1−𝑠2

𝑐2−𝑐1

. □

Lemma B.4 (Extraction in the AGM). Let P∗ be an algebraic
adversary acting as the prover in the protocol from definition B.1
that interacts with a verifier. Then there exists an extractor E𝑎𝑙𝑔 that
extracts a witness 𝛾 with probability 1 − 1+𝑛

𝑝 from the algebraic
adversary.

Proof. The algebraic prover takes as input the group elements

®ℎ. It outputs a vector
®ℎ′ along with algebraic representations ®𝑎𝑖

s.t. ℎ′
𝑖
=

∏
ℎ
𝑎𝑖
𝑖
. For each proof transcript, the prover outputs a

vector
®ℎ𝑠𝑑𝑙 along with algebraic representations {®𝑧𝑖 }𝑖∈[𝑛] for each

element ℎ𝑠𝑑𝑙,𝑖 to the basis
®ℎ. the verifier then picks a challenge

𝑐 ←
$
Z𝑝 uniformly at random.

The prover responds with 𝑠 such that for all 𝑖 ∈ [𝑛], it holds that
ℎ𝑠
𝑖
· ℎ′𝑐

𝑖
= ℎ𝑠𝑑𝑙,𝑖 .

By lemma B.2, the probability that the prover succeeds in out-

putting a valid response when
®ℎ, ®ℎ′ are not in the language is

1

𝑝 . In

the following, we assume that this doesn’t happen.

This yields 𝑛 linear equations of the form

𝑛∑︁
𝑗=1

𝑧𝑖, 𝑗 · dlogℎ 𝑗 = 𝑠 · dlogℎ𝑖 + 𝑐 ·
∑︁
𝑗=1

𝑎𝑖, 𝑗 · dlogℎ𝑖 (1)

where the discrete logarithms are unknown as well as 𝑛 equations

of the form 𝛾 · dlogℎ𝑖 =
∑

𝑗=1
𝑎𝑖, 𝑗 · dlogℎ𝑖 where both 𝛾 and the
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discrete logarithms are unknown. If no fixed generator is given for

the group, we assume w.l.o.g. that discrete logarithms are taken to

the base ℎ1 (i.e.dlogℎ1 = 1).

W.l.o.g we assume that all ℎ𝑖 are pairwise distinct and no ℎ𝑖 is

the neutral element. Otherwise, we conflate the equal elements as

well as their representations.

We consider the following cases:

(1) ∃𝑖 : 𝑎𝑖,𝑖 ≠ 0 ∧ ∀𝑖′ ≠ 𝑖 : 𝑎𝑖,𝑖′ = 0: In this case, the extractor

outputs the witness 𝛾 = 𝑎𝑖 .

(2) The system of linear equations is linearly dependent. We

consider the following subcases:

(a) The matrix 𝐴 consisting of the representation vectors

®𝑎𝑖 has full rank. We make an information-theoretic

argument why the system of equations has to be lin-

early dependent with probability at most
𝑛
𝑝 or with

probability 1 pver the choice of 𝑐 .

First, we note that information-theoretically, the choice

of 𝑐 already fixes 𝑠 . Also, information-theoretically 𝛾

is fixed by the vectors
®ℎ and

®ℎ′ already, as well as the
adversary’s implicit choice of 𝑟𝑠𝑑𝑙 through

®ℎ𝑠𝑑𝑙 .
The determinant of the matrix 𝐴 with 𝑐, 𝑠 as formal

variables is a polynomial of total degree at most 𝑛.

As 𝑐 information-theoretically fixes 𝑠 , we can reduce

the number of formal variables in the determinant

polynomial to 1 by replacing 𝑠 with 𝑟𝑠𝑑𝑙 − 𝑐 · 𝛾 . This
yields a polynomial in one variable 𝑐 of degree at most

𝑛. If this polynomial is the constant 0 polynomial, the

probability of linear dependence is 1, i.e. for any pair

𝑐, 𝑠 that fulfills the linear relation above, the matrix

does not have full rank. In this case the extractor picks

a random 𝑐′ ←
$
Z𝑝 . It plugs it into the matrix and

computes the determinant of the matrix with 𝑠 as a

variable (but not 𝑐). It then computes the roots 𝑠′ of the
resulting polynomial. This yields at most 𝑛 possible

values of 𝑠′. The extractor tests (using the verification

equation of the Σ-protocol) which one is the correct

one. It then solves for the witness 𝛾 = 𝑠−𝑠′
𝑐′−𝑐 . With

probability 1 − 1

𝑝 it holds that 𝑐′ ≠ 𝑐 and thus the

extraction succeeds.

If it is not the 0 polynomoial, by the Schwartz-Zippel-

Lemma, the probability of finding a root of the polyno-

mial when randomly choosing 𝑐 is at most
𝑛
𝑝 . In this

case, the extractor cannot extract, so this happens with

probability
𝑛
𝑝 .

(b) The matrix 𝐴 consisting of the representation vectors

®𝑎𝑖 does not have full rank. In this case, there exists a

linear combination
®𝑏 such that

∑𝑛
𝑖=1

𝑏𝑖 · ®𝑎𝑖 = 0. Due to

soundness of the sigma protocol (implying correctness

of the statement), this means that with probability 1− 1

𝑝

it holds that

∏𝑛
𝑖=1

ℎ
𝑏𝑖
𝑖

= 0. We therefore know a way

to express one of the ℎ𝑖 as a linear combination of the

others.We remove thisℎ𝑖 from all systems of equations

and replace it with its linear representation of the other

ℎ𝑖 . This yields systems of equations with one variable

less. We consecutively apply this transformation until

the matrix𝐴′ resulting from these transformations has

full rank. If 𝐴′ has rank 1, we proceed as in Case 1.

Otherwise we continue as in Case 2a.

(3) Otherwise: As we excluded Case 1 and Case 2, the system

of equations is linearly independent. The extractor can thus

compute a the discrete logarithms of all ℎ𝑖 w.r.t. ℎ1 by solv-

ing the linear equation system. It can use the representation

of ℎ′
1
to compute 𝛾 = dlogℎ1

ℎ′
1
and output 𝛾 .

Overall, the failure probability of the extractor can be bounded by

𝑛
𝑝 +

1

𝑝 . □

Lemma B.5 (HVZK of definition B.1). The protocol from defini-
tion B.1 fullfills special honest verifier zero-knowledge.

Proof. We give a simulator. On input of a challenge 𝑐 and a

statement
®ℎ, ®ℎ′, the simulator samples 𝑠𝑠𝑑𝑙 ←$

Z𝑝 and computes

®ℎ𝑠𝑑𝑙 B ®ℎ𝑠𝑠𝑑𝑙 · ®ℎ′
𝑐
where exponentiation and multiplication is com-

ponent wise. It is easy to see that for
®ℎ, ®ℎ′ where there exists 𝛾 such

that
®ℎ𝛾 = ®ℎ′ the transcripts generated by the simulator are identi-

cally distributed to real transcripts that use 𝑐 as a challenge. □

B.2 Proofs of Partial Openings
Definition B.6 (Protocol for Partially Opening a Pedersen Com-

mitment). We describe a sigma protocol that allows for partially

opening a generalized Pedersen Commitment while proving knowl-

edge of the remainder of the opening.

Let
®ℎ be the base vector of the Pedersen commitment, and ®𝑎 be

the full opening. Let 𝐶 be the Pedersen commitment obtained by

𝐶 B
∏𝑛

𝑖=1
ℎ
𝑎𝑖
𝑖
. For simplicity, we treat the randomness used for

committing as part of the full opening. Let 𝐼 be a set of indices

where the commitment is to be opened.

P1 ( ®ℎ, ®𝑎, 𝐼 ) For all 𝑗 ∉ 𝐼 , the prover samples 𝑟 𝑗 ←$
Z𝑝 . It then

computes 𝑅 B
∏

𝑗∉𝐼 ℎ
𝑟 𝑗
𝑗
. It outputs 𝑅 and 𝐴𝐼 B {𝑎𝑖 : 𝑖 ∈ 𝐼 }

to the verifier.

V1 ( ®ℎ,𝐶,𝐴𝐼 , 𝑅) The verifier takes the prover’s first message

as input along with the commitment and the parameters
®ℎ

and samples 𝑐 ←
$
Z𝑝 . It sends 𝑐 to the prover.

P2 ( ®ℎ, ®𝑎, 𝐼, {𝑟 𝑗 : 𝑗 ∉ 𝐼 }, 𝑐) The prover takes the commitment pa-

rameters
®ℎ, the opening ®𝑎, the opening indices 𝑖 , and the ran-

domness for his first message 𝑟 𝑗 , along with the challenge

from the verifier and for all 𝑗 ∉ 𝐼 computes 𝑠 𝑗 B 𝑟 𝑗 − 𝑐 · 𝑎 𝑗 .
It then outputs 𝑆 = {𝑠 𝑗 : 𝑗 ∉ 𝐼 } to the verifier.

V2 ( ®ℎ,𝐶,𝐴𝐼 , 𝑅, 𝑐, 𝑆) The verifier computes 𝐶′ = 𝐶∏
𝑖∈𝐼 ℎ

𝑎𝑖
𝑖

and

then checks that 𝑅 = 𝐶′𝑐 · ∏𝑗∉𝐼 ℎ
𝑠 𝑗
𝑗
. It outputs 1 if this

equality holds and 0 otherwise.

Lemma B.7 (2-special soundness of definition B.6). The pro-
tocol from definition B.6 is 2-special sound.

Proof. Given two transcripts (𝑅, 𝑐1, 𝑆1) and (𝑅, 𝑐2, 𝑆2) with the

same initial message, the extractor E computes the witness 𝑎𝑖 for

each 𝑖 ∈ 𝐼 as 𝑎𝑖 = 𝑠1,𝑖−𝑠2,𝑖

𝑐2−𝑐1

. □

Lemma B.8 (HVZK of definition B.6). The protocol from defini-
tion B.6 is HVZK.
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Proof. The simulator works similar to that from lemma B.5. □

Definition B.9. Let ®ℎ be the public parameters of a Pedersen com-

mitment and 𝑔 the generator of the group over which the Pedersen

commitment is instantiated. For a Pedersen commitment𝐶 ,𝐶𝛾 ·𝑔𝑟𝛾
is a blinded Pedersen commitment with public parameters

®ℎ𝛾 , 𝑔𝛾 .

Lemma B.10 (Extraction in the AGM). Let P∗ be an algebraic
adversary acting as the prover in the protocol from definition B.6
that interacts with a verifier. Then there exists an extractor E𝑎𝑙𝑔 that
extracts a witness {𝑎𝑖 : 𝑖 ∉ 𝐼 } or a solution to the BINDING game
of Pedersen commitments with probability 1 − 2

𝑝 from the algebraic
adversary.

Proof. The adversary outputs a commitment 𝐶 along with a

representation ®𝑦 such that 𝐶 =
∏𝑛

𝑖=1
ℎ
𝑦𝑖
𝑖

In the first round of the

protocol, the adversary P∗ outputs 𝑅 along with a representation ®𝑧
such that 𝑅 =

∏𝑛
𝑖=1

ℎ
𝑧𝑖
𝑖

as well as 𝐼 , 𝐴𝐼 .

We consider the following cases:

(1) For all 𝑖 ∈ 𝐼 it holds that 𝑧𝑖 = 0: Then, the extractor simply

computes all 𝑎𝑖 where 𝑖 ∉ 𝐼 𝑎𝑖 =
𝑧𝑖−𝑠𝑖
𝑐 . This works if 𝑐 ≠ 0

which happens with probability 1 − 1

𝑝

(2) There exists at least one 𝑖 ∈ 𝐼 such that 𝑧𝑖 ≠ 0.

(a) For all 𝑖 ∈ 𝐼 it holds that 𝑦𝑖 = 𝑎𝑖 . In this case, it holds

that𝐶 =
∏

𝑖∈𝐼 ℎ
𝑎𝑖
𝑖
·∏𝑖∉𝐼 ℎ

𝑦𝑖
𝑖
, and the extractor outputs

{𝑦𝑖 : 𝑖 ∉ 𝐼 } as the witness.
(b) This yields an equation of the form

∏𝑛
𝑖=1

ℎ
𝑐 ·𝑦𝑖
𝑖
·∏𝑖∉𝐼 ℎ

𝑠𝑖
𝑖

=
∏𝑛

𝑖=1
ℎ
𝑧𝑖
𝑖
. With probability 1 − 1

𝑝 over the choice of

𝑐 it holds that there exists 𝑖 ∈ 𝐼 such that 𝑧𝑖 ≠ 𝑐 · 𝑦𝑖 .
Thus, the extractor can output a BINDING solution,

namely the commitment 𝑅 along with ®𝑧 and ®𝑧′ where
𝑧′
𝑖
= 𝑐 · 𝑦𝑖 for 𝑖 ∈ 𝐼 and 𝑧′𝑖 = 𝑐 · 𝑦𝑖 + 𝑠𝑖 for 𝑖 ∉ 𝐼 .

□

Theorem B.11 (Opening a Blinded Pedersen Commitment).

For any algebraic adversary U that on input of commitment pa-
rameters ®ℎ outputs blinded commitment parameters ®Ψ′, a commit-
ment 𝜁1, a partial vector ®𝐿′ that has non-⊥ entries at index 𝐼 a proof
𝜋 = (𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 ) auxiliary information 𝑎𝑢𝑥 such that 𝜋 = (𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 )
is the Fiat-Shamir transformation (see definition A.6) of the AND-
proof (see lemma A.7) of the protocols described in definitions B.1
and B.6 along with group element representations for all group ele-
ments output by the adversaryU, there exists an extractor E that on
input of the adversary’s output including all algebraic representations
that were made during the output or to the Random Oracle, outputs a
witness 𝛾 with probability 1 −𝑄ℎ

1+𝑛
𝑝 (over the choice of the random

oracle) and (if the former happens) additionally either a witness ®𝐿
which is a partial opening to the commitment 𝜁1 on the indices 𝑖 ∉ 𝐼 ,
or a solution 𝑅, ®𝑧, ®𝑧′ to the BINDING game of Pedersen commitments
with probability 1 − 2

𝑝 over the choice of the random oracle.

Proof. The extractor proceeds as follows. First, it calls the ex-

tractor from lemma B.4 on the blinded commitment parameters

transcript 𝜋𝑠𝑑𝑙 along with the commitment parameters
®ℎ and the

blinded parameters
®𝜓 . This extractor outputs a witness 𝛾 with prob-

ability 1 −𝑄ℎ · 1+𝑛
𝑝 as the adversary may query the RO 𝑄ℎ many

times, so we union bound over the choice of the challenges for the

Σ-protocol transcript.
The extractor then uses 𝛾 to transform the commitment 𝜁1 into

𝐶 = 𝜁

1

𝛾

1
and 𝑅𝑜𝑝 from 𝜋𝑜𝑝 into 𝑅′𝑜𝑝 = 𝑅

1

𝛾

𝑜𝑝 . It transforms the alge-

braic representations by dividing by 𝛾 . It then runs the extractor

from lemma B.10 to extract either a witness or a binding game

solution. It outputs the outputs of the two extractors.

□

Theorem 3.1 (Extractor for Showing Procedure). For any
algebraic adversary U that, on input of commitment parameters
pp

GPC
= ®ℎ, it outputs an ACL public key pk along with a tuple

(𝑚,𝜎, ®𝐿′, 𝐼𝑜𝑝 , 𝜋) such that SH𝑉 (pk,𝑚, 𝜎, ®𝐿′, 𝐼𝑜𝑝 , 𝜋) = 1, there exists
an extractor E that takes U’s output (pk, (𝑚,𝜎, ®𝐿′, 𝐼𝑜𝑝 , 𝜋)) along
with all algebraic representationsU outputs as input, and it outputs
a witness 𝛾 of the proof of same discrete logarithm with probability
1 −𝑄ℎ

1+𝑛
𝑝 (over the choice of the random oracle) and (if the former

happens) additionally either a witness ®𝐿 which is a partial opening
to the commitment 𝜁1 on the indices 𝑖 ∉ 𝐼 , or a solution 𝑅, ®𝑧, ®𝑧′ to the
BINDING game of Pedersen commitments with probability 1 − 2

𝑝

over the choice of the random oracle.

Proof. This follows directly from theorem B.11. □

C PROOFS OF OF LEMMAS 3.4 AND 3.7
Next, we propose a simplified variant of the restrictive blinding

game from [1, 37] where we do not require that the adversary’s

output contains as many signatures as it requested signing sessions,

but rather only a “mismatched” signature.

Definition 3.3 (Restrictive Blinding Game). We describe the re-
strictive blinding game for an adversary A:

Setup: The challenger samples a key pair (pk, sk) according
to G(ppG). This uses the random oracle H1 which allows

the challenger to keep track of the discrete logarithms of

its outputs. It outputs pk to the adversary.

Online Phase: The adversary gets access to the following

oracles

Oracle H1: lazily samples𝑤 ←
$
Z𝑝 and returns 𝑔𝑤 . Keeps a

list of the hash inputs,𝑤 , and the output 𝑔𝑤 .

Oracle Hpp: lazily samples 𝑣 ←
$
Z𝑝 and returns 𝑔𝑣 . Keeps a

list of the hash inputs 𝑣 , and the output 𝑔𝑣 .

Oracle H3: lazily samples 𝜀 ←
$
Z𝑝 and returns 𝜀

RS : Register new commitments and store them in list to en-

sure all commitments coming in S1 queries were already

registered.

S1: runs the signing procedure S1 of ACL and returns its

output along with a fresh session ID. Keeps a list of the

commitment 𝐶 and the random value rnd.

S2: takes as input a session ID and a challenge 𝑒 . If the session

ID has never been used before in a S2 query, it runs the

S2 procedure of ACL using the internal signer state corre-

sponding to the session ID with 𝑒 and returns its output.

Output Determination: A submits a list of message-sign

ature pairs (𝑚𝑖 , 𝜎𝑖 ) for 𝑖 = 1..ℓ . The game outputs 1 if

there is a pair (𝑚,𝜎 = (𝜁 , 𝜁1, . . .)) in the list such that the
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signature is valid on the message𝑚 under the public key

pk and it holds that there exists no closed signing session

sid such that dlog𝑧𝜁 = dlog𝑧1,sid
𝜁1.

We define the advantage of the adversary in the game RB as

AdvRBACL (A) B Pr[RBAACL = 1] .

Lemma 3.4 (Restrictive Blinding). In the ROM and AGM, if
DLP is (𝑡, 𝜀)-hard in G, it holds that for any adversary running in
time at most 𝑡 , the advantage is at most

AdvRBACL (A) ≤ 13 · 𝜀 + 4 ·𝑄𝐶 + 31

𝑝
+ 1

𝑛
.

where𝑄𝐶 is the number of registration queries made by the adversary.

Proof. We use a similar proof technique to the one used in

Theorem 4.1. in [35] (and full version [36]). We proceed in a series

of games to gradually rule out bad event, reaching a game that we

can reduceDLP ifA outputs a valid signature such that there exists

no closed signing session sid satisfying dlog𝑧𝜁 = dlog𝑧1,sid
𝜁1.

We start by ruling out the first abort condition corresponding to

the representation of the registered commitments 𝐶 .

Game G1. This is Game RB.
Let 𝑄𝐶 be the number of commitments A registers. We de-

fine BAD1 as the event in which A registers a commitment 𝐶 𝑗

for 𝑗 ∈ [𝑄𝐶 ] successfully using a proof 𝜋 = (𝑀, 𝑠0, . . . , 𝑠𝑛) while
Tpp [(𝐶,𝑀)] = ⊥, where TP is the table of the random oracle Hreg
used in the Fiat-Shamir transformation of the protocol from defini-

tion 2.7. Intuitively, this corresponds toA registering a commitment

𝐶 𝑗 successfully without having made a hash query beforehand.

Game G2. This game is identical to Game G1, except that it

aborts if Event BAD1 occurs.

Claim C.1.

Pr[BAD1] ≤
𝑄𝐶

𝑝
.

Proof. Outputting a valid proof 𝜋 = (𝑀, 𝑠0, . . . , 𝑠𝑛) for a com-

mitment 𝐶 implies that the equation 𝐶𝑐 ·∏𝑖∈[⟦𝑛⟧ ℎ
𝑠𝑖
𝑖
= 𝑀 , where

𝑐 = Hreg (𝐶,𝑀). Thus, outputting a valid proof without querying

Hreg beforehand to acquire 𝑐 is equivalent to guessing 𝑐 . However,

sine Hreg is modeled as a random oracle, the value 𝑐 is chosen uni-

formly at random, and the probability of A guessing this value

correctly is at most
1

𝑝 . Since A registers up to 𝑄𝐶 values, the prob-

ability that it successfully registers some commitment without

having made a corresponding hash query is at most
𝑄𝐶

𝑝 . □

By this claim, it holds AdvAG2

≥ AdvAG1

− 𝑄𝐶

𝑝 .

As BAD1 does not occur, we assume in the following that for

each valid commitment-proof tuple (𝐶, 𝜋 = (𝑀, 𝑠0, . . . , 𝑠𝑛)) the
adversary outputs, it holds that TP ≠ ⊥.

Let BAD2 be the event in which A successfully registers a com-

mitment 𝐶 𝑗 for 𝑗 ∈ [𝑄𝐶 ] satisfying the condition∨
𝑗∈[𝑄𝐶 ]

𝑦[𝐶 𝑗 ] +
∑︁

sid∈𝑄S
𝑐sid · 𝑎sid [𝐶 𝑗 ] ≠ 0,

where 𝑄S is the number of open signing sessions at the time A
registers𝐶 𝑗 , and 𝑐sid is the random chosen by the signer to compute

𝑎sid. Intuitively, this condition means that A uses 𝑦 or some 𝑎sid
(or both) in the representation of some commitment 𝐶 𝑗 such that

they do not cancel each other out.

Game G3. This game is identical to G2, except that it aborts if

event BAD2 occurs.

Claim C.2.

Pr[BAD2] ≤ AdvR1

DL +
1

𝑝
.

Proof. It follows directly from Claim E.1 in [35]. □

By the claim, we have AdvAG3

≥ AdvAG2

− AdvR1

DL −
1

𝑝 .

By this claim, we assume that A wins G3 and BAD2 does not

occur. However, A may still use 𝑎sid or 𝑦 components in the rep-

resentation of 𝐶 without triggering BAD2 in a way that prevents

R from functioning properly. Specifically, if A uses the group ele-

ment 𝑎sid or 𝑏2,sid of the signing session sid in the representation

of some commitment 𝐶 , but it never closes sid, this may lead to an

issue for R, because it won’t be able to compute dlog𝑔𝐶 without

knowing the opening of 𝑎sid or 𝑏sid, i.e. (𝑟sid, 𝑐sid) and (𝑠2,sid, 𝑑sid),
respectively. Note that this does not cause an issue for the current

game hop, because it is straight forward to known the opening of all

group elements of any signing session sid since the signer oracles

are simulated by the reduction. However, this is problematic later

in the reduction from Game OMMIM to Game OMUF, because R
uses the challenger’s prover oracles to simulate the signer oracles

forA. Consequently, the reduction will have access to the opening

of a group element 𝑎sid or 𝑏sid2 iff the adversary makes S 2 query

for sessions sid. Therefore, it is crucial to ensure that no 𝑎sid or

𝑏2,sid is used in the representation of any commitment 𝐶 if sid will

not be closed. To capture this, we define BAD3 as the event that

occurs if the equation∨
𝑗∈[𝑄𝐶 ]

(𝑦[𝐶 𝑗 ] +
∑︁

sid∈®𝐼𝑜𝑝

𝑐sid · 𝑎sid [𝐶 𝑗 ] = −
∑︁

sid∈®𝐼𝑐𝑙

𝑐sid · 𝑎sid [𝐶 𝑗 ] ).

Game G4. This game is identical to G3, except that it aborts if

event BAD3 occurs.

Claim C.3.

Pr[BAD3] ≤
𝑄𝐶

𝑝
.

Proof. Identical to Claim E.2 in [35]. □

Consequently, we have AdvAG4

≥ AdvAG3

− 𝑄𝐶

𝑝 .

Next, we rule out the usage of any ℎ or 𝑏2,sid component in the

representation of 𝐶 𝑗 for sid ∈ 𝑄S and 𝑗 ∈ 𝑄𝐶 . We define Event

BAD4 as the event that occurs if∨
𝑗∈[𝑄𝐶 ]

(ℎ [𝐶 𝑗 ] +
∑︁

sid∈𝑄S
𝑠2,sid · 𝑏2,sid [𝐶 𝑗 ] ) ≠ 0

holds, where 𝐶 𝑗 are the commitments registered by A. This condi-

tion means that A uses ℎ or some 𝑏2,sid) (or both) in the represen-

tation of some commitment 𝐶 𝑗 such that they do not cancel each

other out.
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Game G5. This game is identical to G4, except that it aborts if

event BAD4 occurs.

Claim C.4.

Pr[BAD4] ≤ AdvR2

DL +
1

𝑝
.

Proof. Identical to Claim E.3 in [35]. □

Per this claim, we have AdvAG5

≥ AdvAG4

− AdvR2

DL −
1

𝑝 .

Next, we prevent A from using 𝑏2,sid from an open signing

session sid in the representation of some 𝐶 𝑗 for 𝑗 ∈ [𝑄𝐶 ] without
triggering BAD4.

Define BAD5 as the event that occurs if∨
𝑗∈[𝑄𝐶 ]

(ℎ [𝐶 𝑗 ] +
∑︁

sid∈®𝐼𝑐𝑙

𝑠2,sid · 𝑏2,sid [𝐶 𝑗 ] = −
∑︁

sid∈®𝐼𝑜𝑝

𝑠2,sid · 𝑏2,sid [𝐶 𝑗 ] ) .

This condition means that A uses ℎ or some 𝑏2,sid (or both) in

the representation of some commitment 𝐶 𝑗 such that they do not

cancel each other out.

Game G6. This game is identical to G5, except that it aborts if

event BAD5 occurs.

Claim C.5.

Pr[BAD5] ≤
𝑄𝐶

𝑝
.

Proof. The same as Claim E.4 in [35]. □

By the claim, it holds AdvAG6

≥ AdvAG5

− 𝑄𝐶

𝑝 .

Let Event BAD6 be the event that occurs if∨
𝑗∈[𝑄𝐶 ]

(𝑧 [𝐶 𝑗 ] +
∑︁

sid∈𝑄S
𝑑sid · 𝑏2,sid [𝐶 𝑗 ] ≠ 0) .

holds. This condition is equivalent to A using 𝑧 or some 𝑏2,sid
(or both) in the representation of some commitment 𝐶 𝑗 without

canceling each other out.

Game G7. This game is identical to G6, except that it aborts if

event BAD6 occurs.

Claim C.6.

Pr[BAD6] ≤ AdvR3

DL +
1

𝑝
.

Proof. The same as Claim E.5 in [35]. □

It follows that AdvAG7

≥ AdvAG6

− AdvR3

DL −
1

𝑝 .

Similar to what we did in Games G4 and G6, we rule out using

𝑏2,sid from a signing session sid that is never closed in the repre-

sentation of some commitment 𝐶 𝑗 without triggering BAD6.

Let Event BAD7 be the event that occurs if∨
𝑗∈[𝑄𝐶 ]

𝑧 [𝐶 𝑗 ] +
∑︁

sid∈®𝐼𝑜𝑝

𝑑sid · 𝑏2,sid [𝐶 𝑗 ] = −
∑︁

sid∈®𝐼𝑐𝑙

𝑑sid · 𝑏2,sid [𝐶 𝑗 ] .

holds.

Game G8. This game is identical to G7, except that it aborts if

event BAD7 occurs.

Claim C.7.

Pr[BAD7] ≤
𝑄𝐶

𝑝
.

Proof. Identical to Claim E.6 in [35]. □

It follows that AdvAG8

≥ AdvAG7

− 𝑄𝐶

𝑝 .

Let openj be a vector of all signing sessions identifiers that are
still open at the time A registers a commitment 𝐶 𝑗 for 𝑗 ∈ [𝑄𝐶 ],
ordered by the time the sessions were opened. Let Event BAD8 be

the event that occurs if∨
𝑗∈[𝑄𝐶 ]

∑︁
sid∈openj

𝑢3,sid · 𝑏1,sid [𝐶 𝑗 ] ≠ 0,

holds, where 𝑢3,sid B dlog𝑔𝑏1,sid.

Claim C.8.

Pr[BAD8] ≤ AdvR4

DL +
3

𝑝
+ 1

𝑛
.

Proof. Identical to Claim E.7 in [35]. □

By this claim, it holds that AdvAG8

≥ AdvAG7

− AdvR4

DL −
3

𝑝 −
1

𝑛 .

Corollary C.9. Given a representation of a successfully registered
commitment 𝐶 , R can efficiently compute dlog𝑔𝐶 .

Proof. IfA winsG8, non of the abort conditions of the previous

games (i.e., BAD1 − BAD8) was triggered, except with negligible

probability. In this case, the representations of all registered commit-

ments𝐶 do not contain any group elements with unknown discrete

logarithms to R, such as the group elements of the challenger’s

public key or the group elements A receiver via S1 queries. Thus,

R can efficiently compute dlog𝑔𝐶 . □

Next, we address the second abort condition, which relates to

the representation of the group element 𝜁 .

Let BAD9 be the event in which A outputs a valid signature

(𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿) for a message𝑚, while T3 [(𝜁 , 𝜁1, 𝑔
𝜌 ·𝑦𝜔 , 𝑔𝜎1 ·

𝜁𝛿
1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚)] = ⊥. This corresponds to A outputting a

valid signature without making a corresponding hash query to H3

beforehand.

Game G9. This game is the same as G8 except that it aborts if

Event BAD9 occurs.

Claim C.10.

Pr[BAD9] ≤ AdvAG8

+ 1

𝑝
.

Proof. A valid signature must satisfy the verification equation

𝜔 + 𝛿 = H3 (𝜁 , 𝜁1, 𝑔
𝜌 · 𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿

1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚). However,

outputting a valid signature without querying H3 beforehand is

equivalent to guessing the output ofH3, i.e.𝜔+𝛿 , on input (𝜁 , 𝜁1, 𝑔
𝜌 ·

𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿
1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚). As H3 is modeled as a random

oracle, its output is chosen uniformly at random from Z𝑝 and the

probability thatA succeeds in guessing its output is at most
1

𝑝 . □
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By the claim, it holds AdvAG9

≥ AdvAG8

− 1

𝑝 .

Define Event BAD10 as the event that occurs ifA outputs a valid

signature (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿) for a message𝑚 with a correspond-

ing H3 hash query (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚), and it holds 𝑧𝑧 [𝜁 ] ≠ 𝜁 . That

is, the event occurs if the representation of 𝜁 contains any group

element other than 𝑧.

Game G10. This game is identical to G9, except that it aborts if

BAD10 occurs.

Claim C.11.

Pr[BAD10] ≤ AdvR5

DL + 2 · AdvR6

DL +
6

𝑝
.

Proof. Identical to Claim E.11 in [35]. □

By this claim, we haveAdvAG10

≥ AdvAG9

−AdvR5

DL−2 ·AdvR6

DL−
6

𝑝 ,

and therefore, we assume A wins G10 and 𝜁 is computed honestly,

i.e. its representation contains only a 𝑧 component.

Corollary C.12. For any valid signature (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿)
with a corresponding H3 hash query (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚), R can use
the representation of 𝜁 submitted along the hash query to efficiently
compute dlog𝑧𝜁 .

Proof. If A wins G10, the abort conditions BAD9 and BAD10

cannot be triggered, except with probability
7

𝑝 +Adv
R5

DL + 2 ·AdvR6

DL .

In this case, the representation of the group element 𝜁 of every hash

query corresponding to some valid signature only consists solely

of a 𝑧 component, i.e. 𝜁 = 𝑔𝑧 [𝜁 ] . Consequently, R can efficiently

compute dlog𝑧𝜁 , except with negligible probability. □

Let EventBAD11 be the event that occurs ifA outputs a valid sig-

nature (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿) for a message𝑚 with a corresponding

H3 hash query (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚) satisfying dlog𝑧𝑧1,sid ≠ dlog𝜁 𝜁1

for all signing session sid.

Game G11. This game is identical to G10, except that it aborts if

BAD11 occurs.

Claim C.13.

Pr[BAD11] ≤ AdvR7

DL + Adv
R8

DL + 4 · AdvR9

DL +
18

𝑝
.

Proof. The same as Claim E.11 in [35]. □

By this claim, we have AdvAG11

≥ AdvAG10

− AdvR7

DL − Adv
R8

DL −
4 · AdvR9

DL −
18

𝑝 . Therefore, It must hold that each valid signature

output by A is linked to some signing session sid by satisfying

dlog𝑧𝑧1,sid = dlog𝜁 𝜁1.

Corollary C.14. For any valid signature (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿)
with a corresponding H3 hash query (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚), let 𝛾 ≔

dlog𝑧𝜁 . Then there exists a signing session sid such that 𝜁 1/𝛾
1

= 𝑧1,sid,

hence dlog𝑔𝜁
1/𝛾
1

= rndsid.

Proof. If A wins G11, the abort condition BAD11 was not trig-

gered, except with negligible probability. It follows that any valid

signature satisfies dlog𝑧𝑧1,sid = dlog𝜁 𝜁1 for some signing session

sid. □

Define Event BAD11

′
as the event that occurs if A outputs

a valid signature (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿) with a corresponding H3

hash query (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚) such that for all signing sessions

sid it holds dlog𝑧𝜁 = dlog𝑧sid1
𝜁1.

Corollary C.15.

Pr[BAD11

′] ≤ AdvR7

DL + Adv
R8

DL + 4 · AdvR9

DL +
18

𝑝
.

Proof. We know that Pr[BAD11] ≤ AdvR7

DL + AdvR8

DL + 4 ·
AdvR9

DL +
18

𝑝 , thus, it suffices to show that BAD11 ⇔ BAD11

′
. Let

𝛾 ≔ dlog𝑧𝜁 . It follows that dlog𝑧𝑧1,sid = dlog𝑧𝛾 𝜁1 ≕ 𝑣0, hence

𝜁1 = 𝑧𝑣0 ·𝛾 = 𝑧
𝛾

1,sid. It follows that dlog𝑧𝑧1,sid = dlog𝜁 𝜁1 ⇔ dlog𝑧𝜁 =

dlog𝑧1,sid
𝜁1. □

Due to Corollary C.15, we have

AdvRBACL (A) ≤
4 ·𝑄𝐶 + 31

𝑝
+ 1

𝑛
+ AdvR1

DL + Adv
R2

DL + Adv
R3

DL

+AdvR4

DL + Adv
R5

DL + 2 · AdvR6

DL + Adv
R7

DL + Adv
R8

DL + 4 · AdvR9

DL,

hence

AdvRBACL (A) ≤ 13 · 𝜀 + 4 ·𝑄𝐶 + 31

𝑝
+ 1

𝑛
.

□

Definition C.16 (2-to-1 tagging game). [Game ℓ-2-to-1-Tagging
(ℓ-TTOT)] For a positive integer ℓ ∈ Z+, we define the game

ℓ-TTOT for the identification scheme IDACL B (G,P,V) and an

adversary A as follows.

Initialization. The challenger samples a key pair (pk, sk) ←
$

G(ppG). It outputs pk to the adversary A.

Online Phase. The adversary gets to interact with prover

oracles P1 and P2 and verifier oraclesV1,V2.

Output Determination. The game outputs 1 there are two

accepting sessions 𝑖1, 𝑖2 with the verifier, such that there

exists a P2 invocation 𝑗 , it holds that 𝜁𝑖1,𝑖 = 𝑧1, 𝑗 = 𝜁𝑖2,𝑖 . We

call these two verifier sessions the special sessions.
We define the advantage of an adversaryA in winning the game

for the ACL identification scheme IDACLas

Advℓ-TTOIDACL
(A) B Pr[ℓ-TTOA IDACL = 1] .

Lemma C.17 (2-to-1 tagging (adapted from Lemma 3.5 in

[35])). There exists an adversary R against the discrete logarithm
problem such that for any algebraic adversary A it holds that

AdvDLP (R) ≥ 1

2

Advℓ-TTOTIDACL
(A) − 1

𝑝
.

Proof. The proof is identical to the proof of Lemma 3.5 in [35]

as their proof only uses the fact that there are two special sessions

with the same tag. □

Definition 3.6 (2-to-1 Game). We describe the 2-to-1 game ℓ-TTO
for an adversary A:

Setup: The challenger samples a key pair (pk, sk) according
to G(ppG). This uses the random oracle H1 which allows

the challenger to keep track of the discrete logarithms of

its outputs. It outputs pk to the adversary.
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Online Phase: The adversary gets access to the following

oracles

Oracle H1: lazily samples𝑤 ←
$
Z𝑝 and returns 𝑔𝑤 . Keeps a

list of the hash inputs,𝑤 , and the output 𝑔𝑤 .

Oracle Hpp: lazily samples 𝑣 ←
$
Z𝑝 and returns 𝑔𝑣 . Keeps a

list of the hash inputs 𝑣 , and the output 𝑔𝑣 .

Oracle H3 lazily samples 𝜀 ←
$
Z𝑝 and returns 𝜀

S1: runs the signing procedure S1 of ACL and returns its

output along with a fresh session ID. Keeps a list of the

commitment 𝐶 and the

S2: takes as input a session ID and a challenge 𝑒 . If the session

ID has never been used before in a S2 query, it runs the

S2 procedure of ACL using the internal signer state corre-

sponding to the session ID with 𝑒 and returns its output.

Output Determination: The adversary submits a list of mes-

sage-signature pairs (𝑚𝑖 , 𝜎𝑖 ) for 𝑖 = 1..ℓ . The game outputs

1 if there are two messages 𝑚1, 𝑚2 and two signatures

(𝜁 (1) , 𝜁 (1)
1

, 𝜌 (1) , 𝜔 (1) , 𝜎 (1)
1

, 𝜎
(1)
2

, 𝜇 (1) , 𝛿 (1) ) and (𝜁 (2) , 𝜁 (2)
1

,

𝜌 (2) , 𝜔 (2) , 𝜎 (2)
1

, 𝜎
(2)
2

, 𝜇 (2) , 𝛿 (2) ) im the list such that the sig-

natures are valid on the respective messages under the

public key pk and it holds that there exists a single closed

signing session such that dlog𝑧𝜁
(1) = dlog𝐶 ·𝑔rnd𝜁

(1)
1

and

dlog𝑧𝜁
(2) = dlog𝐶 ·𝑔rnd𝜁

(2)
1

.

We define the advantage of the adversary in the game ℓ-TTO as

Advℓ-TTOACL (A) B Pr[ℓ-TTOAACL = 1] .

Lemma 3.7 (2-to-1 blinding). In the ROM and AGM, if DLP is
(𝑡, 𝜀)-hard in G, it holds that for any adversary running in time at
most 𝑡 , the advantage is at most

Advℓ-TTOACL (A) ≤ 7 · 𝜀 + 20

𝑝
.

Proof. Assume there is an algebraic adversaryA that runs and

wins experiment ℓ-TTO. It follows that A provides two valid sig-

natures (𝜁 (1) , 𝜁 (1)
1

, 𝜌 (1) , 𝜔 (1) , 𝜎 (1)
1

, 𝜎
(1)
2

, 𝜇 (1) , 𝛿 (1) ) and (𝜁 (2) , 𝜁 (2)
1

,

𝜌 (2) , 𝜔 (2) , 𝜎 (2)
1

, 𝜎
(2)
2

, 𝜇 (2) , 𝛿 (2) ) satisfying the equalities dlog𝑧𝜁
(1)

= dlog𝐶 ·𝑔rnd𝜁
(1)
1

and dlog𝑧𝜁
(2) = dlog𝐶 ·𝑔rnd𝜁

(2)
1

. Using the same

game hop from the proof of Lemma 3.4 (G2-G11), we rule out the

abort events of these Games. Consequently, Corollaries C.9, C.12,

and C.14 hold, and R9 can efficiently compute dlog𝑔𝐶 for each reg-

istered commitment𝐶 , dlog𝑧𝜁 , and dlog𝑧1,sid𝜁1 of both hash queries

linked to the signatures A outputs, for some signing sessions sid.
When R is executed with game ℓ-TTOT, it takes pk = (ℎ,𝑦, 𝑧)

as input and gets access to the oracles P1,P2,V1, and V2. Then,

it invokes A with input pk and simulates Game ℓ-TTO for A by

providing access to the following oracles:

• RS (𝐶, 𝜋). If 𝜋 is a valid proof of knowledge of an opening

for 𝐶 and 𝐶 ∉ registered, store 𝐶 in registered and output

1, 0 otherwise.

• S1(𝐶). Output ⊥ if 𝐶 ∉ registered. Query the challenger’s

oracle (sid, 𝑎sid, 𝑏1,sid, 𝑏2,sid, rndsid) ←$
P1 (⊥), store sid in

open, compute rnd
′
sid B rndsid − dlog𝑔𝐶 (this is possible

due to Corollary C.9). Output (sid, 𝑎sid, 𝑏1,sid, 𝑏2,sid, rnd′sid).

• S2(sid, 𝑒sid). Output ⊥ if sid ∉ open. Store sid in closed,
query the challenger’s oracle (𝑐sid, 𝑑sid, 𝑟sid, 𝑠1,sid, 𝑠2,sid) ←
P2 (sid, 𝑒sid), and output (𝑐sid, 𝑑sid, 𝑟sid, 𝑠1,sid, 𝑠2,sid).

• H1 (𝑄). Via lazy sampling.

• H3 (𝑄). If T3 [𝑄] ≠ ⊥, output T3 [𝑄]. Otherwise, parse (𝜁 , 𝜁1,

𝛼, 𝛽1, 𝛽2, 𝜂,𝑚), compute 𝛾 B dlog𝑧𝜁 using the representa-

tion of 𝜁 if possible (if this query is used later to generate

a signature, this is possible due to Corollary C.12), oth-

erwise respond to the query with a random value. Com-

pute 𝑧′
1
B 𝜁

1/𝛾
1

, and find a signing session sid such that

𝑧1,sid = 𝑧′
1
and set rnd∗ = rndsid (if this query is used later to

generate a signature, this is possible due to Corollary C.14).

If no such signing session exists, respond with a uniformly

random value. Next, set 𝐴 B 𝛼, 𝐵1 B 𝛽
1/𝛾
1

, 𝐵2 B 𝛽
1/𝛾
2

,

make a query (vid, 𝜀vid) ←$
V1 (A, 𝐵1, 𝐵2, rnd∗). Finally,

set TV[𝑄] B vid, T3 [𝑄] B 𝜀, and output 𝜀.

• Hpp (𝑄). Via lazy sampling.

When A outputs a signature (𝜁 , 𝜁1, 𝜔, 𝜌, 𝜎1, 𝜎2, 𝛿, 𝜇) satisfying
the condition dlog𝑧𝜁 ≠ dlog𝑧sid1

𝜁1 for all signing sessions sid, R
retrieves vid ← T3 [(𝜁 , 𝜁1, 𝑔

𝜌 · 𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿
1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 )] for

𝜁2 B 𝜁 /𝜁1. If vid = ⊥, R aborts and outputs ⊥. This abort event
does not occur because we know from game G9 that each signature

has a corresponding hash query, and the responses of such queries

were generated viaV queries., hence each query is linked to a valid

verifier session vid. Otherwise, it closes the session vid by sending

(𝜔, 𝛿, 𝜌, 𝜎1/𝛾, 𝜎2/𝛾).

Analysis. First, we note that R’s simulation for the signer’s ora-

cles is perfectly indistinguishable from an honest run of the protocol.

To see this, note that the only difference between the prover’s ora-

cles of the challenger and the honest signer in ACL is the way 𝑧1 is

computed. More specifically, 𝑧1 = 𝑔rnd in IDACL while 𝑧1 = 𝑔rnd ·𝐶
in ACL. To avoid this inconsistency, R forwards an updated rnd

′ =
rnd − dlog𝑔𝐶 to A ensuring that 𝑔rnd

′ · 𝐶 = 𝑔rnd · 𝐶−1 · 𝐶 = 𝑔rnd.

The resulting 𝑧1 (if computed honestly) at the adversary side would

be identical to 𝑧1 at the prover side, hence forwarding the rest of

the values from the prover to A would preserve the correctness

and ensure a perfect simulation.

Second, we note that, if the reduction R does not abort and

A outputs a valid signature allowing it to win the RB lemma, R
would use this signature to close a verifier session successfully

and satisfying the condition required to win the ℓ-TTOT game.

Once A outputs a valid signature (𝜁 , 𝜁1, 𝜔, 𝜌, 𝜎1, 𝜎2, 𝛿, 𝜇) satisfy-
ing the condition dlog𝑧𝜁 ≠ dlog𝑧sid1

𝜁1 for all signing sessions sid,
R searches for the verifier session vid that was opened to gener-

ate the challenge 𝜀 for this signature by searching TV[(𝜁 , 𝜁1, 𝑔
𝜌 ·

𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿
1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚)]. Then, it sets 𝜔 ′ B 𝜔, 𝛿 ′ B 𝛿, 𝜌′ B

𝜌, 𝜎′
1
B 𝜎/𝛾, 𝜎′

2
B 𝜎2/𝛾) and closes the session vid by sending

(vid, 𝜔′, 𝜌′, 𝛿 ′, 𝜎′
1
, 𝜎′

2
) in aV2 query. The verifier outputs 1 iff the

values (𝐴, 𝐵1, 𝐵2, rnd∗) and (𝜔 ′, 𝜌′, 𝛿 ′, 𝜎′
1
, 𝜎′

2
) satisfy the equalities

𝜀 = 𝜔 + 𝛿 , 𝛼 ′ = 𝑔𝜌
′ · 𝑦𝜔 ′ , 𝐵1 = 𝑔𝜎

′
1 · 𝑧𝛿 ′

1
, 𝐵2 = ℎ𝜎

′
2 · 𝑧𝛿 ′

2
, where

𝑧1 = 𝑔rnd
∗
and 𝑧2 B 𝑧1/𝑧. Indeed, these equalities hold because

• 𝜔 ′+𝛿 ′ = 𝜀 follows directly from the validity of the signature

since 𝜔 = 𝜔 ′, 𝛿 = 𝛿 ′, and 𝜀 = H3 (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚),
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• 𝛼 ′ = 𝑔𝜌
′ · 𝑦𝜔 ′ follows directly from the validity of the

signature since 𝛼 = 𝛼 ′, 𝜌 = 𝜌′, and 𝜔 = 𝜔 ′.
• Since the signature is valid, it holds that 𝛽1 = 𝑔𝜎1 · 𝜁𝛿

1
⇒

𝛽
1/𝛾
1

= (𝑔𝜎1 · 𝜁𝛿
1
)1/𝛾 ⇒ 𝛽

1/𝛾
1

= 𝑔𝜎1/𝛾 · 𝑔rnd∗ ·𝛿 ⇒ 𝐵1 =

𝑔𝜎
′
1 · 𝑧𝛿 ′

1
.

• Per the validity of the signature, we have 𝛽2 = ℎ𝜎2 · 𝜁𝛿
2
⇒

𝛽
1/𝛾
2

= (ℎ𝜎2 ·𝜁𝛿
2
)1/𝛾 ⇒ 𝛽

1/𝛾
2

= ℎ𝜎2/𝛾 · (𝑧/𝑔rnd∗ )𝛿 ⇒ 𝛽
1/𝛾
2

=

ℎ𝜎2/𝛾 · (𝑧/𝑧1)𝛿 ⇒ 𝐵2 = ℎ𝜎
′
2 · 𝑧𝛿 ′

2
.

□

D DEFERRED FIGURES



Secure Showing of Partial Attributes�
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P𝐼𝐷 R𝐼𝐷,𝑅𝑇 A𝐴𝐶𝐿,𝑅𝐵 H
3

V𝐼𝐷
𝐶,𝜋←−−−−−−−−−−−−−−

⊥←−−−−−−−−−−−−
𝑎,𝑏

1
,𝑏

2
,rnd

−−−−−−−−−−→

rnd
′ B rnd − dlog𝑔𝐶

𝑎,𝑏
1
,𝑏

2
,rnd′

−−−−−−−−−−−→
𝜁 ,𝜁

1
,𝛼,𝛽

1
,𝛽

2
,𝜂,𝑚

−−−−−−−−−−−−−−−−−−−−−−−−−−→
𝛾 B dlog𝑧𝜁

𝑧′
1
B 𝜁

1/𝛾
1

rnd∗ = dlog𝑔𝑧
′
1

𝐴 B 𝛼

𝐵
1
B 𝛽

1/𝛾
1

𝐵
2
B 𝛽

1/𝛾
2

𝐴,𝐵
1
,𝐵

2
,𝑅𝑁𝐷

−−−−−−−−−−−−−→
𝜀←−−−−−−−−−−−−

𝜀←−−−−−−−−−−−−
𝑒←−−−−−−−−−−−−

𝑒←−−−−−−−−−−−−
𝑐,𝑑,𝑟 ,𝑠

1
,𝑠

2−−−−−−−−−→
𝑐,𝑑,𝑟 ,𝑠

1
,𝑠

2−−−−−−−−−→
(𝑚,(𝜁 ,𝜁

1
,𝜌,𝜔,𝜎

1
,𝜎

2
,𝜇,𝛿 ) )

←−−−−−−−−−−−−−−−−−−−−−−−−−−
↓

(𝑚,𝜁
1
, (𝜁 , 𝜌,𝜔,𝜎

1
, 𝜎

2
, 𝜇, 𝛿 ) )

Figure 2: A reduction from RB of ACL to the RT of IDACL.�
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�

�

S(sk = 𝑥, pk = (ℎ,𝑦 = 𝑔𝑥 , 𝑧), (ℎ0, . . . , ℎ𝑛)) U(𝑚, pk = (ℎ,𝑦, 𝑧), (𝐿1, . . . , 𝐿𝑛), (ℎ0, . . . , ℎ𝑛))
Registration

𝑟𝑐𝑜𝑚 ←$
Z𝑝

𝐶 ≔ ℎ
𝑟𝑐𝑜𝑚
0
· ℎ𝐿1

1
· . . . · ℎ𝐿𝑛𝑛

Signing
𝐶,𝜋←−−−−−−−−−−− 𝜋

𝑑, 𝑠1, 𝑠2, 𝑢, rnd←$
Z𝑝

𝑧1 ≔ 𝑔rnd ·𝐶, 𝑧2 := 𝑧/𝑧1

𝑎 ≔ 𝑔𝑢

𝑏1 ≔ 𝑔𝑠1 · 𝑧𝑑
1
, 𝑏2 ≔ ℎ𝑠2 · 𝑧𝑑

2

𝑎,𝑏1,𝑏2,rnd−−−−−−−−−→ If rnd = 0 or 𝑎 ∉ G ∨ 𝑏1 ∉ G ∨ 𝑏2 ∉ G : output ⊥
𝑧1 = 𝑔rnd ·𝐶,𝛾 ←

$
Z∗𝑝

𝜁 = 𝑧𝛾 , 𝜁1 = 𝑧
𝛾

1
, 𝜁2 = 𝜁 /𝜁1

𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 ←$
Z𝑝

𝛼 ≔ 𝑎 · 𝑔𝑡1𝑦𝑡2
; 𝜂 ≔ 𝑧𝜏

𝛽1 ≔ 𝑏
𝛾

1
· 𝑔𝑡3 · 𝜁 𝑡4

1
, 𝛽2 ≔ 𝑏

𝛾

2
· ℎ𝑡5 · 𝜁 𝑡4

2

𝜀 ≔ H3 (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚)
𝑐 ≔ 𝑒 − 𝑑 mod 𝑞

𝑒←−−−−−−−− 𝑒 = 𝜀 − 𝑡2 − 𝑡4
𝑟 ≔ 𝑢 − 𝑐 · 𝑥 mod 𝑞

𝑐,𝑑,𝑟,𝑠1,𝑠2−−−−−−−−→ 𝜌 ≔ 𝑟 + 𝑡1, 𝜔 ≔ 𝑐 + 𝑡2
𝜎1 ≔ 𝑠1 · 𝛾 + 𝑡3, 𝜎2 ≔ 𝑠2 · 𝛾 + 𝑡5
𝛿 ≔ 𝑑 + 𝑡4, 𝜇 ≔ 𝜏 − 𝛿 · 𝛾
If 𝜔 + 𝛿 = H3 (𝜁 , 𝜁1, 𝑔

𝜌 · 𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿
1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚):

Output the Signature (𝜁1, (𝜁 , 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿))
Else: output ⊥

Figure 3: The ACL scheme [3] depicted as an interactive protocol. The check 𝜔 + 𝛿 = H3 (𝜁 , 𝜁1, 𝑔
𝜌 · 𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿

1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚)

also constitutes the verification equation for a resulting signature.
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